Performance with more power.

This revolutionary fungicide delivers unprecedented performance against difficult-to-control, yield-draining diseases, including gummy stem blight and powdery mildew. And it’s fully charged with power, spectrum, and stamina. That means a healthier crop with a higher yield potential. Talk to your local Syngenta representative about how Miravis® Prime can give more power to your produce.
2022 SOUTHEAST U.S. VEGETABLE CROP HANDBOOK

Handbook Senior Editor:
J.M. Kemble,
Auburn University, Auburn, AL

Associate Editors:
M.B. Bertucci
Universality of Arkansas
Weed Science

I.M. Meadows
North Carolina State University
Plant Pathology

J.F. Walgenbach
North Carolina State University
Entomology

K.M. Jennings
North Carolina State University
Weed Science

C. Rodrigues
Auburn University
Food Safety

A.L. Wszelaki
University of Tennessee
Horticulture

Great American Media Services:
Gerry Bogdon Vice President & Group Publisher
616-520-2177 gbogdon@greatamericanpublish.com

Greg Sebel Associate Publisher
616-520-2146 gsebel@greatamericanpublish.com

Cindi Olwell Western Account Manager
616-520-2174 colwell@greatamericanpublish.com

Gary Pullano Editor
616-520-2144 gpullano@greatamericanpublish.com

Stephen Kloosterman Associate Editor
616-520-2152 skloosterman@greatamericanpublish.com

Photo credits:
Top & Bottom Left: Red cabbage head close to harvest.
Credit: K. Fontenot, LSU Ag Center

Top & Bottom Right: Maturing cauliflower head.
Credit: K. Fontenot, LSU Ag Center

Center Middle: Hydroponic leaf lettuce.
Credit: I.M. Meadows, North Carolina State University

Center Left: Green bell peppers at harvest.
Credit: K. Fontenot, LSU Ag Center

Center Right: Garden beet roots from a variety trial.
Credit: K. Fontenot, LSU Ag Center
Dear Reader,

The Southeastern Vegetable Extension Workers Group (SEVEW) is proud to offer you the 23rd edition of the Southeastern U.S. 2022 Vegetable Crop Handbook. For this edition, we have partnered with Great American Media. We are excited about this new partnership and look forward to working with Great American Media as we provide growers, crop advisers, county educators, Extension agents, and specialists throughout the southeastern United States with this handbook.

This handbook represents a joint effort among Extension specialists and researchers from 14 land-grant universities in the U.S. who work in the area of vegetable production. These specialists and researchers represent a wide array of disciplines: agricultural engineering, entomology, food safety, olericulture (vegetable production), plant pathology, postharvest physiology, soil science, and weed science.

This handbook comprises up-to-the-minute information developed from research and Extension projects conducted throughout the southeastern United States. The key idea behind this handbook is to provide you with a practical resource that conveniently fits on your dashboard. It contains the information that you need to manage your vegetable crops, including which varieties to plant, planting dates, fertilizer recommendations, cover crop selection and conservation tillage options, pesticide selection, grafting, fertigation, plasticulture, postharvest handling, alternative pest management tools and suggestions, as well as many other topics.

An electronic version is available at:

www.vegcrophandbook.com

In addition to developing this handbook, the SEVEW Group focuses on strengthening and supporting vegetable production programs around the region, identifying emerging issues facing this region, and providing a forum for multistate programming that will benefit growers in the southeastern United States. Vegetable production in this region faces many challenges. Members of the SEVEW Group have combined their knowledge and experiences to develop approaches and answers that will enable growers in the southeast to optimize their production practices and to increase the sustainability of their operations.

We hope you enjoy this handbook!

Sincerely,

SEVEW Group
The 2022 handbook was prepared and reviewed by the following authors at their respective institutions. We also wish to thank all of the past authors and participants that have helped to refine and continually improve this handbook.

Alabama A&M University
- Food Safety A. Jackson-Davis

Auburn University
- Entomology A. Majumdar
- Pesticide Safety S.B. Thomas
- Plant Pathology E.J. Sikora
- Weed Science S. Li

Clemson University
- Entomology J. Ballew and Z. Snipes
- Horticulture G.A. Miller and B.K. Ward*
- Plant Pathology A. Keinath
- Weed Science M. Cutulle

Florida A & M University
- Food Safety K. Sarjeant

Local Food Hub
- Food Safety S. Greenewalt

Louisiana State University
- Agricultural Center
 - Horticulture K. Fontenot* and C. Motsenbocker
 - Plant Pathology R. Singh
 - Sweet Potato Research Station T. Smith

Mississippi State University
- Extension

Mississippi State University
- Entomology M.B. Layton
- Horticulture L. Harvey and R.G. Snyder
- Plant Pathology R.A. Melanson*

North Carolina State University
- Entomology J.F. Walgenbach
- Food Safety E.T. Rogers and L. Johnson
- Plant Pathology A.M. Gorny, L.M. Quesada Ocampo and I.M. Meadows

University of Arkansas
- Entomology A. Cato
- Food Safety A. Perez
- Horticulture M.B. Bertucci, J. Lee, and A. McWhirt*

University of Kentucky
- Entomology R.T. Bessin
- Horticulture R. Rudolph*
- Plant Pathology N. Gauthier

University of Oklahoma
- Entomology J.F. Walgenbach
- Food Safety E.T. Rogers and L. Johnson
- Plant Pathology A.M. Gorny, L.M. Quesada Ocampo and I.M. Meadows

University of Tennessee
- Entomology F.A. Hale
- Food Safety A.L. Wszelaki*
- Horticulture and Food Safety T.W. Coolong*
- Plant Pathology Z.R. Hansen

Virginia Tech
- Entomology T.P. Kuhar and L. Lopez
- Food Safety L. Strawn
- Horticulture E.T. Quezada
- Nutrient Management/Soils M.S. Reiter*
- Plant Pathology D. Langston and S.L. Rideout

The purpose of this book is to provide the best and most up-to-date information available for commercial vegetable growers in the southeastern US: Alabama, Arkansas, Florida, Georgia, Kentucky, Louisiana, Mississippi, North Carolina, Oklahoma, Texas, Tennessee, South Carolina and Virginia. These recommendations are suggested guidelines for production in the above states. Factors such as markets, weather, and location may warrant modifications and/or different practices or planting dates not specifically mentioned in this book.

*State Coordinators
UPCOMING EVENTS FOR 2022

<table>
<thead>
<tr>
<th>DATE/TIME</th>
<th>LOCATION</th>
<th>CONTACT INFO</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALABAMA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alabama Fruit & Vegetable Growers Association Annual Conference and Trade Show</td>
<td>Annually in Nov.</td>
<td>TBD</td>
</tr>
<tr>
<td>Alabama Sustainable Agriculture Network Food and Farm Forum</td>
<td>Annually in Dec.</td>
<td>Location Varies</td>
</tr>
<tr>
<td>Commercial Horticulture Webinar Series</td>
<td>Last Monday each month</td>
<td>http://www.aces.edu/anr/beginningfarms/webinars.php</td>
</tr>
<tr>
<td>ARKANSAS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oklahoma Arkansas Horticulture Industries Show (HIS)</td>
<td>13 to 14 Jan</td>
<td>The Graduate Hotel, Fayetteville, AR</td>
</tr>
<tr>
<td>GEORGIA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Georgia Fruit & Vegetable Conference</td>
<td>7 to 9 Jan</td>
<td>Savannah, GA</td>
</tr>
<tr>
<td>Georgia Watermelon Associate Conference</td>
<td>28 to 30 Jan</td>
<td>St Simons Island, GA</td>
</tr>
<tr>
<td>Georgia Organics Conference & Expo</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>Sunbelt Ag. Expo</td>
<td>18 to 20 Oct</td>
<td>Moultrie, GA</td>
</tr>
<tr>
<td>KENTUCKY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kentucky Fruit & Vegetable Conference and Trade Show</td>
<td>2 to 4 Jan</td>
<td>Sloan Convention Center Bowling Green, KY</td>
</tr>
<tr>
<td>Organic Association of Kentucky Conference Series</td>
<td>27 to 29 Jan</td>
<td>Virtual conference</td>
</tr>
<tr>
<td></td>
<td>18 March</td>
<td>Hopkinstville, KY (in-person)</td>
</tr>
<tr>
<td></td>
<td>8 April</td>
<td>Burlington, KY (in-person)</td>
</tr>
<tr>
<td>NORTH CAROLINA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Winter Vegetable Conference</td>
<td>23 to 24 Feb</td>
<td>Crown Plaza Resort Asheville, NC</td>
</tr>
<tr>
<td>Business of Farming Conference</td>
<td>26 Feb</td>
<td>Mission Health/A-B Tech Conference Ctr Asheville, NC</td>
</tr>
<tr>
<td>Organic Growers School</td>
<td>18 to 20 Mar</td>
<td>Mars Hill University Mars Hill, NC</td>
</tr>
<tr>
<td>Mountain Research Station Field Day</td>
<td>TBA (July)</td>
<td>Mountain Research Station, Test Farm Road, Waynesville, NC</td>
</tr>
<tr>
<td>Alternative Crops and Organics Field Day</td>
<td>TBA (Aug)</td>
<td>Mountain Research Station, Test Farm Road, Waynesville, NC</td>
</tr>
<tr>
<td>Sustainable Agriculture Conference</td>
<td>TBA (early Nov)</td>
<td>Sheraton Hotel, Durham, NC</td>
</tr>
<tr>
<td>AgExpo</td>
<td>TBA (late Nov/early Dec)</td>
<td>Raleigh, NC</td>
</tr>
</tbody>
</table>
Upcoming Events for 2022 (Cont’d)

<table>
<thead>
<tr>
<th>Date/Time</th>
<th>Location</th>
<th>Contact Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>OKLAHOMA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 to 14 Jan</td>
<td>The Graduate Hotel, Fayetteville, AR</td>
<td>hortindustriesshow@gmail.com; https://www.hortindustriesshow.org/</td>
</tr>
<tr>
<td>SOUTH CAROLINA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14 Jan</td>
<td>Virtual Meeting- ZOOM</td>
<td>https://scgrower.com/upcoming-events/</td>
</tr>
<tr>
<td>8 Feb</td>
<td>Orangeburg, SC</td>
<td>Rob Last at riast@clemson.edu or Phillip Carnley at pcarnle@clemson.edu</td>
</tr>
<tr>
<td>20 & 27 Jan</td>
<td>Virtual Meeting- ZOOM</td>
<td>https://scgrower.com/upcoming-events/</td>
</tr>
<tr>
<td>19 Jan</td>
<td>Charleston, SC</td>
<td>Zack Snipes at zbsnipe@clemson.edu</td>
</tr>
<tr>
<td>TENNESSEE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIRGINIA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28 Apr</td>
<td>East Tennessee Research and Education Center – Organic Crops Unit, Knoxville, TN</td>
<td>http://east.tennessee.edu</td>
</tr>
<tr>
<td>22 to 24 Jan</td>
<td>The Hotel Roanoke & Conference Center, Roanoke, VA</td>
<td>https://vabf.org/2022-biological-farming-conference/</td>
</tr>
<tr>
<td>Georgia</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Expect More Than Great Seed

www.crookham.com
MOBILE APPS

CALIBRATE MY SPRAYER app for iOS and Android
Improperly calibrated pesticide spraying equipment may cause either too little or too much pesticide to be applied. This free mobile app was created to aid in the proper calibration of spraying equipment. Simply select the type of sprayer you want to calibrate (Broadcast or Banded), insert values in each input box, select what you want the app to calculate (Volume/Area or Catch/Nozzle), and tap ‘Calculate’. Each input’s units can be customized by tapping the units. Sprayers can be saved with user-defined names.
Download the free Calibrate My Sprayer app for iOS here or for Android here.

MIX MY SPRAYER app for iOS and Android
Mix My Sprayer was created to aid with quick, accurate calculations of product mixes to be applied with spraying equipment. Users can create custom lists of favorite products by category. Simply add or select a product, insert values in each input box, and the app automatically calculates the amount of product to include in the user-defined mix size. Units for each input can be customized by tapping the unit buttons. Products are saved with the user settings last used.
Download the free Mix My Sprayer app for iOS here or for Android here.

FAMING BASICS app for iOS and Android
The Farming Basics app from Alabama Extension is a gateway of information for small and beginning farmers. The user-friendly app includes:
• information about major insect pests and diseases
• general management tactics
• a fertilizer and irrigation calculator to assist in saving beginning farmers dollars on inputs
Clear pictures depict each crop, insect, and disease. Other features include crop and pest alerts, location services, with contact information for Extension regional agents, and an activity calendar linking to upcoming meetings and field days. This app is available for iOS and Android devices.
Download the free Farming Basics app for iOS here or for Android here.

SoilWeb 2.0 app for iOS and Android and Web
Allows users to pinpoint soil types in their current location. The app is complete with data about the current soil type. With its embedded GPS system, SoilWeb provides convenient, instantaneous soil information from the exact soil the user is standing on. The app gives users greater accessibility to NRCS’ soil survey information that has been collected across the US since the late 1890’s. The app presents the data in mobile form, helping users make better-informed decisions about the location they are researching.
Download the free SoilWeb 2.0 app for iOS here or for Android here.

TANK MIX CALCULATOR app for iOS, Android, and Web
Tank Mix Calculator is an easy-to-use farm app from TapLogic. This agriculture app is free for any farmer to use on their mobile device to quickly and easily generate a tank mix. Just enter your acreage, tank size, and carrier volume. Next, select your chemicals from our list or add your own. Tank Mix Calculator will then provides the number of loads required to spray your acreage, along with full and partial load mixes of the chemicals you selected.
Download the free Tank Mix calculator app for iOS here or for Android here.
MOBILE APPS

VEGDR app for iOS and Android

VegDr provides you with up-to-date information for vegetable diseases in Georgia. The app contains information on various diseases, images of the symptoms, and list what products are considered effective for control. At present time, the app includes cucurbits (cucumber, watermelon, squash, cantaloupe, pumpkin) and solanaceous crops (tomato and pepper). Recommendations are based on information on the manufacturer’s label and performance data from trials the University of Georgia.

Download the free VegDr app for iOS here or for Android here.

WEB-BASED APPS

CLEMSON CENTER PIVOT FERTIGATION CALCULATOR

Calculates the amount of liquid fertilizer to apply through center pivot irrigation systems.

https://precisionag.sites.clemson.edu/Calculators/Fertigation/Pivot/

CLEMSON DRIP FERTIGATION CALCULATOR

Calculates the amount of liquid fertilizer to apply through the drip system.

https://precisionag.sites.clemson.edu/Calculators/Fertigation/Drip/
Vegetable Production Information Web Sites

ALABAMA
Alabama SARE Program
http://www.southernsare.org/SARE-in-Your-State/Alabama
Alabama Cooperative Extension System
http://www.aces.edu
AU Plant Diagnostic Lab
http://offices.aces.edu/plantlabauburn/
AL IPM Newsletter
http://www.aces.edu/ipmcommunicator
Vegetable IPM Info
http://www.aces.edu/vegetableipm
Alabama Beginning Farms Program
http://www.aces.edu/beginningfarms

ARKANSAS
Arkansas Cooperative Extension Service
http://www.uaex.edu
Arkansas Fruit, Vegetable, and Nut Update, UA CES Blog
http://www.uaex.edu/hortblog
UA CES Commercial Vegetable Production
https://www.uaex.edu/farm-ranch/crops-commercial-horticulture/vegetables.aspx

FLORIDA
University of Florida Cooperative Extension Service
http://edis.ifas.ufl.edu

GEORGIA
University of Georgia Cooperative Extension Service
http://extension.uga.edu
UG Fruits & Vegetable Info
http://extension.uga.edu/agriculture/ag-fruits-vegetables
University of Georgia College of Agriculture and Environmental Sciences Publications
http://www.caes.uga.edu/publications

KENTUCKY
University of Kentucky Cooperative Extension Service
http://ces.ca.uky.edu/ces
Kentucky Vegetable Integrated Pest Management Program
http://ipm.ca.uky.edu/
UK Vegetable Crops Extension and Research
https://vegcrops.ca.uky.edu
UK Plant Pathology
https://plantpathology.ca.uky.edu
UK Horticulture
https://www.uky.edu/hort
UK Entomology
http://entomology.ca.uky.edu/

LOUISIANA
Louisiana SARE Program
http://www.southernsare.org/SARE-in-Your-State/Louisiana
LSU AgCenter
http://www.lsuagcenter.com
LSU AgCenter Plant Diagnostic
http://www.lsuagcenter.com/plantdiagnostics

MISSISSIPPI
Mississippi State University Extension Service
http://extension.msstate.edu
Mississippi Commercial Horticulture Information
http://extension.msstate.edu/agriculture/crops/commercial-horticulture
Farmers’ Markets
http://extension.msstate.edu/agriculture/local-flavor/farmers-markets

NORTH CAROLINA
North Carolina Cooperative Extension Service
http://www.ces.ncsu.edu
Information on Herbs, Organics, & Specialty Crops
http://ncherb.org
NCSU Vegetable Pathology
http://go.ncsu.edu/veggiepathology
NCSU Extension Plant Pathology Portal
http://plantpathology.ces.ncsu.edu/
NCSU Plant Disease and Insect Clinic
http://www.cals.ncsu.edu/plantpath/extension/clinic/
NCSU Entomology Portal
http://entomology.ces.ncsu.edu/
NCSU IPM Portal
http://ipm.ces.ncsu.edu/
North Carolina Pest News
http://ipm.ncsu.edu/current_ipm/pest-news.html
Horticulture Information
https://www.ces.ncsu.edu/categories/agriculture-food/commercial-horticulture-nursery-turf/
NCSU Extension Growing Small Farms
https://growingsmallfarms.ces.ncsu.edu/
Wolfpack Weeds
http://wolfpackweeds.com/
Fresh Produce Safety
http://ncfreshproducesafety.ces.ncsu.edu/

OKLAHOMA
Oklahoma Cooperative Extension Service
http://www.oces.okstate.edu
OK Dept. of Horticulture Vegetable Fact Sheets
http://pods.dasnr.okstate.edu/docushare/dsweb/View/Collection-338
OK Dept. of Horticulture Vegetable Variety Trial Info
http://www.hortla.okstate.edu/outreach/vegetables/trial-reports

SOUTH CAROLINA
Clemson University Cooperative Extension Service
http://www.clemson.edu/extension
Clemson Coastal Research & Education Center
https://www.clemson.edu/cafls/research/coastal/
Clemson Edisto Research and Extension Center
https://www.clemson.edu/cafls/research/edisto/
SC Growers F&V News
https://scgrower.com/

TENNESSEE
University of Tennessee Extension
https://utextension.tennessee.edu/
UT Vegetable Production
https://utvegetable.com/

TEXAS
Texas Agricultural Extension Service
http://agrilifeextension.tamu.edu

VIRGINIA
Eastern Shore AREC, Virginia Tech
https://www.facebook.com/ESAREC
Eastern Shore Horticulture Lab
https://www.facebook.com/ESHortLab
Virginia Cooperative Extension
http://www.ext.vt.edu
Virginia Tech Extension Shore AREC
https://www.arec.vaes.vt.edu/arec/eastern-shore.html
Virginia Tech Soils and Nutrient Management
https://www.facebook.com/EasternShoreSoils
Virginia Tech Vegetable Entomology Facebook
http://www.facebook.com/VirginiaTechVIPRlab
Thank You 2022 Sponsors!

