Lesson Plan

COURSE TITLE: Aquaculture Science

TOPIC: “Farming the Waters”

OVERVIEW: This lesson covers the definition, history, and economic impact of aquaculture. Students will also explore different careers in aquaculture. Activities for this lesson include a timeline and PowerPoint presentation constructed by the students.

ALABAMA CONTENT STANDARD(S):
- Explain the historical background of aquaculture (AS1)
- Explain how aquaculture relates to agriculture (AS2)
- Explain the economic significance of aquaculture at the local, state, and national levels (AS5)
- Describe career opportunities available in aquaculture (AS29)
- Describe the important biological characteristics in selecting a species for aquaculture (AS18)

LEARNING OBJECTIVES:
Students will be able to:
- Define aquaculture
- Organize a hierarchy of careers in aquaculture
- Distinguish the biological characteristics of an aquacultured species
- Share ways that aquaculture relates to agriculture
- Voluntarily choose a career in aquaculture to research
- Explain the career they have researched in a PowerPoint presentation for the class
- Develop a timeline of the history of aquaculture
- Recite the statistical data on the economic significance of aquaculture at the local, state, and national levels

MATERIALS AND EQUIPMENT NEEDED: Students will need notebooks to take notes, computer, and overhead projector.

TECHNOLOGY RESOURCES NEEDED: Computer, overhead projector.
The material covered in this unit includes:
- How aquaculture relates to agriculture
- Definition and history of aquaculture
- Careers in aquaculture
- Biological characteristics desired in an aquaculture species
- Economic significance of aquaculture at the local, state, and national levels.

<table>
<thead>
<tr>
<th>CONTENT</th>
<th>INTEGRATED CONTENT CODE</th>
<th>LEARNING ACTIVITIES</th>
<th>RESOURCES</th>
<th>TIME ON TASK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R</td>
<td>I will lead students in a discussion of ways that aquaculture relates to agriculture.</td>
<td>PowerPoint Presentation and Quiz</td>
<td>10 min.</td>
</tr>
<tr>
<td></td>
<td>R, W</td>
<td>A PowerPoint presentation will be presented to the students containing the definition of aquaculture, details about the history of aquaculture, biological characteristics desired in an aquacultured species, the economic significance of aquaculture, and different careers in aquaculture.</td>
<td>Checklist</td>
<td>30 min.</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>Students will make a timeline of the history of aquaculture.</td>
<td>Handout</td>
<td>30 min.</td>
</tr>
<tr>
<td></td>
<td>R, W, CL, IR, DM</td>
<td>An additional handout will be provided for the student that contains an example of an ideal species for aquaculture to reinforce the biological characteristics of an aquacultured species.</td>
<td>Checklist and List of Careers</td>
<td>5 min.</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>Students will voluntarily select a career in aquaculture and research that career. They will organize the information in a PowerPoint presentation to present to the other students.</td>
<td></td>
<td>125 min.</td>
</tr>
</tbody>
</table>
VARIED ASSESSMENT STRATEGIES: A quiz will be given to assess the students’ knowledge of the definition, history, and economic significance of aquaculture. See attached checklist for assessment of the timeline and PowerPoint.

PROVISIONS FOR INDIVIDUAL DIFFERENCES:
INTEGRATED CONTENT CODES

BASIC SKILLS

R=READING SKILLS
W=WRITING SKILLS
C=COMMUNICATION SKILLS
SS=SOCIAL STUDIES
M=MATH
S=SCIENCE
IR=INTERPERSONAL RELATIONSHIP SKILLS
CL=COMPUTER LITERACY SKILLS

PROCESS SKILLS

DM=DECISION MAKING SKILLS
PS=PROBLEM SOLVING SKILLS
CT=Critical THINKING SKILLS

EMPLOYABILITY

ES=EMPLOYABILITY SKILLS
MS=MANAGEMENT SKILLS
WA=WORK ATTITUDES
TW=TEAMWORK

LEADERSHIP SKILLS

IM=INTEGRATION OF LEADERSHIP
CTSO=CAREER/TECHNICAL STUDENT ORGANIZATION
LD=LEADERSHIP DEVELOPMENT SKILLS

THE MORE INTEGRATION THE BETTER
Channel Catfish
Life History and Biology

Thomas L. Wellborn*

Channel catfish, *Ictalurus punctatus* (Rafinesque), is the most important species of aquatic animal commercially cultured in the United States. It belongs to the family Ictaluridae, order Siluriformes. Members of the order Siluriformes are found in fresh and salt water worldwide. There are at least 39 species of catfish in North America, but only six have been cultured or have potential for commercial production. They are the blue catfish, *Ictalurus furcatus* (LeSueur); the white catfish, *Ictalurus catus* (Linnaeus); the black bullhead, *Ictalurus melas* (Rafinesque); the brown bullhead, *Ictalurus nebulosus* (LeSueur); the yellow bullhead, *Ictalurus natalis* (LeSueur); and the flathead catfish, *Pylodictis olivaris* (Rafinesque).

