Impact of Automatic Section Control for the Southern US

13th Annual Kansas Precision Agriculture Technologies Conference

IMPACT OF AUTOMATIC SECTION CONTROL ON AG SPRAYER PERFORMANCE

John Fulton
Associate Professor and Extension Specialist
Biosystems Engineering Department
www.AlabamaPrecisionAgOnline.com

Alabama Case Study for Automatic Section Control

• 1 to 12% input savings per pass across field
 – AVG: 4.4% (7% for some operations)
• Savings:
 – AVG: $4.83/ac/yr (5 boom-section sprayer & 12-row planter)
 – AVG: $8.36/ac/yr if Nitrogen included
 – Highest savings in irrigated corn: $11-13/ac/yr
• Payback period: < 2 yrs

Impact of Automatic Section Control on Ag Sprayer Performance

John Fulton
Associate Professor and Extension Specialist
Biosystems Engineering Department
www.AlabamaPrecisionAgOnline.com

Alabama Case Study for Automatic Section Control

• 1 to 12% input savings per pass across field
 – AVG: 4.4% (7% for some operations)
• Savings:
 – AVG: $4.83/ac/yr (5 boom-section sprayer & 12-row planter)
 – AVG: $8.36/ac/yr if Nitrogen included
 – Highest savings in irrigated corn: $11-13/ac/yr
• Payback period: < 2 yrs

Model to Estimate Savings

Development of a simple index:
1. Based on field geometry
2. Estimate overlap savings

Today’s Discussion

• Automatic Section Control
 – Rationale
 – Testing Methods
 – Lab and field testing
 – What we have learned
 – Future efforts
• Final thoughts

Pressure Variability???
Impact of Automatic Section Control for the Southern US

Field Boundaries in the South

- Irregular shaped
- Varying terrain
- Environmental structures (waterways, terraces, buffer strips, etc.)

Automatic Section Control

- Automatic ON / OFF of sections or individual nozzles
- Reduces 1) overlap and 2) application in unwanted areas (waterways, buffer strips, etc.).
- Environmental stewardship – Alabama NRCS EQIP

Spray Control System with Automatic Section Control

- Boundary Map
- Controller + Software
- GPS Receiver
- An-Applied Map
- Sprayer performance with all this technology?

Test Setup

- Captian Nozzle Solenoids
- Pressure Transducers mounted along boom.

Data Collection - Lab

- Our Controller
- Minimize the influence of field, operator, and other variables.
- Focus on impact of auto-swath and plumbing.
- Can prescribe field maneuvers and common situations

Lab Results

- Auto-nozzle response different from Auto-Boom
- Response different for turning ON versus OFF
- Valve Control Number (VCN) impacts system response
- Controller unable to respond in certain conditions
- Tip flow stabilization
 - Range: 2 to 10 seconds
 - Majority between 19 and 30 seconds
- System flow stabilization
 - Range: 1 to 4 seconds

- Large difference between tip and system response
 - Suggests regulating valve responds quickly but tip flow stabilization occurs well after valve has adjusted to desired rate.
Impact of Automatic Section Control for the Southern US

Tip vs. System Flow Response

Auto-boom vs. Auto-nozzle

Tip Response Results

Valve Cal. Number

2123 versus 2213

System flow does not correspond to tip response.

Difference exists

Results

Auto-Boom - Point Rows

% Difference between Desired and Actual tip flow

Results

Auto-Nozzle: Point Rows

% Difference between Desired and Actual tip flow

Field Testing

Collaboration with University of Kentucky

FIELD TESTING

Field Testing

Buffer Strip

• 100 ft swath
• 15 to 18 mph
• 30-channel control
• Capstan nozzle solenoids
• Post-herbicide application
Impact of Automatic Section Control for the Southern US

Auto-swath Engagement
- Illustration of 3 adjacent passes
- Outside nozzles snapping On/Off
 - Entire boom impacted by On/Off
 - Tremendous tip flow variability
- Need to consider resolution; can impact application efficacy

Flow Meter Calibration...
- Tip performance satisfactory (<5%)
- Technology issue!
- Boom pressure variability...
 - Acceleration
 - Effects tip performance
 - Pump speed adjusting accordingly
- Why?
 - Extended response
 - Need to further study

Rectangular Field
- Tip Uniformity
- Rate Error

Research Efforts
- Minimize off-target application
- Need quality data
 - Accurate as-applied maps
- Make good informed management decisions.
- Environmental stewardship / public education
Impact of Automatic Section Control for the Southern US

Field Results

- Tip flow uniformity (CV) varies across a boom
 - Ground speed variations
 - Auto-swath engagement
- Flow meter calibration is critical!
- Rate error occurs more frequently than expected (as-applied data?)
- Further advance control algorithms

What have we learned?

- Differences between auto-nozzle and auto-boom
- System flow does not represent tip response
- Purchase a controller with flow compensation
- System response impacted by:
 - Valve control number (VCN)
 - Acceleration
 - Auto-swath technology engagement (resolution?)

Future Work

- Additional field testing
- Hose / tube compliance testing
- “Smart” control algorithms
- Auto-calibration (automatic and dynamic)?

Final Thoughts...

- Realistic expectations – misperceptions can lead to incorrect decisions
- TLC for technology
 - Requires proper setup and implementation
 - Periodic system checks
- Additional R&D needed to fully capture perceived benefits of technology
- **GOAL:** Use PA Technologies to improve production and not profitability - this approach will lead to profitability

Thank-You

John Fulton
fultojp@auburn.edu
334-844-3541

Twitter: @AL_Prec_Ag
Facebook: Alabama Precision Ag Online

Improving producer profitability and environmental stewardship

www.alabamaprecisionagonline.com