Vegetable Growers News is grateful to the sponsors of the Southeast Vegetable Crop Handbook. Be sure to check out their ads on their respective pages.
Table of Contents (cont’d)

SPECIFIC COMMODITY RECOMMENDATIONS 58-129 (cont’d)
- Pumpkins and Winter Squash ... 105
- Radishes, Rutabagas, and Turnips 109
- Southernpeas .. 111
- Spinach .. 113
- Summer Squash .. 115
- Sweet Corn ... 118
- Sweetpotato .. 121
- Tomatoes ... 124
- Watermelon ... 129

Registered Fungicides, Insecticides, and Miticides for Vegetables 140-148
- Resistance Management and the Insecticide Resistance Action Committee (IRAC) Codes for Modes of Action of Insecticides .. 140
- General Information ... 141
- Respiratory Protective Devices for Pesticides 144
- Protecting Our Groundwater .. 145
- Toxicity of Chemicals Used in Pest Control 147
- Conversion Information for Use of Pesticides on Small Areas . 147
- Pesticide Dilution Tables ... 148

Calibrating Chemical Application Equipment 134-139
- Calibrating a Sprayer ... 134
- Calibrating a Granular Applicator 136
- Calibrating a Broadcast Spreader 138
- Calibration Variables .. 139

Insect, Disease, and Weed Control Tables 151-372

Emergency Numbers by State 373
Insect, Disease, & Weed Control Tables

ALL VEGETABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-24.</td>
<td>Fire Ant Management in Commercial Vegetable Fields</td>
<td>197</td>
</tr>
<tr>
<td>2-25.</td>
<td>Relative Effectiveness of Insecticides and Miticides for Insect and Mite Control on Field-Grown Vegetables</td>
<td>198</td>
</tr>
<tr>
<td>2-25 A.</td>
<td>Preharvest Intervals (In Days) for Pyrethroid Insecticides in Vegetable Crops</td>
<td>199</td>
</tr>
<tr>
<td>2-26.</td>
<td>Virus-Based Insecticides and Lepidopteran Larvae Controlled</td>
<td>200</td>
</tr>
<tr>
<td>2-27.</td>
<td>List of Generic Insecticides by Active Ingredient</td>
<td>200</td>
</tr>
<tr>
<td>2-28.</td>
<td>Components of Insecticide Mixtures</td>
<td>201</td>
</tr>
<tr>
<td>2-29.</td>
<td>Insect Control for Greenhouse Vegetables</td>
<td>202</td>
</tr>
<tr>
<td>2-30.</td>
<td>Alternative LPM and Bioinsecticide Recommendations in Vegetable Crops</td>
<td>206</td>
</tr>
<tr>
<td>3-42.</td>
<td>Nematode Control in Vegetable Crops</td>
<td>290</td>
</tr>
<tr>
<td>3-43.</td>
<td>Efficacy of Fumigants or Fumigant Combinations for Managing Soilborne Nematodes and Diseases, and Weeds</td>
<td>291</td>
</tr>
<tr>
<td>3-44.</td>
<td>Management of Soilborne Nematodes with Non-Fumigant Nematicides</td>
<td>292</td>
</tr>
<tr>
<td>3-45.</td>
<td>Greenhouse Disease Control for Various Vegetable Crops</td>
<td>293</td>
</tr>
<tr>
<td>3-46.</td>
<td>Efficacy of Products for Greenhouse Tomato Disease Control</td>
<td>309</td>
</tr>
<tr>
<td>3-47.</td>
<td>Recommended Temperatures and Treatment Times for Hot Water Disinfestation of Vegetable Seed</td>
<td>310</td>
</tr>
<tr>
<td>3-48.</td>
<td>Products for Seed Treatment</td>
<td>311</td>
</tr>
<tr>
<td>3-49.</td>
<td>Biocontrol Agents and Disinfectants Registered for Seed Treatment</td>
<td>312</td>
</tr>
<tr>
<td>3-50.</td>
<td>Sweetpotato Storage House Sanitation</td>
<td>313</td>
</tr>
<tr>
<td>3-51.</td>
<td>Water, Produce and Equipment Sanitation</td>
<td>314</td>
</tr>
<tr>
<td>3-52.</td>
<td>Various Fungicides for Use on Vegetable Crops</td>
<td>316</td>
</tr>
<tr>
<td>3-53.</td>
<td>Biopesticides, Fungicide, and Nematicide Alternatives for Vegetables</td>
<td>319</td>
</tr>
<tr>
<td>3-54.</td>
<td>Fungicide Modes of Action for Fungicide Resistance Management</td>
<td>324</td>
</tr>
<tr>
<td>4-28.</td>
<td>Weed Response to Herbicides Used in Vegetable Crops</td>
<td>372</td>
</tr>
</tbody>
</table>

ASPARAGUS

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-1.</td>
<td>Disease Control</td>
<td>210</td>
</tr>
<tr>
<td>3-2.</td>
<td>Alternative Management Tools</td>
<td>210</td>
</tr>
<tr>
<td>4-1.</td>
<td>Chemical Weed Control</td>
<td>326</td>
</tr>
</tbody>
</table>

BASIL

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-3.</td>
<td>Disease Control</td>
<td>211</td>
</tr>
</tbody>
</table>

BEAN

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-2.</td>
<td>Insect Control</td>
<td>152</td>
</tr>
<tr>
<td>3-4.</td>
<td>Disease Control</td>
<td>212</td>
</tr>
<tr>
<td>3-5.</td>
<td>Alternative Management Tools</td>
<td>214</td>
</tr>
<tr>
<td>4-2.</td>
<td>Chemical Weed Control</td>
<td>328</td>
</tr>
</tbody>
</table>

BEET

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-3.</td>
<td>Insect Control</td>
<td>155</td>
</tr>
<tr>
<td>4-3.</td>
<td>Chemical Weed Control</td>
<td>331</td>
</tr>
</tbody>
</table>

BROCCOLI, BRUSSEL SPROUT, CABBAGE AND CAULIFLOWER (COLE CROPS)

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-4.</td>
<td>Insect Control</td>
<td>156</td>
</tr>
<tr>
<td>3-6.</td>
<td>Disease Control</td>
<td>215</td>
</tr>
<tr>
<td>3-7.</td>
<td>Efficacy of Products for Disease Control</td>
<td>218</td>
</tr>
<tr>
<td>3-8.</td>
<td>Alternative Management Tools</td>
<td>219</td>
</tr>
<tr>
<td>4-8.</td>
<td>Chemical Weed Control</td>
<td>336</td>
</tr>
</tbody>
</table>

CANTALOUE, MUSKMELON

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-4.</td>
<td>Chemical Weed Control</td>
<td>332</td>
</tr>
</tbody>
</table>

CARROT

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-5.</td>
<td>Insect Control</td>
<td>159</td>
</tr>
<tr>
<td>3-32.</td>
<td>Alternative Management Tools</td>
<td>270</td>
</tr>
<tr>
<td>4-5.</td>
<td>Chemical Weed Control</td>
<td>334</td>
</tr>
</tbody>
</table>

CELERY

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-6.</td>
<td>Insect Control</td>
<td>160</td>
</tr>
<tr>
<td>4-6.</td>
<td>Chemical Weed Control</td>
<td>335</td>
</tr>
</tbody>
</table>

CILANTRO

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-7.</td>
<td>Chemical Weed Control</td>
<td>336</td>
</tr>
</tbody>
</table>
Insect, Disease, & Weed Control Tables (cont’d)

COLLARD AND MUSTARD GREENS
Table 2-7. Insect Control .. 162

CORN, SWEET
Table 2-8. Insect Control .. 164
Table 3-9. Disease Control .. 220
Table 4-9. Chemical Weed Control .. 338

CUCURBITS (CUCUMBER, CANTALOupe, PUMPKIN, SQUASH, WATERMELON)
Table 2-9. Insect Control .. 165
Table 3-10. Disease Control ... 221
Table 3-11. Efficacy of Products for Disease Control ... 227
Table 3-12. Alternative Management Tools ... 229

CUCUMBER
Table 4-10. Chemical Weed Control ... 342

EGGPLANT
Table 2-10. Insect Control ... 169
Table 3-14. Disease Control ... 231
Table 4-11. Chemical Weed Control ... 343

ENDIVE
Table 3-20. Disease Control .. 242

GARLIC
Table 3-15. Disease Control .. 233
Table 4-12. Chemical Weed Control ... 345

GREENS
Table 4-13. Chemical Weed Control ... 346

GREENS, LEAFY BRASSICA (COLLARD, KALE, MUSTARD, RAPE SALAD GREENS, TURNIP GREENS)
Table 3-16. Disease Control ... 235

HOPS
Table 2-11. Insect Control ... 173
Table 3-17. Disease Control ... 238
Table 4-14. Chemical Weed Control ... 347

JERUSALEM ARTICHOKE (SUNCHOKE)
Table 3-18. Disease Control ... 239

LEAFY PETIOLE VEGETABLES - CELERY, FENNEL, RHUBARB, AND SWISS CHARD
Table 3-19. Disease Control ... 240

LETTUCE
Table 2-12. Insect Control ... 174
Table 3-20. Disease Control ... 242
Table 4-15. Chemical Weed Control ... 348

OKRA
Table 2-13. Insect Control ... 176
Table 3-21. Disease Control ... 244
Table 4-16. Chemical Weed Control ... 349

ONION
Table 2-14. Insect Control ... 178
Table 3-22. Disease Control ... 245
Table 3-23. Efficacy of Products for Disease Control ... 251
Table 4-17. Chemical Weed Control ... 350

PARSLEY AND CILANTRO
Table 3-24. Disease Control ... 252
Table 3-25. Alternative Management Tools .. 254
<table>
<thead>
<tr>
<th>Vegetable</th>
<th>Table Numbers</th>
<th>Control Type</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEA, ENGLISH AND SNOWPEA (SUCCULENT AND DRIED)</td>
<td>Table 2-15.</td>
<td>Insect Control</td>
<td>179</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chemical Weed Control</td>
<td>352</td>
</tr>
<tr>
<td></td>
<td>Table 4-18.</td>
<td>Insect Control</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chemical Weed Control</td>
<td></td>
</tr>
<tr>
<td>PEA, SOUTHERN</td>
<td>Table 2-16.</td>
<td>Insect Control</td>
<td>179</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Disease Control</td>
<td>255</td>
</tr>
<tr>
<td></td>
<td>Table 3-26.</td>
<td>Insect Control</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Disease Control</td>
<td></td>
</tr>
<tr>
<td>PEPPER</td>
<td>Table 2-17.</td>
<td>Insect Control</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Disease Control</td>
<td>257</td>
</tr>
<tr>
<td></td>
<td>Table 3-27.</td>
<td>Insect Control</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Disease Control</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Table 3-28.</td>
<td>Efficacy of Products for Disease Control</td>
<td>261</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alternative Management Tools</td>
<td>262</td>
</tr>
<tr>
<td></td>
<td>Table 3-29.</td>
<td>Efficacy of Products for Disease Control</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alternative Management Tools</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Table 4-19.</td>
<td>Chemical Weed Control</td>
<td>354</td>
</tr>
<tr>
<td>POTATO, IRISH</td>
<td>Table 2-18.</td>
<td>Insect Control</td>
<td>183</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Disease Control</td>
<td>262</td>
</tr>
<tr>
<td></td>
<td>Table 3-30.</td>
<td>Insect Control</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Disease Control</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Table 4-20.</td>
<td>Insect Control</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chemical Weed Control</td>
<td>357</td>
</tr>
<tr>
<td>PUMPKIN</td>
<td>Table 4-21.</td>
<td>Insect Control</td>
<td>359</td>
</tr>
<tr>
<td>RADISH</td>
<td>Table 2-19.</td>
<td>Insect Control</td>
<td>187</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Disease Control</td>
<td>361</td>
</tr>
<tr>
<td></td>
<td>Table 4-22.</td>
<td>Insect Control</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Disease Control</td>
<td></td>
</tr>
<tr>
<td>ROOT VEGETABLE</td>
<td>Table 3-31.</td>
<td>Disease Control</td>
<td>267</td>
</tr>
<tr>
<td>SPINACH</td>
<td>Table 2-20.</td>
<td>Insect Control</td>
<td>188</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Disease Control</td>
<td>271</td>
</tr>
<tr>
<td></td>
<td>Table 3-33.</td>
<td>Insect Control</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Disease Control</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Table 4-23.</td>
<td>Insect Control</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Disease Control</td>
<td></td>
</tr>
<tr>
<td>SQUASH</td>
<td>Table 4-24.</td>
<td>Insect Control</td>
<td>363</td>
</tr>
<tr>
<td>SWEETPOTATO</td>
<td>Table 2-21.</td>
<td>Insect Control</td>
<td>189</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Disease Control</td>
<td>273</td>
</tr>
<tr>
<td></td>
<td>Table 3-34.</td>
<td>Insect Control</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Disease Control</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Table 3-35.</td>
<td>Efficacy of Products for Disease Control</td>
<td>275</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alternative Management Tools</td>
<td>276</td>
</tr>
<tr>
<td></td>
<td>Table 3-36.</td>
<td>Efficacy of Products for Disease Control</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alternative Management Tools</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Table 4-25.</td>
<td>Insect Control</td>
<td>364</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chemical Weed Control</td>
<td></td>
</tr>
<tr>
<td>TOMATILLO</td>
<td>Table 3-37.</td>
<td>Insect Control</td>
<td>277</td>
</tr>
<tr>
<td>TOMATO</td>
<td>Table 2-22.</td>
<td>Insect Control</td>
<td>192</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Disease Control</td>
<td>278</td>
</tr>
<tr>
<td></td>
<td>Table 3-38.</td>
<td>Insect Control</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Disease Control</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Table 3-39.</td>
<td>Insect Control</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alternative Management Tools</td>
<td>287</td>
</tr>
<tr>
<td></td>
<td>Table 3-40.</td>
<td>Insect Control</td>
<td>287</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alternative Management Tools</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Table 3-41.</td>
<td>Insect Control</td>
<td>290</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alternative Management Tools</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Table 4-26.</td>
<td>Insect Control</td>
<td>366</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chemical Weed Control</td>
<td></td>
</tr>
<tr>
<td>TURNIP</td>
<td>Table 2-23.</td>
<td>Insect Control</td>
<td>196</td>
</tr>
<tr>
<td>WATERMELON</td>
<td>Table 3-13.</td>
<td>Example Spray Program for Foliar Disease Control in Watermelon Production</td>
<td>230</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chemical Weed Control</td>
<td>369</td>
</tr>
</tbody>
</table>
General Production Recommendations

VARIETIES
New vegetable varieties are constantly being developed throughout the world. Since it is impossible to list and describe all of them, only some of the better performing commercial types are listed in the specific crop section, either alphabetically or in order of relative maturity from early to late. These varieties are believed to be suitable for commercial production under most conditions in the southeastern US.

The ultimate value of a variety for a particular purpose is determined by the grower, the variety’s performance under his or her management, and environmental conditions. Several years of trial plantings are suggested for any variety not previously grown. For a true comparison, always include a standard in the same field.

Disease Resistance or Tolerance. Natural variation within a crop species particularly from wild types can be a source of disease resistance. Plant scientists have taken advantage of this natural variation to develop varieties that are resistant or tolerant. Superscripts appearing after the variety names refer to the disease resistance or tolerance these are are spelled out in the footnotes.

Specialty Vegetables. Many producers are considering growing specialty or “gourmet” vegetables.

A limited number of pesticides are registered for many specialty vegetables and herbs. Successful pest control in these crops is dependent on sanitation, seed treatment, crop rotation, planting site, mechanical cultivation, and the use of resistant varieties when available.

Promising specialty vegetable crops include asparagus, Belgian endive, dandelion (blanched), kale, Swiss chard, tyfon (Holland greens), herbs, ethnic vegetables, red leaf lettuce, agus, Belgian endive, dandelion (blanched), kale, Swiss chard, chicory, artichoke, composite family, oriental lettuce, radicchio, romaine lettuce, sugar snap peas, and snow peas.

Other promising types include bok choy, Chinese cabbage, endive and escarole (blanched), garlic (pink skin), Japanese melons, leeks, pak choi, pepper, potato (red, blue, yellow, and golden), red radicchio, rhubarb, sweet onions, and sweetpotatoes (moist and dry types with unusual colors).

Miniature or baby vegetables are vegetables that are harvested at an immature stage to ensure tenderness and often sweetness. These include beets, carrots (finger and round types), cucumbers, eggplant (little finger types), Jersey Golden acorn squash (immature with blossom attached), baby lettuce, pickling corn, snap beans (small sieve types), summer squash (immature with blossom attached), and winter squash (Oriental and Little Dumpling).

Before planting a specialty crop, however, growers must determine that specific retail, wholesale, restaurant, or processing markets exist.

CROP ROTATION
Crop rotation is an effective and widely used cultural practice to prevent or reduce the buildup of soil-borne plant pathogens. An effective rotation sequence includes crops from different families that are poor or non-hosts of these pathogen(s). In general, the longer the rotation, the better the results; a 3- to 5-year rotation is generally recommended. However, from a practical standpoint this will depend upon the availability of land, the markets, the selection of alternate crops suited to grow in the area, the pathogen(s), and the purpose of the rotation (prevention versus reduction). When used to reduce pathogen populations, rotations of longer than 5 years may be required (see Table 1A).

SOILS AND SOIL FERTILITY
The best soils for growing vegetables are well-drained, deep soils that are high in organic matter. These soils should have good structure and have been adequately limed and fertilized. Loamy sand and sandy loam soils are generally better suited for growing early market crops because they drain quickly and warm early in spring. Deep, well-drained organic soils are ideal for leafy vegetables, bulb and root crops that offer a high return per acre.

Soils that are not ideal for vegetable production may be made suitable for production by addressing the underlying problem(s). For example, poorly drained soils may require tiling to improve drainage.

TABLE 1A. VEGETABLE FAMILIES

<table>
<thead>
<tr>
<th>Allium Family</th>
<th>Composite Family</th>
<th>Gourd Family</th>
<th>Mustard Family</th>
<th>Parsley Family</th>
<th>Solanaceae Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chive</td>
<td>Artichoke</td>
<td>Cantaloupe</td>
<td>Broccoli</td>
<td>Carrot</td>
<td>Eggplant</td>
</tr>
<tr>
<td>Garlic</td>
<td>Chicory</td>
<td>Cucumber</td>
<td>Brussels sprout</td>
<td>Celery</td>
<td>Pepper</td>
</tr>
<tr>
<td>Leek</td>
<td>Dandelion</td>
<td>Muskmelon</td>
<td>Cabbage</td>
<td>Cilantro</td>
<td>Potato</td>
</tr>
<tr>
<td>Onion</td>
<td>Endive & Escarole</td>
<td>Pumpkin</td>
<td>Cauliflower</td>
<td>Parsley</td>
<td>Tomato</td>
</tr>
<tr>
<td>Shallot</td>
<td>Lettuce</td>
<td>Squash</td>
<td>Collard</td>
<td>Pea Family</td>
<td></td>
</tr>
<tr>
<td>Asparagus</td>
<td>Jerusalem artichoke</td>
<td>Watermelon</td>
<td>Kale</td>
<td>Bean (lima, snap)</td>
<td></td>
</tr>
<tr>
<td>Asparagus</td>
<td></td>
<td></td>
<td>Kohlrabi</td>
<td>Cowpea or Southernpea</td>
<td></td>
</tr>
<tr>
<td>Bindweed</td>
<td></td>
<td></td>
<td>Mustard</td>
<td>Garden/English Pea</td>
<td></td>
</tr>
<tr>
<td>Sweetpotato</td>
<td></td>
<td></td>
<td>Radish</td>
<td>Soybean</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 1A. VEGETABLE FAMILIES

<table>
<thead>
<tr>
<th>Beet</th>
<th>Ornamental corn</th>
<th>Okra</th>
<th>Carrot</th>
<th>Bean (lima, snap)</th>
<th>Eggplant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chard</td>
<td>Popcorn</td>
<td></td>
<td>Celery</td>
<td>Cowpea or Southernpea</td>
<td>Pepper</td>
</tr>
<tr>
<td>Spinach</td>
<td>Sweet Com</td>
<td></td>
<td>Cabbage</td>
<td>Garden/English Pea</td>
<td>Potato</td>
</tr>
<tr>
<td>Mallow Family</td>
<td></td>
<td></td>
<td>Cauliflower</td>
<td>Soybean</td>
<td>Tomato</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Radish</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Turnip</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Upland cress</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A large percentage of the vegetables grown in mineral soils of the Coastal Plain are grown in soils with essentially no structure. These sandy soils also have little intrinsic fertility; however, they can be productive if managed properly. Adequate fertilization, adjusting pH as needed, and use of irrigation water are required.