Distribution
Channel catfish were originally found only in the Gulf States and the Mississippi Valley north to the prairie provinces of Canada and Mexico, but were not found in the Atlantic coastal plain or west of the Rocky Mountains. Since then channel catfish have been widely introduced throughout the United States and the world.

Physical characteristics
Like all native North American catfishes, a channel catfish has a body that is cylindrical in cross-section, and lacks scales. Fins are soft-rayed except for the dorsal and pectoral fins which have sharp, hard spines that can inflict a nasty, painful wound if a catfish is handled carelessly. An adipose fin (lacking rays) is located on the back between the dorsal and caudal fins (Fig. 1). One conspicuous characteristic of all catfish is the presence of barbels around the mouth. The barbels are arranged in a definite pattern with four under the jaw and one on each tip of the maxilla (upper jaw).

The channel catfish is the only spotted North American catfish with a deeply forked tail. There are 24-29 rays in the anal fin. They are generally olivaceous to blue on the back, shading to the off-white ventrally.

* University of Florida.
Their color, to a large extent, is dictated by the color of the water they inhabit. In clear water they may appear almost black, while in muddy water they may be a light yellow. Young channel catfish are irregularly spotted on their sides, but the spots tend to disappear in the adults.

Habitat
In natural waters channel catfish live in moderate to swiftly flowing streams, but they are also abundant in large reservoirs, lakes, ponds and some sluggish streams. They are usually found where bottoms are sand, gravel or rubble, in preference to mud bottoms. They are seldom found in dense aquatic weeds. Channel catfish are freshwater fish but they can thrive in brackish water.

Channel catfish generally prefer clear water streams, but are common and do well in muddy water. During the day they are usually found in deep holes wherever the protection of logs and rocks can be found. Most movement and feeding activity occurs at night just after sunset and just before sunrise. Young channel catfish frequently feed in shallow riffle areas while the adults seem to feed in deeper water immediately downstream from sand bars. Adults rarely move much from one area to another and are rather sedentary, while young fish tend to move about much more extensively, particularly at night when feeding.

Feeding
Feeding can occur during day or night, and they will eat a wide variety of both plant and animal material. Channel catfish usually feed near the bottom in natural waters but will take some food from the surface. Based on stomach analysis, young catfish feed primarily on aquatic insects. The adults have a much more varied diet which includes insects, snails, crawfish, green algae, aquatic plants, seeds and small fish. When available, they will feed avidly on terrestrial insects, and there are even records of birds being eaten. Fish become an important part of the diet for channel catfish larger than 18 inches total length, and in natural waters fish may constitute as much as 75 percent of their diet.

Channel catfish primarily detect food with their sense of taste. Taste buds are found over the entire external surface of catfish as well as inside the mouth, pharynx and gill arches. They are most numerous on the barbels and gill arches. In clear water, eyesight can be an important means of finding food. However, in turbid water, taste is the primary way catfish locate food. The organ of smell (olfactory organs) may play some role, but this has not been well established. The olfactory organs are found in the nostrils (nares) which are located on top of the head just in front of the eyes.

Age and growth
Channel catfish grow best in warm water with optimum growth occurring at temperatures of about 85° F (29.4° C). With each 18° F (10° C) change in temperature there is a doubling or halving of their metabolic rate. This means that within limits, their appetite increases with increasing water temperatures or decreases with decreasing water temperatures.

In natural waters, the average size channel catfish caught by fishermen is probably less than 2 to 3 pounds, but the world record of 58 pounds was caught in Santee Cooper Reservoir, South Carolina, in 1964. The size and age that channel catfish reach in natural waters depends on many factors. Age and growth studies have shown that in many natural waters channel catfish do not reach 1 pound in size until they are 2 to 4 years old. One study in the Lake of the Ozarks, Missouri, found that channel catfish did not reach a size of 13 inches total length until they were 8 years old. The maximum age ever recorded for channel catfish is 40 years, whereas most commercially raised catfish are harvested before they are 2 years old.