Soil Management. In a good soil management program, proper liming and fertilization, good tillage practices, crop rotation, annual additions of organic matter with cover crops, and adequate irrigation are all necessary to maintain high levels of production. Winter cover crops, rotating with non-vegetable crops, utilizing reduced tillage when possible, and periodically resting the land with summer cover crops between vegetable plantings are essential in preventing deterioration of the soil structure. In soil management, soil structure is vital for maintaining highly productive soils.

Nutrient Management and the Environment. The sandy soils preferred for vegetable production in the southeastern US result in an aerated root zone and enable timely tillage, planting, and harvesting. The same drainage allows water and dissolved nutrients to move through the soil profile. Even with loams or clays, nutrients retained in surface soil may be carried with sediment or as dissolved run-off to surface water. Nitrogen (N) and phosphorus (P) remain the two agricultural nutrients of greatest environmental concern. Small losses of N & P can impact water quality, especially in eco-sensitive regions. Agronomically, other issues of potential concern include K fertilizer losses and accumulation of heavy metals such as copper, zinc, etc. supplied with organic amendments.

Ongoing research has documented increased costs and reduced profits, negative impacts on yield and quality, and human health risks, due to over-fertilization. It is therefore critical that both nutrients and irrigation are managed to optimize vegetable production while minimizing impact on the environment. Careful nutrient management includes consideration of the following four issues: rate, timing, placement, and source. Land-grant university recommendations are based on calibrated crop response studies that can differ substantially across the region. Producers should consult guidelines prepared specifically for their state for the most appropriate nutrient management recommendations. A well-balanced nutrient management plan represents good stewardship and should satisfy any applicable environmental regulations.

Soil Acidity and Liming. Many soils in the southeast are naturally acidic, or become acidic with cropping, and need liming to attain optimum production levels. Soil acidity is the term used to express the quantity of hydrogen (H+) and aluminum (Al3+) cations (positively charged ions) in soils. Soil pH is determined by using a 1:1 soil-to-water solution. The pH of the solution is measured by a pH meter (potentiometer). Soil pH is an indicator of “soil acidity”. Combined, the use of the soil pH and soil textural class determines the lime requirement. A pH of 7.0 is defined as neutral, with values below 7.0 being acidic and above 7.0 being basic or alkaline. Root growth and plant development may be severely restricted if acidic cations, especially aluminum, occupy a large percentage of the negatively charged soil cation exchange capacity (CEC). This negative charge is due to the chemical makeup of the soil clay and organic matter, and means that they can attract positively charged ions. Acidification occurs when H+ is added to soils by decomposition of plant residues and organic matter, during the nitrification of ammonium when added to soils as fertilizer (UAN solutions, urea, ammonium nitrate, ammonium sulfate, anhydrous ammonia), manures, or plant residues and from additions of acidic soil amendments. Declines of one pH unit can occur even in properly fertilized beds. Other soil processes, such as aluminum hydrolysis, will release H+ into the soil system and thereby increasing acidity. Lime is applied to neutralize soil acidity by releasing a base (HCO3–, OH–) into the soil solution, which reacts with acid-forming ions (H+). Increasing soil pH reduces the concentration of dissolved aluminum, as well as influencing the concentrations of other ions.

Lime recommendations must take into account differences in acidity among soils as well as differences among various crops’ tolerance to acidity. Both the soil pH and some measure of residual or exchangeable acidity are needed to calculate lime recommendations. Although portable soil test kits determine pH rapidly, it is not possible to make an accurate lime recommendation based solely on a pH measurement made using water and soil alone. Another issue to consider is that different soil laboratories may use different testing methods developed for their particular soil conditions. Due to these differences, producers should consult with their local Extension office or consulting laboratory about laboratory methods and target pH assumptions used in determining lime recommendations.

If soil pH is too high for the desired crop, elemental sulfur (S) is the most effective material to reduce soil pH. The amount of acidity generated by 640 pounds of elemental S is the same as that neutralized by 1 ton of lime. Soil pH can be lowered by applying aluminum sulfate or iron sulfate. Whether trying to increase or decrease the pH of your soil, always follow the manufacturer’s instructions for appropriate rates. A slight pH reduction can be produced by using ammonium sulfate, ammonium nitrate, or urea as a fertilizer source of nitrogen.

Liming materials containing only calcium carbonate (CaCO3), calcium hydroxide [Ca(OH)2], or calcium oxide (CaO) are called calcitic limes. Pure calcium carbonate is used as the standard for liming materials and is assigned a rating of 100 percent. This rating is also known as the “calcium carbonate equivalent,” and is referred to as the CCE. All other liming materials are rated in relationship to pure calcium carbonate. Lime materials with significant amounts of magnesium carbonate (MgCO3) are called dolomitic limes. Dolomitic limes should be used on soils low in magnesium, as indicated by the soil test report. It is possible to use a magnesium fertilizer instead of dolomitic lime, but the costs of this source of magnesium are almost always considerably higher. Because lime dissolves very slowly, it must be finely ground to effectively neutralize soil acidity. Lime laws in most states describe standards for composition and particles sizes.

The most commonly used liming materials are finely ground dolomitic or calcitic rock. Most agricultural lime is sold in bulk by the ton. Additional liming materials include burnt lime or hydrated lime, pelleted lime, liquid lime, wood ash, ground seashells, and industrial slags. Lime pellets and lime sus-
pensions (liquid lime) can be convenient and fast-acting, but are usually considerably more expensive than ground limestones. Industrial by-product liming materials can be useful soil amendments capable of reducing soil acidity and supply a variety of nutrients including calcium, magnesium, potassium, phosphorus, and micronutrients. Each lot of such materials should be analyzed as considerable variation in CCE, fineness, and nutrient composition may occur.

Within a one to three year time-period, lime moves little in the soil and neutralizes acidity only in the zone where it is applied. To be most effective, lime must be uniformly spread and thoroughly incorporated. In practice, rates are adjusted after checking the spreader pattern and making appropriate corrections. If the application is not correct, strips of under-limed soil could result, possibly reducing crop yields. The most commonly used lime incorporation tool is the disk. It will not incorporate lime as well as offset disks that throw the soil more vigorously. The best incorporation implement is a heavy-duty rotary tiller that mixes the soil throughout the root zone.

Overall, it is imperative that a soil is limed properly before soil is covered in vegetable systems; i.e. installing polyethylene mulch, as lime additions through drip irrigation or overhead are not practical or possible.

Lime and Fertilizer. Lime and fertilizer work together synergistically to produce high yields and better crops. Lime is not a substitute for fertilizer, and fertilizer is not a substitute for lime.

How to Use Plant Nutrient Recommendation Table #1 and #2.

Use Table 1 to determine the relative levels of phosphorus and potassium in the soil based on the soil test report from the laboratory. Use Table 2 as a guide in conjunction with specific soil test results. Plant nutrient recommendations listed in Table 2 are expressed in terms of nitrogen (N), phosphate (P₂O₅), and potash (K₂O), rather than in specific grades and amounts of fertilizer. The phosphate (P₂O₅) and potash (K₂O) needs for each cropping situation can be determined by selecting the appropriate values under the relative soil test levels for phosphorus and potassium: very low, low, medium, high, or very high.

The cropping and manuring history of the field must be known before a fertilization program can be planned (see Table 3). This history is very important in planning a nitrogen fertilization program because a reliable soil test for nitrogen is not available.

Plant nutrient recommendations listed in Table 2 were developed for fields where no manure was applied and where no legume crop is being turned under prior to the planting of a new crop. If manure and/or legume crops are used, the plant nutrient recommendations listed in Table 2 should be reduced by the amounts of nitrogen (N), phosphate (P₂O₅), and potash (K₂O) being contributed from these sources. See Tables 3 and 3A for nutrient values of various products.

Once the final fertilizer-plant nutrient needs are known, determine the grade and rate of fertilizer needed to fulfill these requirements. For example, if the final plant nutrient requirements that need to be added as a commercial fertilizer are 50 pounds of nitrogen (N), 100 pounds of phosphate (P₂O₅), and 150 pounds of potash (K₂O), a fertilizer with a 1-2-3 ratio, such as 5-10-15, 6-12-18, 7-14-21, is needed. Once the grade of fertilizer is selected, the quantity needed to fulfill the plant nutrient requirements can be determined by dividing the percentage of N, P₂O₅, or K₂O contained in the fertilizer into the quantity of the respective plant nutrient needed per acre and multiplying the answer by 100. For example, if a 5-10-15 fertilizer grade is chosen to supply the 50 pounds of N, 100 pounds of P₂O₅, and 150 pounds of K₂O needed, calculate the amount of 5-10-15 fertilizer needed as follows: Divide the amount of nitrogen (N) needed per acre (50 pounds) by the percentage of N in the 5-10-15 fertilizer (5 percent), and multiply the answer (10) by 100, which equals 1,000 pounds. This same system can be used for converting any plant nutrient recommendations into grades and amounts.

NUTRIENT MANAGEMENT AND MAXIMIZING PRODUCTION

Nitrogen Management. Nitrogen is one of the most difficult nutrients to manage in vegetable production systems. Nitrogen is readily leached in sandy textured soils that dominate vegetable production regions of the southeastern US. Nitrogen can be immobilized by soil microbes, volatilized if not quickly incorporated, or lost via denitrification under water-saturated soil conditions. Nitrogen recommendations are based on years of fertilizer trials and yield potential. Nitrogen application timings, application methods, and sources are also commonly tested in state university fertilizer trials and have resulted in recommendations for splitting nitrogen fertilizer application for increased fertilizer use efficiency.

Heavy rainfall, higher than normal yields, and production following non-legume cover crops are a few examples where nitrogen fertilizer may be immobilized or lost from the production

TABLE 1. SOIL TEST INTERPRETATIONS AND RECOMMENDATIONS BASED ON SOIL TEST RESULTS

<table>
<thead>
<tr>
<th>Soil Test Rating</th>
<th>Relative Yield without Nutrient (%)</th>
<th>Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>50–75</td>
<td>Annual application to produce maximum response and increase soil fertility.</td>
</tr>
<tr>
<td>Medium</td>
<td>75–100</td>
<td>Normal annual application to produce maximum yields.</td>
</tr>
<tr>
<td>High</td>
<td>100</td>
<td>Small applications to maintain soil level to replace nutrients removed by crop. Amount suggested may be doubled and applied in alternate years.</td>
</tr>
<tr>
<td>Very high*</td>
<td>100</td>
<td>Depending on crop and state, none until level drops back into high range. This rating permits growers, without risk of loss in yields, to benefit economically from high levels added in previous years. Where no P or K is applied, soils should be resampled in 2 years. When phosphorus is extremely high, further additions may limit the availability of Fe and/or Zn.</td>
</tr>
</tbody>
</table>

* Some states recommend that no fertilizer P or K be added when the soil test rating is “Very High” in order to minimize losses in nutrient-sensitive watersheds. Some crops may still benefit by additions of starter fertilizer for P and K and state guidelines should be followed.
system. When these nitrogen reduction scenarios arise, an additional application of nitrogen is warranted. Leaf tissue testing is the best option when deciding if and how much more nitrogen is needed to meet expected yields and is described below. Leaf tissue testing can help identify any "hidden hunger" that might exist in the crop. A "hidden hunger" develops when a crop needs more of a given nutrient but has shown no visual deficiency symptoms. With most nutrients on most crops, responses can be obtained even though no recognizable symptoms have appeared.

Evaluating the Effectiveness of Your Fertility Program—Using Plant Analysis/Leaf Tissue Testing. Plant analysis is the chemical evaluation of essential element concentrations in plant tissue. Essential elements include those that are required to complete the life cycle of a plant. The elements carbon (C), oxygen (O), and hydrogen (H) are supplied by the atmosphere and water and generally are not considered limiting. Scientists place most emphasis on essential elements supplied by soil or feeding solutions. Macronutrients — nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), and sulfur (S) — are required in greatest quantities. Micronutrients — iron (Fe), manganese (Mn), zinc (Zn), copper (Cu), boron (B), molybdenum (Mo), and chlorine (Cl) — are required in very small quantities. Toxicities of micronutrients are equally important and yield limiting as deficiencies. Plant analysis is also effective in diagnosing toxicities of micronutrients. The interpretation of plant analysis results is based on the scientific principle that healthy plants contain predictable concentrations of essential elements.

State and private soil testing laboratories can provide nitrogen concentrations as well as those of the other essential macronutrients to aid in mid-season fertilizer application decisions. A program of periodic leaf tissue sampling and analysis will help you optimize your fertility program and often can allow you to correct deficiencies before symptoms become apparent. **Sufficiency Ranges or Critical Values** have been established for most economically important vegetable crops.

Critical values have been defined as the concentration at which there is a 5–10% yield reduction. The use of critical values for practical interpretation has limited value. It is best suited to diagnosing severe deficiencies and has little application in identifying hidden hunger. Symptoms are generally visibly evident when nutrient concentrations decrease below the critical value. Critical values play an important role in establishing lower limits of sufficiency ranges.

Sufficiency range interpretation offers significant advantages over the use of critical values. First, hidden hunger in plants can be identified since the beginning of the sufficiency range is clearly above the critical value. Sufficiency ranges also have upper limits, which provide some indication of the concentration at which the element may be in excess.

Method for Collecting Leaf Tissue Samples for Analysis

- It is best to send in two samples. One sample from the problem area and another from an area that is growing well. This will allow comparison for your particular situation.
- Each vegetable crop has a specific corresponding plant part that is collected and used to determine foliar nutrient concentrations. Often this corresponds to sampling the most recently matured or fully expanded leaves. Careful sampling ensures the effectiveness of plant analysis as a diagnostic tool. For major crops, best indicator samples have been identified by stage of growth. For young seedlings, the entire plant is sampled 1 inch (2.5 cm) above the soil level. For larger plants, the most recent fully expanded or mature leaf is the best indicator of nutritional status. As some crops, including corn, approach flowering and fruiting, the best indicator of nutritional status is the leaf adjacent to the uppermost fruit (ear leaf). When unfamiliar with sampling protocol for a specific crop, it is generally acceptable to select the most recent mature leaf as the best indicator of nutritional status. Detailed information for sampling most vegetable crops can be found at http://www.ncagr.gov/agronomi/saaesd/scsb394.pdf.
- Sample from 20 to 30 plants.
- Sample across the field, from different rows, and avoid problem areas (low spots, ridges, washed out areas, etc.) unless you are trying to diagnose a problem in one of these areas.
- Sample when the plants are actively growing (typically between 9 a.m. and 4 p.m.).
- Do not collect samples from water stressed plants.
- Send samples to a laboratory in a paper bag. DO NOT SEND SAMPLES IN A PLASTIC BAG. Plastic bags will cause your samples to spoil and will impact results. Contact your local Extension office for information on how to submit leaf tissue samples to your state diagnostic labs.

Phosphorus Management. Crops are very likely to respond to P fertilization when the soil test indicates that P is *deficient* — very low or low. A soil testing *deficient* — medium will sometimes respond to P fertilization and will sometimes not. Soils testing *optimum* or *exceeds crops needs* are unlikely to respond to P fertilizer, but P may be applied to maintain the fertility level in the *optimum* range. Crops are more likely to respond to P fertilizer when growing conditions are favorable for high yields. Some crops, such as tomato and potato, benefit from crop removal amounts of starter P fertilizer even if the soil is testing optimum or very high. Consult your local Extension office for more information.

It is often recommended that a band of P fertilizer be placed near the seed as a starter fertilizer regardless of the P fertility level. Banded P is especially helpful at low soil test levels. Even at P soil test levels that exceed crop needs, a small amount of banded P may benefit crop establishment. When the soil test level is *deficient*, P should generally be applied as a combination of broadcast and banded methods. When the level exceeds crop needs, only a small amount of P should be applied as a band. Many soils exceed crop needs category for P due to previous fertilizer and manure applications. When applied in excess of crop removal, P accumulates in the soil. Phosphorus is strongly adsorbed to soil...
Potassium Management. Crops are very likely to respond to K fertilizer when the soil test indicates that K is deficient—very low or low. A soil testing deficient—medium in K may or may not respond to K fertilizer. Crops are more responsive to K when growing under drought stress, with root injury, or with a soil hard pan than when growing under favorable conditions. Soils testing optimum or exceeds crop needs are unlikely to respond to K fertilizer, but K may be applied to maintain the soil fertility level in the optimum range.

In general, most of the K fertilizer should be broadcast. When the fertility level is deficient, it may be advantageous to apply a portion of the total K application as a band. There is generally no benefit to applying banded K when soil fertility levels are optimum or exceeds crop needs. Crops remove larger amounts of K than P from the soil during a growing season. In addition, sandy soils have low reserves of K, and K is susceptible to leaching. Therefore, frequent applications of K are needed to maintain K at an optimum fertility level.

Secondary Nutrients. Calcium (Ca), magnesium (Mg), and sulfur (S) are included in the secondary element group. Calcium may be deficient in some soils that have not been properly limed, where excessive potash fertilizer has been used, and/or where crops are subjected to drought stress, with root injury, or with a soil hard pan. Magnesium is the most likely of these elements to be deficient in vegetable soils. Dolomitic or high-magnesium limestones should be used when liming soils that are low in magnesium. Magnesium should be applied as a fertilizer source on low-magnesium soils where lime is not needed (Table 4). Magnesium may be applied as a foliar spray to supply magnesium to the crop in emergency situations (2 TBSP of Epsom salts per gallon of water).

Sulfur is known to be deficient in vegetable systems in coastal plain soils. Sulfur deficiency is often mistaken for lack of nitrogen because the symptoms are similar. Onions and Brassicas generally require additional sulfur over what vegetables normally require, particularly on coastal plain soils.

Micronutrients. Boron is the most widely deficient micronutrient in vegetable soils. Deficiencies of this element are most likely to occur in the following crops: asparagus, most bulb and root crops, cole crops, and tomatoes. Excessive amounts of boron can be toxic to plant growth. This problem can occur when snap beans (a sensitive crop) follow sweetpotatoes (a crop where boron is applied late in the season). Do NOT exceed recommendations listed in Table 2.

Manganese deficiency often occurs in plants growing on soils that have been overlimed. In this case, broadcast 20 to 30 pounds or band 4 to 8 pounds of manganese sulfate per acre. Alternatively, manganese can often be applied using a foliar application and mixed with other crop protectants. Do not apply lime or poultry manure to such soils until the pH has dropped below 6.5, and be careful not to overlime again.

Molybdenum deficiency of cauliflower (which causes whiptail) may develop when this crop is grown on soils more acid than pH 5.5. An application of 0.5 to 1 pound of sodium or ammonium molybdate per acre will usually correct this. Liming acid soils to a pH of 6.0 to 6.5 will usually prevent the development of molybdenum deficiencies in vegetable crops.

Deficiencies of other micronutrients in vegetable crops in the Southeast are rare; and when present, are usually caused by overliming or other poor soil management practices. Contact Extension if a deficiency of zinc, iron, copper, or chlorine is suspected. Sources of fertilizers for the essential plant nutrients are found in in Tables 3A and 4.

Municipal Biosolids. Biosolids should not be applied to land on which crops will be grown that will be entering the human food chain. Municipal biosolids are the solid material removed from sewage in treatment processes. Biosolids treated by one of the digestive or similar processes to reduce pathogens is a low-analysis fertilizer suitable for application to nonfood crops under specific soil conditions. It should not be applied to sloping land, to highly leachable soils, to poorly drained soils, to soils with high water tables or near surface water. Check with your local or state department of environmental management for latest regulations. The time required to wait prior to planting a food crop varies from state to state.

Foliar Fertilization. Foliar feeding of vegetables is usually not needed. Plants usually obtain their nutrients from the soil through their roots. It is known that plants can also absorb a limited amount of some nutrients through aerial organs such as leaves. Properly managed soils will supply the essential mineral nutrients the crop will need during its development. If, for some reason, one or more soil-supplied nutrients becomes limiting or unavailable during the development of the crop, foliar nutrient applications may then be advantageous, but likely only with the micronutrients.
<table>
<thead>
<tr>
<th>CROP</th>
<th>Desirable pH</th>
<th>Nitrogen (N) lb/acre</th>
<th>Recommended Nutrients Based on Soil Tests</th>
<th>Nutrient Timing and Method</th>
<th>Soil Phosphorus Level</th>
<th>Soil Potassium Level</th>
<th>Very High P<sub>O</sub> lb/acre</th>
<th>Very High K<sub>O</sub> lb/acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASPARAGUS</td>
<td>6.5 to 7.0</td>
<td>100</td>
<td>250 150 100 0 250 225 150 0</td>
<td>Total recommended.</td>
<td>Low</td>
<td>Med</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>250 150 100 0 150 100 75 0</td>
<td>Broadcast before cutting season.</td>
<td>Med</td>
<td>High</td>
<td>Very High</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>0 0 0 0 100 125 75 0</td>
<td>Sidedress after cutting.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEAN, Lima</td>
<td>6 to 6.5</td>
<td>70 to 110</td>
<td>120 80 40 20 160 120 80 20</td>
<td>Total recommended.</td>
<td>Low</td>
<td>Med</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>...Single crop</td>
<td></td>
<td>25 to 50</td>
<td>80 40 20 0 120 80 60 0</td>
<td>Broadcast and disk-in.</td>
<td>Med</td>
<td>High</td>
<td>Very High</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>40 40 20 20 40 40 20 20</td>
<td>Band-place with planter.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEAN, Snap</td>
<td>6 to 6.5</td>
<td>40 to 80</td>
<td>80 60 40 20 80 60 40 20</td>
<td>Total recommended.</td>
<td>Low</td>
<td>Med</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20 to 40</td>
<td>40 40 0 0 40 40 0 0</td>
<td>Broadcast and disk-in.</td>
<td>Med</td>
<td>High</td>
<td>Very High</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20 to 40</td>
<td>40 20 20 20 40 20 20 20</td>
<td>Band-place with planter.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEET</td>
<td>6 to 6.5</td>
<td>75 to 100</td>
<td>150 100 50 0 150 100 50 0</td>
<td>Total recommended.</td>
<td>Low</td>
<td>Med</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>150 100 50 0 150 100 50 0</td>
<td>Broadcast and disk-in.</td>
<td>Med</td>
<td>High</td>
<td>Very High</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25 to 50</td>
<td>0 0 0 0 0 0 0 0</td>
<td>Sidedress 2 to 3 weeks after planting.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BROCCOLI</td>
<td>6 to 6.5</td>
<td>125 to 175</td>
<td>200 100 50 0 200 100 50 0</td>
<td>Total recommended.</td>
<td>Low</td>
<td>Med</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50 to 100</td>
<td>150 100 50 0 150 100 50 0</td>
<td>Broadcast and disk-in.</td>
<td>Med</td>
<td>High</td>
<td>Very High</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>50 0 0 0 50 0 0 0</td>
<td>Sidedress 2 to 3 weeks after planting.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>0 0 0 0 0 0 0 0</td>
<td>Sidedress every 2 to 3 weeks after initial sidedressing.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRUSSEL SPROUTS, CABBAGE, and CAULIFLOWER</td>
<td>6 to 6.5</td>
<td>100 to 175</td>
<td>200 100 50 0 200 100 50 0</td>
<td>Total recommended.</td>
<td>Low</td>
<td>Med</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50 to 75</td>
<td>200 100 50 0 200 100 50 0</td>
<td>Broadcast and disk-in.</td>
<td>Med</td>
<td>High</td>
<td>Very High</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25 to 50</td>
<td>0 0 0 0 0 0 0 0</td>
<td>Sidedress 2 to 3 weeks after planting.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>25 to 50</td>
<td>0 0 0 0 0 0 0 0</td>
<td>Sidedress if needed, according to weather.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CANTALOUPES and MELONS</td>
<td>6 to 6.5</td>
<td>75 to 115</td>
<td>150 100 50 25 200 150 100 25</td>
<td>Total recommended.</td>
<td>Low</td>
<td>Med</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>...Bareground</td>
<td></td>
<td>25 to 50</td>
<td>125 75 25 0 175 125 75 0</td>
<td>Broadcast and disk-in.</td>
<td>Med</td>
<td>High</td>
<td>Very High</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25 to 40</td>
<td>0 0 0 0 0 0 0 0</td>
<td>Sidedress when vines start to run.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...Plasticulture</td>
<td>6 to 6.5</td>
<td>100 to 150</td>
<td>125 75 25 25 200 150 100 25</td>
<td>Total recommended.</td>
<td>Low</td>
<td>Med</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>125 75 25 25 100 75 50 25</td>
<td>Broadcast and disk-in.</td>
<td>Med</td>
<td>High</td>
<td>Very High</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td></td>
<td>75 to 125</td>
<td>0 0 0 0 100 75 50 0</td>
<td>Fertilize.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CARROT</td>
<td>6 to 6.5</td>
<td>90 to 120</td>
<td>150 100 50 0 150 100 50 0</td>
<td>Total recommended.</td>
<td>Low</td>
<td>Med</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>150 100 50 0 150 100 50 0</td>
<td>Broadcast and disk-in.</td>
<td>Med</td>
<td>High</td>
<td>Very High</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40 to 70</td>
<td>0 0 0 0 0 0 0 0</td>
<td>Sidedress if needed.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CUCUMBER</td>
<td>6 to 6.5</td>
<td>80 to 160</td>
<td>150 100 50 25 200 150 100 25</td>
<td>Total recommended.</td>
<td>Low</td>
<td>Med</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>...Bareground</td>
<td></td>
<td>40 to 100</td>
<td>125 75 25 0 175 125 75 0</td>
<td>Broadcast and disk-in.</td>
<td>Med</td>
<td>High</td>
<td>Very High</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20 to 30</td>
<td>0 0 0 0 0 0 0 0</td>
<td>Sidedress when vines begin to run, or apply in irrigation water.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...Plasticulture</td>
<td>6 to 6.5</td>
<td>120 to 150</td>
<td>150 100 50 25 150 100 50 25</td>
<td>Total recommended.</td>
<td>Low</td>
<td>Med</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>125 75 25 25 150 100 50 25</td>
<td>Broadcast and disk-in.</td>
<td>Med</td>
<td>High</td>
<td>Very High</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td></td>
<td>95 to 125</td>
<td>0 0 0 0 0 25 25 25 25</td>
<td>Fertilize.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Nitrogen and sulfur rates should be based on your local fertilizer recommendations.

Drip fertigation: See “cucumber” in specific commodity recommendations later in this handbook.
Prime Soil For Success

New, patent pending enzyme technology

- Delivers a high concentration of enzymes that are treated to stay active in the soil longer
- Apply at planting to boost germination, growth and root mass
- Enzymes break down organic matter and convert nutrients into smaller, digestible units

Learn more:
visit www.brandt.co/enzup or email info@brandt.co

UP TO 12% YIELD INCREASE

Source: BRANDT Field Trials 2016-2020
TABLE 2. GENERAL FERTILIZER SUGGESTIONS FOR VEGETABLE CROPS* (cont’d)

<table>
<thead>
<tr>
<th>CROP</th>
<th>Desirable pH</th>
<th>Nitrogen (N) lb/acre</th>
<th>Recommended Nutrients Based on Soil Tests</th>
<th>Nutrient Timing and Method</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Soil Phosphorus Level</td>
<td>Soil Potassium Level</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Low</td>
<td>Med</td>
</tr>
<tr>
<td>EGGPLANT</td>
<td>6 to 6.5</td>
<td>100 to 200</td>
<td>250</td>
<td>150</td>
</tr>
<tr>
<td>...Bareground</td>
<td></td>
<td>50 to 100</td>
<td>250</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25 to 50</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25 to 50</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Broadcast and disk-in.</td>
<td>Sidedress 3 to 4 weeks after planting.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Broadcast and disk-in.</td>
<td>Sidedress 6 to 8 weeks after planting.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>145</td>
<td>250</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>250</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>95</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fertigate.</td>
<td>Sidedress 3 to 4 weeks after laying mulch.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Broadcast and disk-in.</td>
<td>Total recommended.</td>
</tr>
<tr>
<td>ENDIVE, ESCAROLE, LEAF and ROMAINE LETTUCE</td>
<td>6 to 6.5</td>
<td>75 to 150</td>
<td>200</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50 to 100</td>
<td>200</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25 to 50</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sidedress 3 to 5 weeks after planting.</td>
<td></td>
</tr>
<tr>
<td>HOPS</td>
<td>6.0</td>
<td>100 to 150</td>
<td>80 to 120</td>
<td>30 to 80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50 to 75</td>
<td>80 to 120</td>
<td>30 to 80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50 to 75</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sidedress 4 weeks after bines emerge</td>
<td></td>
</tr>
<tr>
<td>HERBS (BASIL, PARSLEY, CLANTRO)</td>
<td>6 to 6.5</td>
<td>100 to 175</td>
<td>200</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50 to 75</td>
<td>200</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25 to 50</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25 to 50</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sidedress after first cutting.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sidedress after each additional cutting.</td>
<td></td>
</tr>
<tr>
<td>LEAFY GREENS, COLLARD, KALE, and MUSTARD</td>
<td>6 to 6.5</td>
<td>75 to 80</td>
<td>150</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>150</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25 to 30</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sidedress, if needed.</td>
<td></td>
</tr>
<tr>
<td>LEEK</td>
<td>6 to 6.5</td>
<td>75 to 125</td>
<td>200</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50 to 75</td>
<td>200</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25 to 50</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sidedress 3 to 4 weeks after planting, if needed.</td>
<td></td>
</tr>
<tr>
<td>OKRA</td>
<td>6 to 6.5</td>
<td>100 to 200</td>
<td>250</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50 to 100</td>
<td>250</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25 to 50</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25 to 50</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Broadcast and disk-in.</td>
<td>Sidedress 3 to 4 weeks after planting.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Broadcast and disk-in.</td>
<td>Sidedress 6 to 8 weeks after planting.</td>
</tr>
<tr>
<td>ONION</td>
<td>6 to 6.5</td>
<td>125 to 150</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>...Bulb</td>
<td></td>
<td>50 to 75</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>75 to 100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sidedress twice 4 to 5 weeks apart.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>150 to 175</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>...Green</td>
<td></td>
<td>50</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sidedress 4 to 5 weeks after planting.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sidedress 3 to 4 weeks before harvest.</td>
<td></td>
</tr>
</tbody>
</table>

* Nitrogen and sulfur rates should be based on your local fertilizer recommendations.
<table>
<thead>
<tr>
<th>CROP</th>
<th>Desirable pH</th>
<th>Nitrogen (N) lb/acre</th>
<th>Recommended Nutrients Based on Soil Tests</th>
<th>Nutrient Timing and Method</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Low</td>
<td>Med</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P₂O₅ lb/acre</td>
<td>K₂O lb/acre</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

* Nitrogen and sulfur rates should be based on your local fertilizer recommendations.
TABLE 2. GENERAL FERTILIZER SUGGESTIONS FOR VEGETABLE CROPS* (cont’d)

<table>
<thead>
<tr>
<th>CROP</th>
<th>Desirable pH</th>
<th>Nitrogen (N) lb/acre</th>
<th>Recommended Nutrients Based on Soil Tests</th>
<th>Nutrient Timing and Method</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Soil Phosphorus Level</td>
<td>Soil Potassium Level</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P₂O₅ lb/acre</td>
<td>K₂O lb/acre</td>
</tr>
<tr>
<td>SWEET CORN</td>
<td>6 to 6.5</td>
<td>125 to 175</td>
<td>160</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40 to 60</td>
<td>120</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50 to 75</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Apply 1 to 2 lb boron (B) per acre with broadcast fertilizer. NOTE: On very light sandy soils, sidedress 40 lb N per acre when corn is 6 in. tall and another 40 lb N per acre when corn is 12 to 18 in. tall.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWEETPOTATO</td>
<td>5.8 to 6.2</td>
<td>50 to 80</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>150</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>50 to 80</td>
<td>50</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Add 0.5 lb of actual boron (B) per acre 40 to 80 days after transplant.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOMATO</td>
<td>6 to 6.5</td>
<td>80 to 90</td>
<td>200</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40 to 45</td>
<td>200</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>40 to 45</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Apply 1 to 2 lb boron (B) per acre with broadcast fertilizer.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>... Bareground for Sandy loams and loamy sands</td>
<td>75 to 80</td>
<td>200</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>200</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25 to 30</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Apply 1 to 2 lb boron (B) per acre with broadcast fertilizer.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>... Plasticulture</td>
<td>130 to 210</td>
<td>200</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>200</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80 to 160</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Apply 1 to 2 lb boron (B) per acre with broadcast fertilizer.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WATERMELON</td>
<td>6 to 6.5</td>
<td>75 to 90</td>
<td>150</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>150</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25 to 40</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>... Nonirrigated</td>
<td>100 to 150</td>
<td>150</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>150</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25 to 50</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>... Irrigated</td>
<td>25 to 50</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>125 to 150</td>
<td>150</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>... Plasticulture</td>
<td>25 to 50</td>
<td>150</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>NOTE: Excessive rates of N may increase the incidence of hollow heart in seedless watermelon.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Drip fertilization: See “watermelon” in specific commodity recommendations later in this handbook.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Nitrogen and sulfur rates should be based on your local fertilizer recommendations.

TABLE 3. NUTRIENT VALUES FOR MANURE APPLICATIONS AND CROP RESIDUES

<table>
<thead>
<tr>
<th>N</th>
<th>P₂O₅</th>
<th>K₂O</th>
<th>Pounds per Ton</th>
<th>N</th>
<th>P₂O₅</th>
<th>K₂O</th>
<th>Pounds per Ton</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cattle manure</td>
<td>5-20(^1)</td>
<td>8-10</td>
<td>14-19</td>
<td>Ladino clover sod</td>
<td>60</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Poultry litter & manure</td>
<td>25-65(^2)</td>
<td>20-60</td>
<td>10-55</td>
<td>Crimson clover sod</td>
<td>50</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Swine manure</td>
<td>5-40(^1)</td>
<td>2-17</td>
<td>2-15</td>
<td>Red clover sod</td>
<td>40</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Horse manure</td>
<td>6-12(^1)</td>
<td>3</td>
<td>6</td>
<td>Birdsfoot trefoil</td>
<td>40</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Liquid poultry manure (5 - 15% solids)</td>
<td>7-15(^1)</td>
<td>5-10</td>
<td>5-10</td>
<td>Lespedeza</td>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Alfalfa sod</td>
<td>50-100(^2)</td>
<td>0</td>
<td>0</td>
<td>Soybeans</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hairy vetch</td>
<td>50-100</td>
<td>0</td>
<td>0</td>
<td>Tops and roots</td>
<td>40</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Grain harvest residue</td>
<td>15</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

1 Manures are highly variable. Consult a state or private lab for a nutrient analysis prior to application.
2 75% stand = 100 - 0 - 0, 50% stand = 75 - 0 - 0, and 25% stand = 50 - 0 - 0.
<table>
<thead>
<tr>
<th>Fertilizer Source Material</th>
<th>Plant Food Contents, %</th>
<th>Lb of Material Required to Supply 1 Lb of the Initially Listed Plant Nutrient</th>
<th>Fertilizer Source Material</th>
<th>Plant Food Contents, %</th>
<th>Lb of Material Required to Supply 1 Lb of the Initially Listed Plant Nutrient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen Materials</td>
<td></td>
<td></td>
<td>Magnesium Materials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monoammonium phosphate*</td>
<td>11 (N) and 48 (P₂O₅)</td>
<td>9.1</td>
<td>Epsom salts*</td>
<td>10 (Mg) and 13 (S)</td>
<td>9.6</td>
</tr>
<tr>
<td>Nitrate of potash*</td>
<td>13 (N) and 44 (K₂O)</td>
<td>7.7</td>
<td>Sulfate of potash-magnesia*</td>
<td>11.1 (Mg) and 21.8 (K₂O)</td>
<td>9.0</td>
</tr>
<tr>
<td>Nitrate of soda-potash*</td>
<td>15 (N) and 14 (K₂O)</td>
<td>6.7</td>
<td>Kieserite*</td>
<td>18.1 (Mg)</td>
<td>5.5</td>
</tr>
<tr>
<td>Calcium nitrate*</td>
<td>15 (N) and 19 (Ca)</td>
<td>6.7</td>
<td>Brucite</td>
<td>39 (Mg)</td>
<td>2.6</td>
</tr>
<tr>
<td>Nitrate of soda</td>
<td>16 (N)</td>
<td>6.3</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diammonium phosphate*</td>
<td>18 (N) and 46 (P₂O₅)</td>
<td>5.6</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen solution</td>
<td>20 (N)</td>
<td>5.0</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ammonium sulfate*</td>
<td>20.5 (N) and 23 (S)</td>
<td>4.9</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen solution</td>
<td>30 (N)</td>
<td>3.3</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen solution</td>
<td>32 (N)</td>
<td>3.1</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ammonium nitrate</td>
<td>33.5 to 34.0 (N)</td>
<td>3.0</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen solution</td>
<td>40 (N)</td>
<td>2.5</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urea</td>
<td>45 to 46 (N)</td>
<td>2.2</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anhydrous ammonia</td>
<td>62 (N)</td>
<td>1.2</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorus Materials</td>
<td></td>
<td></td>
<td>Sulphur Materials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal superphosphate*</td>
<td>20 (P₂O₅) and 11 (S)</td>
<td>5.0</td>
<td>Granulated sulfur</td>
<td>90 to 92 (S)</td>
<td>1.1</td>
</tr>
<tr>
<td>Triple superphosphate*</td>
<td>44 to 46 (P₂O₅)</td>
<td>2.2</td>
<td>Ammonium sulfate*</td>
<td>23 (S) and 20.5 (N)</td>
<td>4.3</td>
</tr>
<tr>
<td>Monoammonium phosphate*</td>
<td>48 (P₂O₅) and 11 (N)</td>
<td>2.1</td>
<td>Gypsum*</td>
<td>15-18 (S) and 19 to 23 (Ca)</td>
<td>6.1</td>
</tr>
<tr>
<td>Diammonium phosphate*</td>
<td>46 (P₂O₅) and 18 (N)</td>
<td>2.2</td>
<td>Epsom salts*</td>
<td>13 (S) and 10 (Mg)</td>
<td>7.7</td>
</tr>
<tr>
<td>Potassium Materials</td>
<td></td>
<td></td>
<td>Boron Materials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrate of soda-potash*</td>
<td>14 (K₂O) and 13 (N)</td>
<td>7.1</td>
<td>Fertilizer Borate Granular*</td>
<td>14.30 (B)</td>
<td>7.0</td>
</tr>
<tr>
<td>Sulfate of potash-magnesia*</td>
<td>21.8 (K₂O) and 11.1 (Mg)</td>
<td>4.6</td>
<td>Fertilizer Borate-48</td>
<td>14.91 (B)</td>
<td>6.7</td>
</tr>
<tr>
<td>Nitrate of potash*</td>
<td>44 (K₂O) and 13 (N)</td>
<td>2.3</td>
<td>Solubor</td>
<td>20.50 (B)</td>
<td>4.9</td>
</tr>
<tr>
<td>Sulfate of potash*</td>
<td>50 (K₂O) and 17 (S)</td>
<td>2.0</td>
<td>Fertilizer Borate-68</td>
<td>21.13 (B)</td>
<td>4.7</td>
</tr>
<tr>
<td>Muriate of potash*</td>
<td>60 (K₂O)</td>
<td>1.7</td>
<td>*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Supplies more than one essential nutrient.
MINIMUM TILLAGE FOR VEGETABLE PRODUCTION

The development of various types of tillage practices was an integral part of the evolution of modern farming practices. Tillage is helpful in crop production systems for purposes of weed management, incorporation of amendments such as lime and fertilizer, burial of crop residues to facilitate other field operations, disease management, and the preparation of a seedbed that is conducive to crop establishment. While the use of tillage practices provides a number of benefits to crop producers, researchers have also learned that the soil disturbance associated with tillage has some drawbacks. In a nutshell, tillage over time results in the degradation of several soil properties that are important to crop productivity.