In production ponds the mouth rate of channel catfish is determined by water temperature; length of time held at different water temperatures; quantity and quality of food fed; palatability, or taste of food; frequency of feeding; water quality, etc. Most farm-raised catfish are harvested at a weight of 11/4 pounds at an age of about 18 months.

Water quality
Water quality preferences and limitations for wild channel catfish are not any different from those of farm-raised channel catfish. The lethal oxygen level for both wild and farm-raised catfish is about 1.0 ppm, and reduced growth occurs at oxygen concentrations of less than 4 ppm. Channel catfish, in natural waters, are no more tolerant of high levels of ammonia and nitrates than are farm-raised catfish, but are seldom exposed to lethal concentrations of either ammonia or nitrite.

Respiration
Like other animals, channel catfish need oxygen to live. They use oxygen for energy production and to help build all the various parts of the body. However, oxygen is at most only about 25 percent as abundant in water as in the air. To get oxygen, fish must expend more energy than air-breathers. Fortunately, fish have well developed breathing organs, the gills. Although catfish live in the water, gills serve essentially the same functions as our lungs—to take oxygen from the external environment and to rid the body of toxic gaseous waste, carbon dioxide (CO₂). Water passes over the gill surface where oxygen diffuses into the blood and carbon dioxide diffuses out.

The gills of channel catfish are located on each side of the head (Fig. 2) and they are covered by a protective movable flap of skin called the gill flap or operculum. There are four gills on both sides of the head, each consisting of a double row of slender gill filaments.
A fish breathes by sucking water in through the mouth where it flows directly over the gill filaments and across the lamellae. Blood channeled through the heart has a low oxygen concentration, but at the gill lamellae surface it passes near water high in oxygen. By simple diffusion, oxygen crosses the gill surface and enters the blood where it is carried throughout the fish. Respiration of this type is called counter-current exchange. Simple diffusion of oxygen through the gill lamellae and into the blood occurs because the gill lamellae are extremely thin.

Carbon dioxide is released from fish in much the same way oxygen is taken in—by counter-current exchange. Blood high in carbon dioxide is channeled through the heart to the gills where it comes in close contact with water low in carbon dioxide. By simple diffusion carbon dioxide is then released into the water.

Depending on the needs of the fish, the rate of breathing maybe variable. Fish that are stressed or are pursued by a predator have a greater oxygen demand than fish at rest.

Similarly, if the oxygen concentration in the water is low, a fish has to breathe faster if it is to meet all of its oxygen requirements. During normal respiration only about 60 percent of the gill surface is used for gas exchange. During increased respiratory demands, up to 100 percent of the gill surface may be used.

It is easy to see that any alteration in gill structure or function can be dangerous to catfish. Any increase in the thickness of the gill lamellae will decrease the efficiency of gas diffusion. If the gills become swollen or puffy oxygen and carbon dioxide transfer are decreased. Gills can become thickened following exposure to ammonia, certain vitamin deficiencies or to long-term parasite or bacterial infestations. Any type of toxic agent which damages the gill filaments or lamellae will also affect the efficiency of gas exchange. Finally, if a fish is anemic or has brown blood disease, even though the gills are not damaged and there is adequate oxygen in the water, the blood may not be able to carry enough oxygen to ensure survival.

Spawning

Channel catfish spawn when the water temperature is between 75° and 85° F (23° to 30° C) with about 80° F (27° C) being optimum. Wild populations of catfish may spawn as early as late February or as late as August depending on the location. The length and dates of the spawning season vary from year to year depending on the weather and area, but peak spawning time in Mississippi usually occurs in May.

Channel catfish are cavity spawners and will spawn only in secluded, semi-dark areas. In natural waters male catfish will build a nest in holes in the banks, undercut banks, hollow logs, log jams or rocks. It is this behavior that necessitates the use of spawning containers in order to successfully spawn channel catfish in commercial ponds.
The male selects and prepares the nest by fanning out as much mud and debris as possible. He will then defend this location against any intruder until spawning is completed and the fry leave the nest. The female is attracted to the nest and spawning occurs within the nest with eggs being laid in a gelatinous mass on the bottom. After the eggs are laid, the male takes over and cares for the eggs by constantly fanning them with his fins to provide aeration and to remove waste products given off by the developing eggs.