One of these properties is organic matter content. Organic matter is important because it contributes appreciably to the water and nutrient holding capacity of soil and to the maintenance of a desirable soil structure. These soil properties, in turn, allow soil to better support the weight of equipment and workers. In warm southern climates the loss of organic matter due to tillage is even more pronounced than in cooler climates. Tilled soil is also less hospitable to a variety of soil organisms including microbes, insects, and other small animals. When present in adequate numbers these are beneficial for various reasons. When minimum tillage is used, soil structure is improved by the release of exudates of various organisms that glue soil particles together into larger, more desirable aggregates. Plant roots benefit from the increased presence of pore spaces in the soil such as earthworm channels, and plant diseases may also be reduced by the increased diversity of soil microorganisms.

Adoption of minimum tillage in vegetable production is possible but requires careful planning and preparation. Making a transition to minimum tillage will affect several vegetable production field operations. For example, one common objective of minimum tillage is to retain crop residues on the soil surface. These residues are beneficial for reducing soil erosion but also may interfere with the seeding of crops, particularly small-seeded vegetable crops. Similarly, cultivation, often an important measure for controlling weeds in vegetables, may require different equipment than what the farmer is able to use in conventionally tilled fields. In general, it may be best to start with those vegetables that are grown similarly to agronomic row crops or to use crops that can be established by transplanting through crop residues. Row crop examples include sweet corn and cowpeas. Examples of vegetables that are easily transplanted include tomato, pepper, squash, and watermelon.

Growers interested in adopting minimum tillage practices should begin by learning about the practices currently employed by agronomic crop producers and others who grow vegetables using reduced tillage. One such practice is to limit tillage and seedbed preparation to a narrow strip where the crop will be planted. This may be done in combination with the use of cover crops that are killed by rolling and crimping prior to tilling the strip. This method has been used successfully for vegetables such as tomatoes and cucurbits.

COVER CROPS

Many soils that are not productive due to poor physical properties can be restored and made more productive through the continued use of cover crops. Cover crops can provide many benefits to soils that include reducing the buildup of soilborne disease and arthropod pests, increasing soil organic matter, suppressing weeds, improving soil structure, promoting beneficial soil microorganisms, improving nutrient cycling, and reducing soil erosion. Each cover crop can offer different potential benefits to a production system and not every cover crop will work for each grower’s intended purpose.

Many cover crops can reduce or limit the build-up of soilborne disease and insect pests that damage vegetable crops. Prevalent disease and insect pressure should be considered when selecting a cover crop as some cover crops could increase the severity of these issues. In some cases, specific cultivars of cover crops can differ in their host status to various plant-parasitic nematodes. For example, ‘Cahaba White’ common vetch is suppressive to southern root-knot nematodes while ‘Vantage’ common vetch is susceptible to southern root-knot nematode.

With intensive cropping, working the soil when it is too wet and excessive traffic from using heavy equipment will contribute to damaging soils. These practices cause soils to become hard and compact, resulting in poor seed germination, loss of transplants, and shallow root formation of surviving plants. Such soils can easily form crusts on the surface, become compacted, which make them difficult to irrigate properly. Combined, these practices will yield negative consequences for your soil; poor plant stands, poor crop growth, low yields, and loss of income. In some cases, sub-soiling in the row might help improve aeration and drainage, but its effect is limited and short term. Continued and dedicated use of cover crops will aid in preventing these conditions. It may take several years of continued use to observe some of the benefits that cover crops can provide to soils.

Cover crops can also be planted in strips for wind protection preceding the planting of the cash crop. Annual rye seed ed before November can be a good choice for use in wind protection. Cover crops reduce nutrient loss during the winter and early spring. Cover crops may deplete the soil moisture. If this is a concern, be sure to disk or plow the cover crops before soil moisture is depleted.

Seeding dates suggested in the following section are for the central part of the Southeastern United States and will vary with elevation and northern or southern locations. For state specific recommendations for planting dates for cover crops, consult your local Extension office.

Summer Cover Crops

Summer cover crops can be useful in controlling weeds, soilborne diseases, and plant-parasitic nematodes. They also provide organic matter and can improve soil tilth while reducing soil erosion. There are many potential summer cover crops available, but you will need to find one that will work well in your area and fit into your overall production scheme. Sudex (sorghum-sudan grass cross; do not allow to exceed 3 ft. before mowing), southernpeas (cowpeas), millet, and Lab Lab are
summer cover crops that provide organic matter, control erosion, and will enhance the natural biota of your soil.

Summer cover crops, such as sudangrass or sudex, seeded at 20 to 40 pounds per acre are good green manure crops. Sunn hemp and pearl millet also provide a good green manure. They can be planted as early as field corn is planted requiring eight to 12 weeks of frost-free growth conditions. These crops should be clipped, mowed, or disked to prevent seed development that could lead to weed problems. Summer cover crops can be disked and planted to wheat or rye in September or allowed to winter-kill and tilled-in the following spring. Soil test to determine lime and fertilizer needs. For state specific recommendations for planting dates, seeding dates and management for cover crops, consult your local Extension office.

TYPES OF SUMMER COVER CROPS: SMALL GRAINS SEEDING RATES AND DEPTHS

SORGHUM-SUDANGRASS: broadcast 50 to 60 lbs/A; drill 45 to 50 lbs/A (seeding depth: ½ - 1½ in.)

SUDANGRASS: broadcast 40 to 50 lbs/A; drill 35 to 40 lbs/A (seeding depth: ½ - 1 in.)

JAPANESE MILLET: broadcast 25 to 35 lbs/A; drill 20 to 25 lbs/A (seeding depth: ½ - 1 in.)

GERMAN FOXTAIL MILLET: broadcast 30 to 40 lbs/A; drill 25 to 30 lbs/A (seeding depth: ½-1 in.)

PEARL MILLET: broadcast 10-25 lbs/acre; drill 5 to 15 lbs/A (seeding depth: ½ - 1 in.)

BUCKWHEAT: broadcast 50 to 100 lbs/A; drill 30 to 90 lbs/A (seeding depth: ½ in.)

TEFF: broadcast 30 to 40 lbs/A

TYPES OF SUMMER COVER CROPS: LEGUMES SEEDING RATES AND DEPTHS

COWPEAS: broadcast 70 to 120 lbs/A drill 40 to 50 lbs/A (seeding depth: 1- ½ in.) (USDA Cowpea lines 1136, 1137 and 1138 are soft seeded [i.e., typically will not reseed as volunteers the following season] and nematode resistant; each plant covers 100 sq ft)

SESBANIA: broadcast 25 to 40 lbs/A; drill 20 to 25 lbs/A (seeding depth: ½ - 1 in.)

SOYBEAN: broadcast 80 to 100 lbs/A; drill 60 to 80 lbs/A (seeding depth: 1- ½ in.)

SUNN HEMP: broadcast 30 to 40 lbs/A; drill 25 to 35 lbs/A (seeding depth: ½ - 1 in.)

VELVETBEAN: broadcast 30 to 40 lbs/A; drill 25 to 35 lbs/A (seeding depth: ½ - 1½ in.)

LAB LAB: broadcast 50 to 60 lbs/A; drill 40 to 45 lbs/A (seeding depth: ½ - 1½ in.)

Winter Cover Crops

Choosing a grass cover crop is a little easier than choosing a legume. Rye, triticale, barley, wheat, oats, and ryegrass can be planted in the fall; expect to harvest or plow under anywhere from 1/2 ton to 4 tons of dry matter per acre. Soil test to determine lime and fertilizer needs.

TYPES OF WINTER COVER CROPS: SMALL GRAINS

RYE: Rye is probably used more as a winter cover than any other grain. Rye can be sown from late September through mid-November. Most ryes will grow well in the fall (even late fall) and in late winter/early spring. This makes rye a top choice for farmers who have late-season vegetable crops with little time left before winter to sow a cover. Spring growth provides excellent biomass to turn under for use in early potatoes, Cole crops, etc. Rye also provides a forage source for grazing animals and a straw source if harvested before mature seeds are formed or after rye seed harvest (typical seeding rate: 60-120 lbs/A).

BARLEY: Barley provides an excellent source of biomass in the spring. It grows shorter than rye, will tiller, and potentially produces as much straw/forage/plow-down as rye. Barley takes longer to catch up with equivalent rye biomass in the spring, and the possibility of winter kill will be greater with barley. Late fall planting of barley will often result in winter kill. Plant in September or early October for greatest survival (typical seeding rate: 80-120 lbs/A broadcast; 60-110 lbs/A drilled).

WHEAT: Using wheat as a cover crop works well and provides the additional option of a grain harvest. Wheat can be seeded late September through mid-November. Wheat produces biomass like barley but will be a week or two later. It can be grazed before turning under or harvested for grain and the straw removed. Problems may occur if the Hessian fly is abundant, so choose another small grain in areas where Hessian fly is present. (typical seeding rate: 60-120 lbs/A)

OATS: Oats can be managed to provide many options for the covercrop and good late spring biomass. Seeding spring oats during September or October provides a good cover crop that will winter-kill in the colder areas but may overwinter in warmer areas. It can be grazed, made into excellent hay, or the grain harvested, and oat straw produced. Planting spring oats in the early fall can provide good winter-killed mulch that could benefit perennial vegetables or small fruits. Spring oats survive through some milder winters; thus, herbicides may be necessary to kill spring oats in perennial plantings (typical seeding rate: 80-120 lbs/A).

RYEGRASS: This grass has great potential use as a green manure and as a forage/hay material, but ryegrass can potentially become a difficult pest in some farm operations. In the mountain region, ryegrass grows slowly in the fall and provides only moderate winter erosion protection, but in late spring it produces an abundant supply of biomass. Grazing and spring hay from ryegrass can be excellent, and a fine, extensive root system makes it a great source for plow-down (typical seeding rate: 5-10 lbs/A drilled; 15-30 lbs/A broadcast). Italian ryegrass can be seeded and then bedder-disked for bareground or plasticulture. The remaining ryegrass will form a mulch between the beds (typical seeding rate: 100 lbs/A).
TRITICALE: Triticale is a small grain resulting from a cross between wheat and rye. Triticale has similar characteristics to wheat, while the plant has the overall vigor and winter-hardiness of rye. Full planting of triticale should follow similar recommendations as wheat, sowing 60 to 120 lbs/A. Triticale biomass can exceed wheat, thus plowing under or killing for no-till culture should occur at an earlier time in the spring.

NOTES on SMALL GRAINS: Determine small grain fertilizer and lime needs based on soil test results. Successful stand establishment generally can be obtained with planting dates later than those of legumes, even as late as early December in coastal plain regions. This permits establishment of the cover crop after late-fall-harvested crops such as sweetpotatoes. Remember, that some soil erosion protection may be sacrificed with late seeding dates. For sandier coastal plain soils, rye is the preferred small grain cover crop. As previously discussed, seeding depth varies from ½ to 1½ inches, depending on soil texture. Planting methods are the same as described for legumes.

TYPES OF THE WINTER COVER CROPS: LEGUMES
A wide range in planting dates exists for most legumes, though best results are obtained with early plantings. Early seeding dates are easy to meet with legume cover crops following spring vegetables. Because Cahaba White Vetch possesses little winter hardiness, it is not adapted to western NC and the northern regions of other southeastern states. Freeze damage has also occurred with Austrian Winter Pea in higher elevations (above 2,500 feet). Avoid planting late otherwise you increase the risk of winter kill. For state specific recommendations for planting dates, seeding dates and management for legume cover crops, consult your local Extension office.

Seeding Rates and Depths
REGAL GRAZE LADINO CLOVER; broadcast 15 to 20 lbs/A (seeding depth: 1/4 in.). Can be bedder-disked for bare ground or plasticulture forming a between row mulch useful for conventional or bare ground production. Inhibits yellow nutsedge and can survive year-round with moisture.

CRIMSON CLOVER; broadcast 20 to 25 lbs/A; drill 15 to 20 lbs/A (seeding depth: ½ - ⅝ in.)
HAIRY VETCH; broadcast 20 to 30 lbs/A; drill 15 to 20 lbs/A (seeding depth: ½ - ⅝ in.)
CAHABA WHITE VETCH; broadcast 20 to 30 lbs/A; drill 15 to 20 lbs/A (seeding depth: ½ - ¾ in.)
AUSTRIAN WINTER PEA; broadcast 25 to 35 lbs/A; drill 20 to 25 lbs/A (seeding depth: ¾ - 1¼ in.)

When seeding, use shallow planting depths for finer-textured, clayey soils and deeper depths for coarse-textured, sandy soils. Drilling into a conventional seedbed is the most reliable way to obtain a uniform stand. A no-till grain drill can be used successfully, provided residue from the previous crop is not excessive and soil moisture is sufficient to allow the drill to penetrate to the desired planting depth. Seeds can be broadcast if the soil has been disked and partially smoothed. Cultipacking after broad-casting will encourage good soil/seed contact. Crimson clover responds favorably to cultipacking.

MIXING GRASS AND LEGUMES: Planting a single grass or legume may be necessary but combining a grass and legume together may prove better than either one alone. Grasses provide soil protection during the winter and produce great forage or plow-down organic matter. Legumes do not grow well during the winter, but late spring growth is abundant and produces high protein forage and nitrogen for the following crop. Crimson clover is a legume to grow in combination with a grass. Crimson clover’s height matches well with barley, wheat, and oats, but may be shaded and outcompeted by rye. Hairvetch has been sown with grass cover crops for many years, using the grass/vetch combination as a hay or plowdown.

BIOFUMIGATION AND COVER CROPS:
Biofumigation refers to the suppression of soilborne pathogens and pests (such as plant-parasitic nematodes and weeds) using naturally occurring biocidal compounds or allelochemicals, particularly isothiocyanates. These compounds, which are chemically similar to the active ingredient of the chemical fumigant metam sodium, are released from bioactive cover crops. The biofumigant process is initiated by cellular disruption (chopping up crop tissue), incorporating the crop tissue into the soil, and irrigating the soil with the incorporated tissue. This activates a chemical reaction of naturally occurring plant compounds called glucosinolates. The chemical reaction releases gases into soil pores that are generally toxic to microbes.

Most biofumigant cover crops are in the Brassicaceae family (also known as Crucifers or Cole crops) and mustards are the commonly utilized biofumigant crop. However, not all mustards are well-suited as biofumigants since concentrations of the bioactive compounds vary by species and cultivar.

Brassica crops have been used extensively as winter cover crops and as “break crops” where the residues are tilled into the soil for their biofumigation effect. They have also been used in rotations, where the Brassica crop is harvested for sale and then the remaining residue is tilled-in for the biofumigation effect. There are several commercially available cover crops that have been used for biofumigation. “Caliente 119” (a mixture of oilseed radish and mustard), oilseed radish, “Florida Broadleaf Mustard”, garden cress, penny cress, “Dwarf Essex” rape, and several canola varieties have been reported to have biofumigation potential. In much of the southeast region of the U.S., these crops can be seeded in fall and over-wintered, or direct seeded in early spring. In either case, the crop should be chopped and tilled-in when it is in the early flowering stage to achieve the maximum biofumigation potential. The early flowering stage is the point at which the allelochemical concentrations are their highest. Seed ing rates range from 4 to 20 lbs/A and will vary with location and seed size (generally, the smaller the seed size, the lower the rate).

These crops respond and produce more biomass and more biofumigation potential when provided with 30 to 90 lbs/A N fertilizer at planting. These crops grow rapidly and can normally be plowed down in 6 to 10 weeks. In areas where the average
Crackerjack • 82-84 Day Triploid Seedless Watermelon
Consistent yields over wide range of growing conditions. Very uniform fruit shape, firm flesh and deep red interior. Time and time again customers rate this our best tasting watermelon. Have your customers ask for this variety by name. 13-17 lbs. IR: Co1, Fon1 (Pictured Above)

Lazor • 42 Day Yellow Straightneck Squash
Exceptionally firm, smooth fruit alleviates some of the “roughness” typical of first picks. Thick & sturdy neck promotes easy handling. Attractive glossy skin. IR: ZYMV

Bimini • 70 Day Sweet Specialty Pepper
Thick walled heavy fruit with excellent flavor. Excellent setting ability. Performs well in both fall and spring seasons. Well adapted to all Eastern US growing regions. Traditional Cubanelle shape. BLS 1-10 tolerant.

Renegade • 48 Day Green Zucchini Summer Squash
High quality medium-dark green fruit with light flecking. High yielding. Early male flowers help with early yields. Open and erect plant. Minimal spines on the petioles. Strong disease package helps insure longer harvests. IR: Px, PRSV, CMV, ZYMV

Call Today or Visit Us Online For More Information
last spring frost is 1 May or later, only spring planting is recommended. Optimal results occur when the Brassica cover crop is thoroughly chopped and tilled completely into the top 6 to 8 inches of soil and then watered in thoroughly. Irrigating will help trap the volatile compounds into the soil. Brassica seed meals (specifically mustard seed meal) may also be utilized for biofumigation. Mustard seed meal is highly concentrated in volatile compounds and provides a partial source of organic fertilizer for the following crop. Mustard seed meal can be used as a biofumigant by spreading it like a fertilizer, tilling into the soil, and then irrigating to trap the volatiles.

PLOWDOWN: Plowing early defeats the purpose of growing cover crops as little biomass would have been produced by the cover crop. In the case of legume cover crops, they require sufficient time to develop biomass which an early plowdown would prevent. If you need to plow early, use a grass cover crop (rye) that produces sufficient fall growth and will provide maximum biomass for incorporation. Allow 3-6 weeks between plowdown and planting.

HELPFUL RESOURCES

MANAGING COVER CROPS PROFITABLY:

BUILDING BETTER SOILS FOR BETTER CROPS:
https://www.sare.org/news/updated-building-soils-for-better-crops-focuses-on-soil-health-fundamentals/

SOUTHERN COVER CROPS COUNCIL:
https://www.southerncovercrops.org/

COVERS UNDER COVER:

WARM-SEASON COVER CROPS FOR HIGH TUNNELS IN THE SOUTHEAST:

COOL-SEASON COVER CROPS FOR HIGH TUNNELS IN THE SOUTHEAST:

THE BASICS OF BIOFUMIGATION:

Biofumigant Seed Sources:

HIGH PERFORMANCE SEEDS, INC.:
https://www.hpseeds.com/products

JOHNNY’S SELECTED SEED:
https://www.johnnyseeds.com/farm-seed/brassisicas/

SEEDWAY:
https://www.seedway.com/product-category/vegetable-seed/cover-crop-seeds/

WELTER SEED & HONEY CO.:
https://welterseed.com/

Brassicaceous Seed Meal Source:

FARM FUEL INC.:
https://farm-fuel-inc.square.site/

TRANSPLANT PRODUCTION

These recommendations apply to plants grown under controlled conditions in greenhouses or hotbeds. (Field-grown plants are covered under the specific crop.) A transplant is affected by factors such as temperature, fertilization, water, and spacing. A good transplant is one that has been grown under the best possible conditions.

Table 5 presents optimum and minimum temperatures for seed germination and plant growth, time and spacing (area) requirements, and number of plants per square foot for a number of economically important vegetable crops in the southeastern US.

Commercial Plant-growing Mixes. A number of commercial media formulations are available for growing transplants. Most of these mixes will produce high-quality transplants when used with good management practices. However, these mixes can vary greatly in composition, particle size, pH, aeration, nutrient content, and water-holding capacity. Avoid formulations having fine particles, as these may hold excessive water and have poor aeration. Have mix formulations tested by your state’s soil test laboratory to determine the pH and the level of nutrients the mix contains.

Treatment of Flats. Flats used in the production of transplants should be new or as clean as new to avoid damping-off and other disease problems. If flats are to be reused, they should be thoroughly cleaned after use and completely submerged in a household bleach solution for at least 5 minutes. Use 5 gallons of 5.25% sodium hypochlorite (such as Clorox) for each 100 gallons of solution required. Dry flats completely prior to use. Never treat flats with creosote or pentachlorophenol.

Plant Containers: There are a wide variety of containers available for starting seeds for transplants. Most growers start seeds either in flats or in cell packs.

The main advantage of using flats is that more plants can fit into the same space compared to cell packs. However, if you

<p>| TABLE 5. OPTIMUM AND MINIMUM TEMPERATURES FOR TRANSPLANT PRODUCTION |
|--------------------------|--------------------------|--------------------------|
| °F | °F | Weeks to Grow |</p>
<table>
<thead>
<tr>
<th>Opt. Day</th>
<th>Min. Night</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broccoli</td>
<td>65-70</td>
</tr>
<tr>
<td>Cabbage</td>
<td>65</td>
</tr>
<tr>
<td>Cantaloupe<sup>1</sup></td>
<td>70-75</td>
</tr>
<tr>
<td>Cauliflower</td>
<td>65-70</td>
</tr>
<tr>
<td>Cucumber</td>
<td>70-75</td>
</tr>
<tr>
<td>Eggplants</td>
<td>70-85</td>
</tr>
<tr>
<td>Endive & Escarole</td>
<td>70-75</td>
</tr>
<tr>
<td>Lettuce</td>
<td>60-65</td>
</tr>
<tr>
<td>Onions</td>
<td>65-70</td>
</tr>
<tr>
<td>Peppers</td>
<td>70-75</td>
</tr>
<tr>
<td>Summer squash</td>
<td>70-75</td>
</tr>
<tr>
<td>Sweetpotato</td>
<td>75-85</td>
</tr>
<tr>
<td>Tomatoes</td>
<td>65-75</td>
</tr>
<tr>
<td>Watermelon, seeded</td>
<td>85-90</td>
</tr>
<tr>
<td>Watermelon, seedless</td>
<td>85-90</td>
</tr>
</tbody>
</table>

¹ Cantaloupe and other melons
start seeds in flats, you will need to transplant to larger cell packs or to individual pots as the seedlings get bigger.

Seeding directly into cell packs saves time, because transplanting into a larger container later is not necessary. Cell packs come in many different cell sizes; the overall tray size is standardized. For tomatoes and peppers, 72-cell packs work well. For larger-seeded vegetables; such as cucumbers, squash, and watermelons, 48-cell packs work better.

Each vegetable crop has specific cell sizes for containerized transplant production and requires a certain number of weeks before they are ready for transplanting (Table 5). For example: broccoli, Brussels sprouts, cabbage, cauliflower, and collards require a 0.8 to 1.0 inch cell and 5 to 7 weeks to reach an adequate size for transplanting; cantaloupe and watermelons require a 1.0 inch cell and 3 to 4 weeks; eggplant and tomato require a 1.0 inch cell and 5 to 7 weeks; and pepper requires a 0.5 to 0.8 inch cell and 5 to 7 weeks. Other options are available depending on the crop and your situation.

Seed Germination. Seed that is sown in flats to be “pricked out” at a later date should be germinated in vermiculite (horticultural grade, coarse sand size) or a plug growing mix. However, it is recommended that no fertilizer be included in the mix or the vermiculite and avoid fertilizing the seedlings until the seed leaves (cotyledons) are fully expanded and the true leaves are beginning to unfold. Fertilization should be in the liquid form and at one-half the rate for any of the ratios listed in the following section on “Liquid Feeding.” Seedlings can be held for a limited time if fertilization is withheld until 3 to 4 days before “pricking out.” Seed that is sown in pots or other containers and that will not be “pricked out” later can be germinated in a mix that contains fertilizer.

To get earlier, more uniform emergence, germinate and grow seedlings on benches or in a floor-heated greenhouse. Germination can be aided by using germination mats which provide heat directly to the trays. With supplemental heating such as this, seedling emergence and uniformity can be enhanced decreasing the amount of time required to produce a transplant. If floor heating or benches is not available, seed the trays, water, and stack them off the floor during germination. Be sure to unstack trays before seedlings emerge.

Heating and Venting. Exhaust from heaters must be vented to the outside. It is also recommended to have an outside fresh air intake for the heaters. Be sure vents and fans are properly designed and positioned to avoid drawing exhaust gases into the greenhouse. Exhaust gases from oil and improperly adjusted gas heating systems can cause yellowing, stunting, and death of seedlings. Do not grow or hold seedlings in an area where pesticides are stored.

Liquid Feeding. The following materials dissolved in 5 gallons of water and used over an area of 20 square feet are recommended for use on the transplants if needed:

- 20-20-20 1.2-1.6 oz/5 gal water
- 15-15-15 2 oz/5 gal water
- 15-30-15 2 oz/5 gal water

Rinse leaves after liquid feeding. Fertilizers used for liquid feeding must be 100% water soluble.

When transplanting to the field, use a “starter fertilizer” being sure to follow the manufacture’s recommendations.

Watering. Keep these mixes moist but not continually wet. Water less in cloudy weather. Watering in the morning allows plant surfaces to dry before night and reduces the possibility of disease development.

Hardening and Transplant Height Control. Proper hardening of transplants, stiffens stems, and hardens the transplants increasing their survival.

There are several methods – chemical and cultural – used to harden transplants and the choice of which to use is often crop-dependent. At this time there is one chemical plant growth regulator available for use in producing vegetable transplants but its use is limited to several solanaceous crops.

Transplant Height Control. The goal of a transplant producer should be to produce a strong transplant with sturdy growth that can withstand transplanting into the field. Tall, spindly, or overgrown transplants can be difficult to remove from the transplant tray and might become entangled in the transplanting equipment.

There are a few methods available that can aid the producer to control the top growth of developing transplants. One method is to use cold water for irrigation, 33-34°F, which has been shown in some species to control top growth.

Brushing the plants, or setting up fans so that the plants are moved (brushed by air) is another method. This results in a mechanical stress of the plant stem and can result in shorter plants overall. The intensity and frequency of brushing will have to be adjusted to avoid damage to developing foliage while still achieving height control.

Chemical Hardening. Recently, a label for Sumagic™ (uniconazole) has been released allowing foliar sprays on the following vegetable transplants: tomato, pepper, ornamental pepper, eggplant, tomatillo, ground cherry, and pepino. But the new label is rather restrictive; the maximum total allowed application is 10 ppm at 2 quarts per 1,000 square feet. This means only one 10-ppm spray, two 5-ppm, or four 2.5-ppm sprays are allowed, and so on. The final spray must be made no later than two weeks after the two- to four-leaf stage, about four to six weeks after sowing.

For production of retail tomato transplants in six-packs to 4-inch pots, we recommend an initial uniconazole spray at 1 to 2.5 ppm two weeks after sowing. If additional height control is needed, up to three additional applications of 1 to 2.5 ppm can be made at seven-day intervals. Until we know more about the post-harvest effects and the range of sensitivity each cultivar demonstrates, we recommend growers avoid the use of higher rates in excess of 5 ppm. Uniconazole is a highly active PGR (plant growth regulator), it is critical to emphasize that caution is paramount while implementing uniconazole for vegetable transplant height control.

Cultural Methods for Hardening. Cultural methods used to harden transplants employ reducing water and altering the ambient temperatures. Combinations of these two methods are
often used. By reducing the amount of water used and lowering ambient temperatures, one can cause a “check” in plant growth (a “slow down”) to prepare plants for field setting. Never reduce or limit fertilizer as a means to harden transplants because it will often delay maturity. If ambient temperatures are too low, chilling injury can result causing plant damage and delayed regrowth after transplanting. Caution: Lowering air temperature on some crops, such as cool season crops, might induce bolting.

DIF. Plant height can be held in check and hardening can be improved by using a process that reduces or increases ambient temperatures in the early morning over the course of several days. Plants elongate most at daybreak. Raising the temperature before daybreak (2 hours before) or lowering the temperature just after daybreak (2 hours after) by 10°F will cause plants to be shorter and more hardened. This process is called DIF, because you are employing a difference in temperature. DIF can be positive or negative, but positive DIF is more commonly used for hardening transplants. Negative DIF can cause crop injury on cool sensitive crops or bolting on cool season crops.

GRAFTING IN VEGETABLE CROPS

The phase-out of methyl bromide fumigation is driving the search for alternative methods to manage soilborne pathogens in vegetable crops. Although alternative pesticides and other physical treatments are being tested and developed, grafting with resistant rootstocks offers the best method to avoid soilborne diseases. Grafting involves combining a desirable scion, which is the fruit-bearing portion of a grafted plant, with a rootstock, which provides resistance to various soilborne pathogens. The scion is generally from a plant that produces highly desirable fruit. However, grafting can also influence vegetative growth and flowering, affect fruit ripening and fruit quality, enhance abiotic stress resistance, and enhance yield especially under low temperature conditions.

At present, most research is being conducted on grafting to solanaceous and cucurbit plants. The primary motive for grafting tomato and watermelon is to manage soilborne pests and pathogens, when genetic or chemical approaches for management of these diseases are not available. Grafting a susceptible scion onto a resistant rootstock can provide a resistant cultivar without the need to breed a resistant cultivar. Furthermore, grafting allows a rapid response to new races of pathogens, and, in the short-term, provides a less expensive and more flexible solution for controlling soilborne diseases than by breeding new, resistant cultivars.

Grafted transplants are more expensive than non-grafted transplants (as much as 4x) due to labor, material costs (grafting supplies, seed costs of rootstock and scion), and specialized facilities required to produce grafted plants. These specialized facilities include heating chambers, grafting rooms, and trained personnel to produce and care for these grafted transplants. Potential changes in fruit quality, which occur with some rootstocks, must also be considered. Commercial transplant producers offer grafting services and with improved grafting techniques and mechanization, costs are decreasing. Grafted transplants are available on the east and west coast.

The most current research and new developments in grafting can be found at http://www.graftingvegetables.org. This site contains the latest findings on grafting solanaceous (tomatoes, peppers, eggplants, etc.) and cucurbit (watermelons, melons, etc.) crops. You will find detailed tables listing research on rootstocks and their specific attributes. The USDA-ARS has released a watermelon rootstock (Carolina Strongback). This rootstock has multiple sites for resistance to race 1 and 2 of *Fusarium* and tolerance to root-knot nematode.

Grafting has become the predominately-practiced growing method in Asia. Currently 95% of watermelons and Oriental melons are grafted in Japan, Korea, and Taiwan. This is due to their lack of land for rotation. Until recently, grafting had not been considered a potential cultural practice in the US. However, grafting is gaining popularity in the US due to increasing limited land availability for rotation and the loss of soil fumigation as a means for managing soilborne diseases. Currently grafted transplants can cost three to four times that of a standard transplant. Grafting presents an option, however, for soilborne pathogen management for diseases such as *Fusarium* wilt, *Monospo-

TABLE 6. VEGETABLE SEED SIZES

<table>
<thead>
<tr>
<th>Crop</th>
<th>Seeds/Unit Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asparagus</td>
<td>13,000-20,000/lb</td>
</tr>
<tr>
<td>Beans:</td>
<td></td>
</tr>
<tr>
<td>small seeded lima</td>
<td>1,150-1,450/lb</td>
</tr>
<tr>
<td>large seeded lima</td>
<td>440-550/lb</td>
</tr>
<tr>
<td>snap</td>
<td>1,600-2,200/lb</td>
</tr>
<tr>
<td>Beets</td>
<td>24,000-26,000/lb</td>
</tr>
<tr>
<td>Broccoli</td>
<td>8,500-9,000/oz</td>
</tr>
<tr>
<td>Brussels sprouts</td>
<td>8,500-9,000/oz</td>
</tr>
<tr>
<td>Cabbage</td>
<td>8,500-9,000/oz</td>
</tr>
<tr>
<td>Cantaloupes</td>
<td>16,000-19,000/lb</td>
</tr>
<tr>
<td>Carrots</td>
<td>300,000-400,000/lb</td>
</tr>
<tr>
<td>Cauliflower</td>
<td>8,900-10,000/oz</td>
</tr>
<tr>
<td>Collards</td>
<td>7,500-8,500/oz</td>
</tr>
<tr>
<td>Cucumbers</td>
<td>15,000-16,000/lb</td>
</tr>
<tr>
<td>Eggplants</td>
<td>6,000-6,500/oz</td>
</tr>
<tr>
<td>Endive, Escarole</td>
<td>22,000-26,000/oz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Crop</th>
<th>Seeds/Unit Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kale</td>
<td>7,500-8,900/oz</td>
</tr>
<tr>
<td>Kohlrabi</td>
<td>9,000/oz</td>
</tr>
<tr>
<td>Leeks</td>
<td>170,000-180,000/lb</td>
</tr>
<tr>
<td>Lettuce:</td>
<td></td>
</tr>
<tr>
<td>head</td>
<td>20,000-25,000/lb</td>
</tr>
<tr>
<td>leaf</td>
<td>25,000-31,000/lb</td>
</tr>
<tr>
<td>Mustard</td>
<td>15,000-17,000/oz</td>
</tr>
<tr>
<td>Okra</td>
<td>8,000/oz</td>
</tr>
<tr>
<td>Onions:</td>
<td></td>
</tr>
<tr>
<td>bulb</td>
<td>105,000-144,000/lb</td>
</tr>
<tr>
<td>bunching</td>
<td>180,000-200,000/lb</td>
</tr>
<tr>
<td>Parsnips</td>
<td>192,000/oz</td>
</tr>
<tr>
<td>Parsley</td>
<td>240,000-288,000/lb</td>
</tr>
<tr>
<td>Peas</td>
<td>1,440-2,580/lb</td>
</tr>
<tr>
<td>Peppers</td>
<td>4,000-4,700/oz</td>
</tr>
<tr>
<td>Pumpkins</td>
<td>1,900-3,200/lb</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Crop</th>
<th>Seeds/Unit Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radishes</td>
<td>40,000-50,000/lb</td>
</tr>
<tr>
<td>Rutabaga</td>
<td>150,000-192,000/lb</td>
</tr>
<tr>
<td>Spinach</td>
<td>40,000-50,000/lb</td>
</tr>
<tr>
<td>Squash:</td>
<td></td>
</tr>
<tr>
<td>summer</td>
<td>3,500-4,800/lb</td>
</tr>
<tr>
<td>winter</td>
<td>1,600-4,000/lb</td>
</tr>
<tr>
<td>Sweet corn:</td>
<td></td>
</tr>
<tr>
<td>normal</td>
<td>1,800-2,500/lb</td>
</tr>
<tr>
<td>sugary enhanced</td>
<td>3,000-5,000/lb</td>
</tr>
<tr>
<td>supersweet (sh2)</td>
<td></td>
</tr>
<tr>
<td>Tomatoes:</td>
<td></td>
</tr>
<tr>
<td>fresh</td>
<td>10,000-11,400/oz</td>
</tr>
<tr>
<td>processing</td>
<td>160,000-190,000/lb</td>
</tr>
<tr>
<td>Turnip</td>
<td>150,000-200,000/lb</td>
</tr>
<tr>
<td>Watermelons:</td>
<td></td>
</tr>
<tr>
<td>small seed</td>
<td>8,000-10,400/lb</td>
</tr>
<tr>
<td>large seed</td>
<td>3,200-4,800/lb</td>
</tr>
</tbody>
</table>

2022 Vegetable Crop Handbook for Southeastern United States 35
rascus vine decline, Phytophthora blight, root-knot nematode, and other soilborne diseases.

Additionally, grafting can enhance tolerance to abiotic stress; increase water and nutrient use efficiency; extend harvest periods; and improve fruit yield and quality in certain cucurbits. There is a wide array of potential rootstocks: Lagenaria spp. (bottled gourd), interspecific squash hybrids, wild watermelon, or melon. These rootstocks can produce vigorous plants with resistance to many soilborne diseases. However, each rootstock type provides advantages or disadvantages under certain environmental conditions. Check with the transplant grower to see which rootstock they would recommend for your area.

Grafting Methods for Cucurbits. Grafting in cucurbits is the most difficult to do and continuous practice is needed to be successful. There are four commonly used methods to date: tongue approach graft, hole insertion graft, one cotyledon graft, and side graft.

Only one of these methods is currently automated (one cotyledon graft method). The other three methods are labor intensive. Remember that grafting is an art that requires attention to detail. The major concern with cucurbit grafting is the constant threat of regrowth of the rootstock, which needs to be removed by hand. Additional information can be found at http://www.graftingvegetables.org.

Grafting Methods for Tomatoes. There are three primary techniques used for grafting tomatoes: tongue approach grafting, cleft grafting, and tube (or clip) grafting. Cleft grafting and tube grafting are similar in that the shoot of the fruit-producing scion is completely cut off from its own roots and attached to the severed stem of the rootstock. The name ‘tube grafting’ originated because when the technique was first developed; a tube was used to hold the shoot and the rootstock together. Clips are now used to make this graft. Tube grafting is quicker and less difficult to do and continuous practice is needed to be successful.