Females spawn only once a year, producing about 3,000 to 4,000 eggs per pound of body weight, while the males may spawn more than once. In wild populations, males seldom spawn more than once a year, but in hatcheries where the eggs are removed from the spawning container soon after being laid, males may spawn 3 or 4 times; and there is a record of one male spawning nine females in one season. Channel catfish usually become sexually mature at 3 years of age, although some may spawn when 2 years old. In wild populations they may not spawn until after the age of 5 years. Channel catfish weighing as little as 3/4 of a pound may spawn if old enough, whereas farm-raised catfish usually weigh in excess of 2 pounds when they spawn. After the eggs are laid they will usually hatch in 5 to 10 days depending on water temperature. At 78°F (26°C) the eggs will hatch in about 8 days. For each 2°F (1°C) rise in temperature above 78°F, subtract 1 day, and for each 2°F (1°C) fall in temperature below 78°F, add 1 day to get the approximate length of time required for hatching. Water temperatures below 65°F (18°C) and above 85°F (30°C) will reduce hatching success. Newly hatched fry have a large yolk sac which contains the nourishment they need for the next 2 to 5 days until they are fully developed and are ready to start feeding. After the yolk sac is absorbed, the fry take on their typical dark color and will begin to swim-up looking for food. At first swim-up fry will gulp air to fill their swim bladders which helps them maintain and regulate their buoyancy.

This publication was supported in part by a grant from the United States Department of Agriculture, Number 87-CRSR-2-3218, sponsored jointly by the Cooperative State Research Service and the Extension Service.
Checklist for Student PowerPoint Presentations:
Each section of this checklist is worth 20 points. The total project is worth 100 points.

1. Required information:
 a. All information relevant to topic chosen
 b. List positions available within chosen category
 c. Estimated salary for at least one position within the chosen category
 (student must include credible reference as to where the information was found)
 d. Amount of education required for at least one position within the category
 e. Explanation of how the position or category relates to the overall aquaculture industry
 (this section should include a clear description of the category or position and how it fits into the aquaculture industry, why is this position relevant to the aquaculture industry?)

2. A reference page or bibliography should be included at the end of the presentation.
 a. Location of information (book, article, website, etc.)
 b. Name of author or organization
 c. Date of publication
 d. Date accessed

3. Presentation should be at least 5 slides with a maximum of 15 slides.
 a. Should contain title slide
 b. Should be at least 5 slides excluding the title slide
 c. Last slide should be the bibliography or reference page

4. The presentation should reflect strong knowledge of the topic and credible research.

5. Overall presentation:
 a. Presentation should be informative
 b. Presentation should be creative to capture the attention of the other students
 c. Student presentation should be professional
 d. Student must exhibit clear knowledge of the topic

Total Points Earned

Grade
Checklist for Timeline:
This assignment is worth a total of 30 points. Each section is worth 10 points.

1. Timeline should be organized chronologically
 a. Timeline must begin with the earliest date and end with the most current event
 b. Each event must correspond with the correct date
 c. Timeline should be drawn on plain white printer paper

2. Timeline should be neatly organized
 a. Timeline should be legible
 b. Timeline should be easy to follow
 c. Timeline should contain pictures and graphics. (Be creative!)
 d. Timeline should be colorful

3. All important dates discussed in class should be included in the Timeline
 a. Timeline should consist of 8 items
 b. Timeline should begin with 3500 BC and end with 1980s.

Total Points Earned

Grade

Quiz 1: Introduction to Aquaculture

Multiple Choice: Circle the correct answer.

1. Cultivation of carp first occurred in
 a. United States
 b. China
 c. Norway
 d. Japan

2. When was the first account of artificially fertilizing eggs in the U.S.?
 a. 1909
 b. 1919
 c. 1832
 d. 1853

3. What species was first used to artificially fertilize the eggs?
 a. Trout
 b. Catfish
 c. Carp
 d. Shrimp

4. When was the first commercial trout farm in the U.S. established?
 a. 1947
 b. 1950
 c. 1909
 d. 1853

5. Which one of the following is NOT a characteristic desired in an aquacultured species?
 a. Economical
 b. Easily Adaptable
 c. Available
 d. High Feed Conversion

6. Which of the following is not a species currently aquacultured?
 a. Crawfish
 b. Red Snapper
 c. Baitfish
 d. Tropical aquarium fish

True or False: Put a T if the statement is true and an F if the statement is false.

7. All Alabama counties are engaged in commercial aquaculture.

8. Alabama catfish production is fourth in the United States.

9. Alabama aquaculture is worth $115 million to producers.

Short answer: Answer the following questions in the space provided.

10. Define Aquaculture.