TABLE 7. POPULATION OF PLANTS PER ACRE AT SEVERAL BETWEEN-ROW AND IN-ROW SPACINGS

<table>
<thead>
<tr>
<th>Between-row spacing (in.)</th>
<th>In-row spacing (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>16</td>
<td>18</td>
</tr>
<tr>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>20</td>
<td>24</td>
</tr>
<tr>
<td>24</td>
<td>30</td>
</tr>
<tr>
<td>30</td>
<td>36</td>
</tr>
<tr>
<td>36</td>
<td>48</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Crop</th>
<th>Critical Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asparagus</td>
<td>Brush</td>
</tr>
<tr>
<td>Beans, Lima</td>
<td>Pollination and pod development</td>
</tr>
<tr>
<td>Beans, Snap</td>
<td>Pod enlargement</td>
</tr>
<tr>
<td>Broccoli</td>
<td>Head development</td>
</tr>
<tr>
<td>Cabbage</td>
<td>Head development</td>
</tr>
<tr>
<td>Carrots</td>
<td>Root enlargement</td>
</tr>
<tr>
<td>Cauliflower</td>
<td>Head development</td>
</tr>
<tr>
<td>Corn</td>
<td>Silking and tasseling, ear development</td>
</tr>
<tr>
<td>Cucumbers</td>
<td>Flowering and fruit development</td>
</tr>
<tr>
<td>Eggplants</td>
<td>Flowering and fruit development</td>
</tr>
<tr>
<td>Lettuce</td>
<td>Head development</td>
</tr>
<tr>
<td>Melons</td>
<td>Flowering and fruit development</td>
</tr>
<tr>
<td>Onions, Dry</td>
<td>Bulk enlargement</td>
</tr>
<tr>
<td>Peppers</td>
<td>Flowering and fruit development</td>
</tr>
<tr>
<td>Potatoes (Irish)</td>
<td>Tuber set and tuber enlargement</td>
</tr>
<tr>
<td>Radishes</td>
<td>Root enlargement</td>
</tr>
<tr>
<td>Southernpeas</td>
<td>Seed enlargement and flowering and English</td>
</tr>
<tr>
<td>Squash, Summer</td>
<td>Bud development and flowering</td>
</tr>
<tr>
<td>Sweetpotato</td>
<td>Root enlargement</td>
</tr>
<tr>
<td>Tomatoes</td>
<td>Early flowering, fruit set, and enlargement</td>
</tr>
<tr>
<td>Turnips</td>
<td>Root enlargement</td>
</tr>
</tbody>
</table>

TABLE 8. CRITICAL PERIODS OF WATER NEED FOR VEGETABLE CROP

<table>
<thead>
<tr>
<th>Crop</th>
<th>Critical Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asparagus</td>
<td>Brush</td>
</tr>
<tr>
<td>Beans, Lima</td>
<td>Pollination and pod development</td>
</tr>
<tr>
<td>Beans, Snap</td>
<td>Pod enlargement</td>
</tr>
<tr>
<td>Broccoli</td>
<td>Head development</td>
</tr>
<tr>
<td>Cabbage</td>
<td>Head development</td>
</tr>
<tr>
<td>Carrots</td>
<td>Root enlargement</td>
</tr>
<tr>
<td>Cauliflower</td>
<td>Head development</td>
</tr>
<tr>
<td>Corn</td>
<td>Silking and tasseling, ear development</td>
</tr>
<tr>
<td>Cucumbers</td>
<td>Flowering and fruit development</td>
</tr>
<tr>
<td>Eggplants</td>
<td>Flowering and fruit development</td>
</tr>
<tr>
<td>Lettuce</td>
<td>Head development</td>
</tr>
<tr>
<td>Melons</td>
<td>Flowering and fruit development</td>
</tr>
<tr>
<td>Onions, Dry</td>
<td>Bulk enlargement</td>
</tr>
<tr>
<td>Peppers</td>
<td>Flowering and fruit development</td>
</tr>
<tr>
<td>Potatoes (Irish)</td>
<td>Tuber set and tuber enlargement</td>
</tr>
<tr>
<td>Radishes</td>
<td>Root enlargement</td>
</tr>
<tr>
<td>Southernpeas</td>
<td>Seed enlargement and flowering and English</td>
</tr>
<tr>
<td>Squash, Summer</td>
<td>Bud development and flowering</td>
</tr>
<tr>
<td>Sweetpotato</td>
<td>Root enlargement</td>
</tr>
<tr>
<td>Tomatoes</td>
<td>Early flowering, fruit set, and enlargement</td>
</tr>
<tr>
<td>Turnips</td>
<td>Root enlargement</td>
</tr>
</tbody>
</table>

TABLE 9. AVAILABLE WATER-HOLDING CAPACITY BASED ON SOIL TEXTURE

<table>
<thead>
<tr>
<th>Soil Texture</th>
<th>Available Water Holding Capacity (water/inches of soil)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse sand</td>
<td>0.02–0.06</td>
</tr>
<tr>
<td>Fine sand</td>
<td>0.04–0.09</td>
</tr>
<tr>
<td>Loamy sand</td>
<td>0.06–0.12</td>
</tr>
<tr>
<td>Sandy loam</td>
<td>0.11–0.15</td>
</tr>
<tr>
<td>Fine sandy loam</td>
<td>0.14–0.18</td>
</tr>
<tr>
<td>Loam and silt loam</td>
<td>0.17–0.23</td>
</tr>
<tr>
<td>Clay loam and silty clay loam</td>
<td>0.14–0.21</td>
</tr>
<tr>
<td>Silty clay and clay</td>
<td>0.13–0.18</td>
</tr>
</tbody>
</table>

TABLE 10. SOIL INFILTRATION RATES BASED ON SOIL TEXTURE

<table>
<thead>
<tr>
<th>Soil Texture</th>
<th>Soil Infiltration Rate (inch/hour)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse sand</td>
<td>0.75–1.00</td>
</tr>
<tr>
<td>Fine sand</td>
<td>0.50–0.75</td>
</tr>
<tr>
<td>Fine sandy loam</td>
<td>0.35–0.50</td>
</tr>
<tr>
<td>Silt loam</td>
<td>0.25–0.40</td>
</tr>
<tr>
<td>Clay loam</td>
<td>0.10–0.30</td>
</tr>
</tbody>
</table>
complicated to do than cleft grafting because it only requires a single, straight cut on both the rootstock and the scion. In addition, because fewer intricate cuts are involved, this technique can be used on very small seedlings. Grafting can be performed at various stages of seedling growth. Grafting at the 2-3 true leaf stage is common. With both cleft and tube grafting, the newly grafted plants must be protected from drying out until the graft union is healed. This usually involves covering the plants with a plastic cover or protecting them in some type of healing chamber where temperature and humidity can be regulated. Some method should be employed to reduce light intensity to the grafted plants for several days after the procedure. It is critical to increase the humidity in the chamber to near 100% for the first two days. Humidity must then be reduced incrementally over the next five days to prohibit the formation of adventitious roots from the scion and to provide time for the graft union to heal. Tomato grafts heal quickly and the seedlings can be acclimated back into the greenhouse after 4-5 days.

With both cleft and tube grafting, it is important that the diameter of the cut ends (of the scion and the rootstock) match up perfectly. If the diameter does not match, the graft may not heal properly, if at all. Rootstock cultivars tend to have different growth habits than scion cultivars so it is important to grow a small amount of rootstock and scion seed at first to determine their growth rate relative to each other. Rootstock cultivars tend to be more vigorous than scion cultivars. Another critical factor is to cut rootstock seedlings below the cotyledons. If the cotyledons are left, they will generate suckers that will compete with the scion and requiring pruning. For step-by-step instructions, go to http://graftvegetables.org/.

DISEASE CONTROL IN PLANT BEDS
For the best control of all soil-borne diseases, use a good commercial plant-growing mix. If this is not possible, use one of the following procedures:

Preplant. The only practice that ensures complete sterilization of soil is the use of steam. When steam is used, a temperature of 180°F must be maintained throughout the entire mass of soil for 30 minutes.

Further information on sanitizing equipment, storage houses, produce and water can be found in Table 3-51.

Seed Treatment. Seed treatment is important to control seed-borne diseases. Use of untreated seed could lead to diseases in the plant bed which could reduce plant stands or result in diseased transplants and potential crop failure. See sections on SEED TREATMENTS for detailed information on how to properly treat seeds and for materials labeled for use as seed treatments.

Postplant. Damping-off and foliar diseases can be a problem in plant beds. To prevent these diseases, it may be necessary to apply fungicide sprays especially as plants become crowded in plant beds. Refer to label clearance before use. The use of sphagnum moss as a top dressing will reduce damping-off because it keeps the surface dry. See the section on GREENHOUSE VEGETABLE CROP DISEASE CONTROL.

SEED STORAGE AND HANDLING
Both high temperature and relative humidity will reduce seed germination and vigor of stored seed. Do not store seed in areas that have a combined temperature and humidity value greater than 100 [e.g., 50°F + 50% relative humidity]. In addition, primed seed does not store well after shipment to the buyer. Therefore, if you do not use all the primed seed ordered in the same season, have the seed tested before planting in subsequent seasons.

Corn, pea, and bean seed are especially susceptible to mechanical damage due to rough handling. Bags of these seed should not be dropped or thrown because the seed coats can crack and seed embryos can be damaged, resulting in a nonviable seed. When treating seed with a fungicide, inoculum, or other chemical, use only gentle agitation to avoid seed damage.

PLANT POPULATIONS
For vegetable seed sizes and plant populations see Tables 6 and 7.

IRRIGATION
Basic Principles. The most common use of irrigation in vegetable production is to supply the crop water demand. However, irrigation events can also be used to modify the crop microclimate (i.e., frost protection), control weeds, leach salts, or deliver fertilizer and chemicals to the growing crops. To supply the crop water demand, maintaining proper soil moisture levels is important to maximize the productivity of vegetable crops. Plant stress caused by too much or too little soil moisture can lead to decreased size and weight of individual fruit and to defects such as: toughness; strong flavor; poor tip fill and pod fill; cracking; blossom-end rot; and misshapen fruit.

Once irrigating according to the soil water status, it is imperative for growers to maintain the soil moisture level near field capacity at all times during the growing season. Field capacity is the maximum water the soil can hold. When the soil moisture status/content/tension is at field capacity it means soil water availability is ideal for crop development. However, to maintain field capacity always requires a strategic scheduling of irrigation events, so the irrigation system is capable of make uniform, frequent, and precisely timed applications. Commonly, more than one irrigation cycle per day may be needed to maintain field capacity. This is particularly true for fast growing crops grown in soils with little water holding capacity, such as sandy loams. Even relatively short periods of inadequate soil moisture can adversely affect many crops.

Another important aspect to take into consideration to determine irrigation events using the soil water status is the soil type. Different soil types have different moisture holding capacities and the use of soil moisture sensors is essential to ensure proper water availability. Soil moisture sensors are the most common technology used to monitoring the soil water availability for plants and recent research indicates that maintaining soil moisture levels in a narrow range, just slightly below field capacity...
(75% to 90% available soil moisture), maximizes crop growth. This may mean that more frequent irrigations of smaller amounts are better than delaying irrigations until the soil moisture reaches a lower level (40% to 50% available soil moisture) and then applying a heavy irrigation. It is important to remember that different soils also have different infiltration rates, which will affect the frequency of irrigation events. For example, water is more readily held in clay soils; however, clay soils have a lower water infiltration rate as compared to sandy soils. Depending on the soil structure, high application rates will result in irrigation water running off the field, contributing to erosion and fertilizer runoff particularly on heavy clay soils. Application rates should follow values in Table 10.

Applying the proper amount of water at the correct time is critical for achieving the optimum benefits from irrigation. The crop water requirement, termed evapotranspiration, or ET, is equal to the quantity of water lost from the plant (transpiration) plus water that evaporated from the soil surface. The ET rate is also an important and effectively strategy to schedule irrigation events. Numerous factors must be considered when estimating ET. The amount of solar radiation, which provides the energy to evaporate moisture from the soil and plant surfaces, is the major factor. Other factors include crop growth stage; day length; air temperature; wind speed; and humidity level. Plant factors that affect ET are crop species; canopy size and shape; leaf size, and shape. Soil factors must also be considered. Soils having high levels of silt, clay, and organic matter have greater water-holding capacities than sandy soils or compacted soils (Table 9). Soils with high water-holding capacities require less frequent irrigation than soils with low water-holding capacities. When such soils are irrigated less frequently, a greater amount of water must be applied per application.

Water loss from plants is much greater on clear, hot windy days than on cool, overcast days. During periods of hot, dry weather, ET rates may reach 0.25 inch per day or higher. ET can be estimated using a standard evaporation pan or using local weather networking systems. Check with your local Extension office for information.

In general, irrigation is beneficial in most years since rainfall is rarely uniformly distributed even in years with above-average precipitation. Moisture deficiencies occurring early in the crop cycle may delay maturity and reduce yields. Shortages later in the season often lower quality and yield. Over-irrigating, however, especially late in the season, can reduce quality and post-harvest life of the crop. Table 8 shows the critical periods of crop growth when an adequate supply of water is essential to produce high-quality vegetables.

Drip Irrigation. Drip irrigation is used to maintain soil moisture whereas other types of irrigation are used more to replace depleted soil moisture. Drip irrigation is a method of slowly applying water directly to the plant’s root zone. Water is applied frequently, often daily, to maintain favorable soil moisture conditions. Even so, field operations can continue uninterrupted. Water is applied without wetting the foliage, thereby decreasing evaporative losses, and decreasing disease pressure due to damp foliage. Additionally, the use of drip irrigation can limit waste and potential contamination from overuse (or unnecessary use) of agricultural chemicals. In most cases, drip irrigation is considerably more uniform and efficient in its distribution of water to the crop than other irrigation methods. In addition, fertilizers applied through the drip irrigation system are conserved.

Drip irrigation is used on a wide range of fruit and vegetable crops. It is especially effective when used with mulches; on sandy soils; and on high value crops, such as cantaloupes, watermelons, squash, peppers, eggplants, and tomatoes. Drip irrigation systems have several other advantages over sprinkler and surface irrigation systems. Low flow rates and operating pressures are typical of drip systems. These characteristics lead to lower energy costs. Once in place, drip systems require little labor to operate, can be automatically controlled, and can be managed to apply the precise amount of water and nutrients needed by the crop. These factors also reduce operating costs. The areas between rows remain dry reducing weed growth between rows and reducing the amount of water lost to weeds.

The equipment used for drip irrigation systems must be routinely monitored and maintained to prevent any challenges. Drip irrigation tape and tubing can be damaged by insects, rodents, and laborers. Pressure regulation and filtration require equipment not commonly used with sprinkler or surface systems. The drip system, including a pump, headers, filters, and various connectors, must be checked and be ready to operate before planting. Failure to have the system operational could result in costly delays, poor plant survival, and irregular stands, reducing yield.

Calculating the length of time required to apply a specific depth of water with a drip irrigation system is more difficult than with sprinkler systems. Unlike sprinkler systems, drip systems apply water to only a small portion of the total crop acreage. Usually, a fair assumption to make is that the mulched width approximates the extent of the plant root zone. Although the root zone is confined, the plant canopy is vigorous and water use and loss from evapotranspiration (ET) can far exceed the water applied if application is based on a banded or mulch width basis. Table 11 calculates the length of time required to apply 1-inch of water with drip irrigation based on the drip tape flow rate and crop row spacing. The use of this table requires that the drip system be operated at the pressure recommended by the manufacturer.

Table 12 has been prepared to calculate the maximum recommended irrigation period for drip irrigation systems. The irrigation periods listed assume that 25% of the available water in the plant root zone is depleted. Soil texture directly influences the water-holding capacity of soils and the consequential depth reached by irrigation water.

In drip tape systems, water is carried through plastic tubing (which expands when water flows through it) and distributed along the drip tape through built-in outlets or devices called emitters. The pressure-reducing flow path also allows the emitter to remain relatively large, allowing particles that could clog an emitter to be discharged.

Although modern emitter design reduces the potential for trapping small particles, emitter clogging can be a common occurrence with drip irrigation systems. Clogging can be attributed to physical, chemical, or biological contaminants. Proper filtration is a must and occasional water treatment might be necessary.
to keep drip systems from clogging. Further information on drip irrigation systems can be obtained from manufacturers, dealers, and your local Extension office.

Chlorination. Bacteria can grow inside drip irrigation tapes, forming a slime that can clog emitters. Algae present in surface waters can also clog emitters. Bacteria and algae can be effectively controlled by chlorination of the drip system. Periodic treatment before clogs develop can keep the system functioning efficiently. The frequency of treatments depends on the quality of the water source. Generally, two or three treatments per season are adequate. Irrigation water containing high concentrations of iron (greater than 1 ppm) can also cause clogging problems due to a type of bacteria that “feeds” on iron. In consuming the dissolved (ferrous) form of iron, the bacteria secrete a slime called ochre, which may combine with other solid particles in the drip tape and plug emitters. The precipitated (ferric) form of iron, known commonly as rust, can also physically clog emitters.

In treating water containing iron, chlorine will oxidize the iron dissolved in water, causing the iron to precipitate so that it can be filtered and removed from the system. Chlorine treatment should take place upstream of filters to remove the precipitated iron and microorganisms from the system. Chlorine is available as a gas, liquid, or solid. Chlorine gas is extremely dangerous, and caution should be exercised if the method of treatment is chosen. Solid chlorine is available as granules or tablets containing 65% to 70% calcium hypochlorite but might react with other elements in irrigation water to form precipitates which could clog emitters. Liquid chlorine is available in many forms, including household bleach (sodium hypochlorite), and is the easiest and often safest form to use for injection. Stock solutions can be bought that have concentrations of 5.25%, 10%, or 15% available chlorine. Use chlorine only if the product is labeled for use in irrigation systems.

Since chlorination is most effective at pH 6.5 to 7.5, some commercial chlorination equipment also injects buffers to maintain optimum pH for effective kill of microorganisms. This type of equipment is more expensive, but more effective than simply injecting sodium hypochlorite solution.

The required rate of chlorine injection is dependent on the concentration of microorganisms present in the water source, the amount of iron in the irrigation water, and the method of treatment being used. To remove iron from irrigation water, start by injecting 1 ppm of chlorine for each 1 ppm of iron present in the water. For iron removal, chlorine should be injected continuously. Adequate mixing of the water with chlorine is essential. For this reason, be certain to mount the chlorine injector a distance that results in the presence of 1 to 2 ppm of “free” chlorine at the end of the furthest lateral will assure that the proper amount of chlorine is being injected. Free, or residual, chlorine can be tested using an inexpensive DPD (diethyl-phenylene-diamine) test kit. A swimming pool test kit can be used, but only if it measures free chlorine. Many pool test kits only measure total chlorine.

If a chlorine test kit is unavailable, one of the following schemes is suggested as a starting point:

For iron treatment:
- Inject liquid sodium hypochlorite continuously at a rate of 1 ppm for each 1 ppm of iron in irrigation water. In most cases, 3 to 5 ppm is sufficient.

For bacteria and algae treatment:
- Inject liquid sodium hypochlorite continuously at a rate of 5 to 10 ppm where the biological load is high.
- Inject 10 to 20 ppm during the last 30 minutes of each irrigation cycle where the biological load is medium.
- Inject 50 ppm during the last 30 minutes of irrigation cycles two times each month when biological load is low.
- Superchlorinate (inject at a rate of 200 to 500 ppm) once per month for the length of time required to fill the entire system with this solution and shut down the system. After 24 hours, open the laterals and flush the lines.

The injection rates for stock solutions that contain 5.25%, 10% and 15% can be calculated from the following equations:

FOR 5.25% STOCK SOLUTION:

Injection rate of chlorine, gph = [(Desired available chlorination level, ppm) x (Irrigation flow rate, gpm)] divided by 875.
FOR A 10% STOCK SOLUTION:
Injection rate of chlorine, gph = [(Desired available chlorination level, ppm) x (Irrigation flow rate, gpm)] divided by 1,667.

FOR A 15% STOCK SOLUTION:
Injection rate of chlorine, gph = [(Desired available chlorination level, ppm) x (Irrigation flow rate, gpm)] divided by 2,500.

It is important to note that chlorine will cause water pH to rise. This is critical because chlorine is most effective in acidic water. If your water pH is above 7.5 before injection, it must be acidified for chlorine injection to be effective.

- Approved backflow control valves, low pressure drains, and interlocks must be used in the injection system to prevent contamination of the water source.
- Chlorine concentrations above 30 ppm may kill plants.

IMPORTANT NOTES:
Fertilization. Before considering a fertilization program for mulched-drip irrigated crops, be sure to have the soil pH checked. If a liming material is needed to increase the soil pH, the material should be applied and incorporated into the soil as far ahead of mulching as practical. For most vegetables, adjust the soil pH to around 6.5. When using drip irrigation in combination with mulch, apply the recommended amount of preplant fertilizer and incorporate it 5 to 6 inches into the soil before laying the mulch. If equipment is available, apply the preplant fertilizer to the soil area that will be covered by the mulch. This is more efficient than a broad-cast application to the entire field.

The most efficient method of fertilizing an established mulched crop is through a drip irrigation system, which is installed during the mulching operation. Due to the very small holes or orifices in the drip tape, high quality liquid fertilizers, or water-soluble fertilizers must be used. Since phosphorous is a stable non-mobile soil nutrient and can cause clogging of the drip tape emitters, it is best to apply 100% of the crop’s phosphorous needs pre-plant. Additionally, apply 20 to 40% of the crop’s nitrogen and potassium needs pre-plant. The remainder of the crop’s nutrient needs can be applied through the drip system with a high-quality liquid fertilizer such as 8–0–8, 7–0–7, or 10–0–10. Generally, it is not necessary to add micronutrients through the drip system. Micronutrients can be best and most economically applied pre-plant or as foliar application if needed.

The amount of nutrients to apply through the drip system depends upon the plant’s growth stage. In general, smaller amounts of nutrients are needed early in the plant’s growth with peak demand occurring during fruit maturation. The frequency of nutrient application is most influenced by the soil’s nutrient holding capabilities. Clay soils with a high nutrient holding capacity could receive weekly nutrient applications through the drip system while a sandy soil with low nutrient holding capacity will respond best with a daily fertigation program. Fertigation rates are provided under crop specific recommendations later in this handbook.

MULCHES AND ROW COVERS
Mulches

Plastic mulches
Plastic mulches have been used in vegetable production for many years to control weeds, conserve moisture, improve yield and quality, and acquire several other benefits. The most widely used mulches for vegetable production are black, white-on-black, clear, and metalized polyethylene mulches. Black mulch is most widely used, especially for spring applications where both elevated soil temperatures and weed control are desired. Clear plastic mulch is used when maximum heat accumulation is desired and weed control is not as critical, as weeds will grow well under clear plastic. White-on-black plastic (with white-side of the plastic facing up) is used for late spring and summer plantings where the benefits of moisture retention and weed control are valued and heat accumulation may be detrimental. Growers often apply diluted white latex paint (1 part paint to 5 parts water) to black mulch when double cropping. Metalized mulch, commonly referred to as reflective or silver mulch, is used to combat aphids and thrips that vector viral diseases. Metalized mulch should reflect a recognizable image (that is, be mirror-like) to be most effective.

Degradable mulches
Biodegradable plastic mulches provide similar benefits of standard polyethylene mulches. They are becoming more common, but usually cost more than conventional polyethylene. This additional expense may be offset by reduced labor and disposal costs at the end of the season, as these do not need to be removed from the field for disposal. Biodegradable plastic mulches are designed to degrade in the soil by microorganisms when soil moisture and temperatures are favorable for biological activity. Biodegradable film will usually be retained on the surface of the soil rather than be blown away from the application site. In addition, all of the biodegradable film will eventually decompose, including the tucked edges buried in the soil, into carbon dioxide, water, and microbial biomass. It is recommended that biodegradable mulch be tilled into the soil at the end of the harvest or growing season. Cover crops can be planted the next day after biodegradable plastic mulch has been rototilled into the soil.

Photodegradable and oxodegradable mulches are made with conventional plastic, with additives that make the mulch break into pieces when exposed to the UV radiation in sunlight, heat, and/or oxygen, respectively. These fragments will not biodegrade in the soil, but rather will accumulate in the soil and in bodies of water, where they can enter the food chain.

For more information on biodegradable mulches, visit www.biodegradablemulch.org.

Organic mulches
Organic mulches such as straw, pine straw, compost, and coarse hay provide weed control and moisture retention, while keeping soils cooler than bare ground. One benefit of using organic mulches is that they add organic matter back to the soil when incorporated after the growing season. Using hay often introduces weed seeds into a field. Regardless of the organic mulch chosen,
a thick layer is required to adequately cover the soil and prevent weed seed from germinating and breaking through the mulch layer, which can make weed management even more difficult than if no mulch were used. When using organic mulches, supplemental nitrogen may be needed to compensate for the nitrogen that is lost to soil microbes in the process of breaking down the organic mulch (i.e., nitrogen immobilization).

Bed Formation and Drip Irrigation
Bed formation and moisture are critical to the success of growing vegetables with plastic or biodegradable mulches. Beds should be smooth, free of clods and sticks, and of uniform height. Black mulches warm the soil by conduction, so mulches must fit tightly over the soil. Tight contact between the mulch and soil will allow better transmission of heat from the sun. Raised beds allow the soil to drain and warm more quickly. Drip tape is commonly laid under the plastic mulch in the same field operation. The soil should be moist when the mulch is applied since it is difficult to add enough water to thoroughly wet the width of the bed when using drip irrigation. Steep slopes may limit row length when using drip tape; normally row lengths should not exceed 300 to 600 feet depending on the specifications of drip tape.

Fumigants and Herbicides
Follow label directions for fumigants and herbicides used with plastic mulches. Fumigants and herbicides often have a waiting period before seeds or transplants can be planted. Transplanters and seeders are available to plant through plastic or biodegradable mulch. In fields with a history of nutschde, appropriate measures must be taken in order to reduce or eliminate infestations as plastic mulches, whether conventional or biodegradable cannot control nutschde. Nutschde will compromise plastic mulch by piercing it, though it cannot penetrate paper mulch.

Fertilization and Fertigation
Prior to laying plastic mulch, soil pH should be adjusted with lime as recommended by a soil test. Soil pH cannot practically be changed once plastic mulch is established within a field. Vegetables produced on plastic mulch, but without the ability to supply nutrients through the drip irrigation system, should have all of their required fertilizer incorporated into the beds prior to applying the mulch. Broadcasting the fertilizer before bedding has been shown to be an effective method of application since the bedding process moves most of the fertilizer into the bed. Growers not able to fertilize with their irrigation system need to be careful not to overwater beds, as excessive irrigation can push soluble nutrients (i.e. nitrate, sulfate) below the plants’ effective root zone. Growers using fertigation should follow the recommendations for each specific crop. Fertigation schedules are listed for cantaloupe, cucumber, eggplant, okra, pepper, summer squash, tomato, and watermelon later in this handbook. Also, refer to the previous section for further information on fertilization.

Double cropping
Growers frequently grow two crops on black plastic mulch to get the most out of their investment. The spring crop is killed and removed, and then a second crop is planted through the mulch. The new crop should be planted into new holes and fertilizer added based on soil test results and the new crop’s nutrient requirements.

Plastic Mulch Removal and Disposal
Commercial mulch lifters are available. Plastic can be removed by hand by running a coulter down the center of the row and picking the mulch up from each side. There are many types of plastic mulch removal equipment that can be used to reduce the cost of removal. Following the list of best management practices below for plastic mulch retrieval is imperative if the plastic mulch will be recycled. Make sure a viable recycling market exists for mulch film in your region. If there is a viable market, the following BMP’s will help you prepare your material in a way that is desirable to the recycler. Even if there is not a viable recycling market, the best management practices, if implemented, have shown as much as a $125 per acre savings in some areas. Transportation logistics and costs should be considered when deciding the process to be used. Sanitary landfills may accept plastic mulch in some areas. There are a few recycling projects which accept plastic mulch. Some states allow burning of mulch with a permit.

Plastic Mulch Retrieval Best Management Practices

- **Remove all top vegetation:** Mowing down the existing crop to eliminate debris on the plastic. Reel mowers seems to remove the debris better when compared to rotary types. Plant debris is difficult to remove in the recycling process and tends to remain with the plastic causing a “forest fire smell” and moisture retention, both of which are undesirable in the recycling process.
- **Remove as much soil as possible:** Soil adds weight making transport to the landfill or recycling plant more expensive. Proper soil conditions for the timing of removal is as dry a day as possible with a few days of soil drying underneath the plastic mulch before the retrieval process.
- **Keep it dry:** Pull film on dry days and keep it under cover. Water adds weight to the shipment and is the nemesis of the shredding and prime cleaning operation. Make sure when bundling that there are no pockets of water in the folds of the plastic.
- **Roll it tight:** The bundles should be tight, solid, and no longer than 24” long. The tight bundles will allow for more plastic per load and the bundles will fit better on the conveyors inbound to the shredder. Loading the conveyor is likely to be a manual activity so 25 to 50 pounds should be the target weight of each bundle.
- **Consider thicker films:** Increasing the film thickness aids retrieval plus we can get higher plastic recovery rates in the recycling process. Use 1.5 mil or thicker plastic. Using the
appropriate width of plastic on the bed so that no more than 6” of plastic is buried on both sides of the bed reduces the soil and debris.

- **Proper retrieval equipment:** Adjustments to removal equipment might be required to optimize debris removal as well as tightness of bundles.

Row covers

Row covers are used to hasten the maturity of the crop, exclude certain insect pests, and provide a small degree of frost protection. There are two main types of row covers: vented clear or translucent polyethylene and floating row covers. Polyethylene types are supported by wire hoops placed at regular (5 to 6 ft) intervals. In addition, plastic can be placed loosely over the plants with or without wire supports. Floating row covers are porous, lightweight spunbonded materials placed loosely over the plants.

Floating covers are more applicable to the low-growing vine crops. Upright plants like tomatoes and peppers have been injured by abrasion when the floating row cover rubs against the plants or excess temperatures build-up. Erratic spring temperatures require intensive management of row covers to avoid blossom shed and other high-temperature injuries. In particular, clear plastic can greatly increase air temperatures under the cover on warm sunny days, resulting in a danger of heat injury to crop plants. Therefore, vented materials are recommended. Even with vents, clear plastic has produced heat injury, especially when the plants have filled a large portion of the air space in the tunnel. This has not been observed with the translucent materials. Usually, row covers are combined with plastic mulch.

High Tunnels

High tunnels are unheated, polyethylene-covered structures that provide a larger degree of frost protection than row covers. A properly built high tunnel with one or two layers of plastic, should afford 5-8 °F of frost protection. As with row covers, high tunnels require intensive management to ensure that they are vented properly when warm spring temperatures can cause excessive heat to build up in tunnels, resulting in damage to the crop. Tomatoes are commonly produced in high tunnels as well as a variety of leafy greens crops, due to the premium prices obtained. Row covers are often combined with the use of high tunnels and plastic mulch.

High tunnels can provide 3-4 weeks or more of season extension for spring and fall crops such as tomatoes as well as year-round production of Cole crops and lettuce. High tunnels can reduce the incidence of certain diseases and insects due to protection from rain and changes in light interception, respectively, inside the tunnel; however, traditional greenhouse pests, such as leaf mold, aphids, spider mites, and whiteflies may be more prevalent in high tunnels. In many states, high tunnels are considered a greenhouse structure for the application of pesticides, which may reduce the number of chemicals available compared to field production. Be sure to determine if the pesticides you are applying are acceptable for use in high tunnels in your state.

Extensive information regarding construction, specifics of crop production, soil management, and economics of production for many fruits, vegetable, and cut flowers grown in high tunnels can be found at https://www.sare.org/resources/high-tunnels-and-other-season-extension-techniques/.

Considerations for Using Mulch, Drip Irrigation, and Row Covers

Each grower considering mulches, drip irrigation, and/or row covers must weigh the economics involved. The long-term versus short-term opportunities must be considered.

- Does the potential increase in return justify the additional costs?
- Are the odds in favor of the grower getting the most benefit in terms of earliness and yield from the mulch, drip irrigation, and/or row covers?
- Does the market usually offer price incentives for early produce? Will harvesting early allow competition against produce from other regions?

Depending on the row spacing and bed width, polyethylene mulch can cost $350 to $700 per acre, including installation and removal. Biodegradable mulches can cost twice as much as polyethylene mulches. Additionally when using these mulches, drip irrigation must also be installed ($400 to $1,200/acre). Growers must determine costs for their situation and calculate their potential returns. For more help in determining exact costs for your operation, use the Mulch Calculator: https://ag.tennessee.edu/biodegradablemulch/ Documents/Chen-Mulch-calculate-introduction.pdf

POLLINATION

Honeybees or other pollinating insects are essential for commercial production of cucurbit vine crops and may also improve the yield and quality of fruit in beans, eggplants, peas, and peppers. In other fruiting vegetables, such as okra and some legumes, pollination does not require insect visits. Lack of adequate pollination usually results in small or misshapen fruit in addition to low yields. The size and shape of the mature fruit is related to the number of seeds produced and each seed requires one or more pollen grains for normal development. Cucumbers, squash, pumpkins, and watermelons have separate male and female flowers, white cantaloupes and other specialty melons have male and hermaphroditic (perfect or bisexual) flowers. Adequate amount of the sticky pollen of the male flowers must be transferred to the female flowers to achieve fruit set. Cucurbit flowers are usually open and attractive to bees for no more than one day. Flower opening, release of pollen, and commencement of nectar secretion normally precede bee activity. Pumpkin, squash, cantaloupe, and watermelon flowers normally open around daybreak and close by or before noon; whereas, cucumbers and melons generally remain open the entire day. Pollination must take place on the day the flowers open because pollen viability, stigmatic receptivity, and attractiveness to bees lasts only that day.

European honeybees and various native wild bees may visit the flowers of flowering vegetables. However, successful pollination requires that these insects visit male and female flowers frequently for pollen transfer to occur. Some insects present in
flowers may not contribute greatly to pollination. Honeybees and bumblebees move frequently from one flower to another and placing hives of these bees into a crop at the correct time will greatly enhance pollination. Even though bumblebees and other species of wild bees are excellent pollinators, populations of these native pollinators usually are not adequate for large acreages grown for commercial production. Colonies of wild honeybees have been decimated by Tracheal and Varroa mites, and possibly other environmental factors, and therefore cannot be counted on to aid in pollination. One of the best ways to ensure adequate pollination is to keep or rent strong colonies of honey bee from a reliable beekeeper. Another option for pollination is the bumblebee. Bumblebees are becoming a popular grower’s choice over the past decade and are being found to be effective as a pollinator alternative to honeybees. Commercial bee attractants are available but have not proven to be effective in enhancing pollination. Growers are advised to increase numbers of honeybee or bumblebee colonies and not to rely on such attractants. Suppliers of both honeybee and bumblebee colonies need ample notice prior to when the bees are needed for a given crop. Approximately 3 to 4 months advance notice is usually sufficient to meet crop pollinator needs. A written contract between the grower and beekeeper/supplier can prevent misunderstandings and, thus, ensure better pollinator service. Pollinator contracts should specify the number and strength of colonies, the rental/purchase fee, time of delivery, and distribution of bees in the field.

Honeybee activity is determined to a great extent by weather and conditions within the hive. Bees rarely fly when the temperature is below 55°F. Flights seldom intensify until the temperature reaches 70°F. Wind speed beyond 15 miles per hour seriously slows bee activity. Cool, cloudy weather and threatening storms greatly reduce bee flights. In poor weather, bees foraging at more distant locations will remain in the hive, and only those that have been foraging nearby will be active. Ideally, colonies should be protected from wind and be exposed to the sun from early morning until evening. Colony entrances facing east or southeast encourage bee flight. The hives should be off the ground and the front entrances kept free of grass and weeds. For best results, hives should be grouped together. A clean water supply should be available within a quarter mile of the hive.

The number of colonies needed for adequate pollination varies with location, attractiveness of crop, density of flowers, length of blooming period, colony strength, and competing blossoms of other plants in the area. In vine crops, recommendations are one to two colonies per acre, with the higher number for higher density plantings. Each honeybee hive or colony should contain at least 40,000 - 50,000 bees. Eight or more bee visits per female flower are required to produce marketable fruit. Bumblebees have some advantages compared to honeybees in that the former fly in cool, rainy, and windy weather and often visit flowers earlier in the morning than honeybees. Bumblebees are also active later in the day when temperatures cool and they have a larger body size than honeybees, thus requiring fewer visits to achieve good pollination and fruit set. Bumblebee hives are sold as a quad or four hives per quad. A quad is the minimum order that can be purchased from a supplier. Generally one bumblebee hive contains 200 to 250 bees and is equivalent to one honeybee hive; however, research that can specifically document this is lacking. Thus, one quad of bumblebees would provide good pollination for four acres of a cucurbit crop if the recommendation is to use 1 bumblebee hive per acre. In some instances, two hives per acre or more may be recommended (i.e. triploid watermelon). In this case, one quad would provide good pollination for two acres. Bumblebee hives should not be placed in direct sunlight so that the bees work more efficiently. No more than two bumblebee quads should be placed in one location so that pollination is more uniform in the field. The quad locations should be at least 650 to 700 feet from each other.

Insecticides applied while a crop is in bloom pose a serious hazard to bees visiting flowers. If insecticides must be applied, select a product that will give effective control of the target pest but pose the least danger to bees. Apply these chemicals near evening when the bees are not actively foraging and avoid spraying adjacent crops while bees are active. If insecticide spraying is necessary, give the beekeeper 48 hours of notice of when you expect to spray so that precautions can be taken. Avoid leaving puddles of water around chemical mixing areas as bees may pick up and be harmed by insecticide contaminated water. As with honeybees, one must carefully plan when to spray insecticides so that the bumblebees are not injured or killed. Because bumblebees are most active from dawn until late morning, and again from about 4 PM until sunset, the hives need to be closed around 11 AM so that the bumblebees remain in the hive and are protected during a late evening spray application.

HOW TO IMPROVE PEST CONTROL

Failure to control an insect, mite, disease, or weed pest is often erroneously blamed on the pesticide when the cause frequently lies elsewhere. Several common reasons for failure to achieve control are the following:

1. Delaying applications until pest populations become too large or damage is too advanced.
2. Poor coverage caused by insufficient volume, inadequate pressure, or clogged or poorly arranged nozzles.
3. Selecting the wrong pesticide for the target pests.
4. Contaminated or high pH water source.

SUGGESTED STEPS FOR MORE EFFECTIVE PEST CONTROL:

1. Scout fields regularly. Know the pest situation and any buildup in your fields. Frequent examinations (at least once or twice per week) help determine the proper timing of the next pesticide application. Do not apply a pesticide simply because a neighbor chooses to do so.
2. Integrated Pest Management (IPM). Use an ongoing program of biological, physical, cultural, and chemical methods in an integrated approach to manage pests. IPM involves scouts visiting fields to collect pest population data. Use this updated information to decide whether insecticide applications or other management actions are needed to avoid economic loss from pest damage. Control decisions are based on factors such as:
• The economic action threshold level (when the cost of control equals or exceeds potential crop losses attributed to real or potential damage)

• Other factors are listed in the Recommended Control Guidelines section that follows

To employ an IPM program successfully, basic practices need to be followed. Whether participating in a university- or grower-supported IPM program, hiring a private consultant, or doing the work personally, the grower still practices:

• frequent and regular examination of fields to assess pest populations
• applying a control measure only when the economic threshold level has been reached
• where possible, employing a cultural practice or a biological control or using a pesticide that is less harmful to natural enemies of the target pest

Resistance management. The way pesticides are used affects the development of resistance. Resistance develops because intensive pesticide use kills the susceptible individuals in a population, leaving only resistant ones to breed. Adopting the following practices will reduce the development of pest resistance:

1. Rotate crops to a nonhost crop, thus reducing the need for pesticide treatment and, thereby reducing the ratio of resistant to susceptible individuals in the breeding population.

2. Use control guidelines as an important tactic for reducing the pesticide resistance problem. For more information concerning control guidelines, refer to the following section and the crop-specific sections of this handbook.

3. Spot treat when possible. Early-season insects are often concentrated in areas near their overwintering sites. Diseases often can be first detected in favorable microclimates, such as low or wet areas of the field. Perennial weeds and newly introduced or herbicide-resistant annual weeds often occur first in small numbers in a part of a field. Treating these areas, rather than the entire field, can prevent the development of resistant populations.

4. Control pests early, because seedling weeds and immature insects are more susceptible to pesticides and less likely to develop resistance compared to older and more mature crop pests.

5. Do not overspray. Attempts to destroy every pest in the field by multiple applications or by using higher than labeled rates often eliminate the susceptible pests but not the resistant pests.

6. Rotate pesticides to reduce the development of resistance, particularly with pesticides that differ in their mechanism of action. Rotation among different chemical groups is an excellent method of reducing resistance problems.

7. Use appropriate additives when recommended on the pesticide’s label. For example, adding a crop oil concentrate or a surfactant to certain postemergence herbicides will increase the effectiveness of the herbicides.

Control Pests According to Recommended Control Guidelines or Schedule. Control guidelines provide a way to decide whether pesticide applications or other management actions are needed to avoid economic loss from pest damage. Guidelines for pests are generally expressed as a count of a given insect stage or as a crop damage level based on certain sampling techniques. They are intended to reflect the pest population that will cause economic damage and thus would warrant the cost of treatment. Guidelines are usually based on pest populations, field history, stage of crop’s development, variety, weather conditions, life stage of the pest, parasite, and/or predator populations, resistance to chemicals, time of year, and other factors. Specific thresholds are given in this handbook for a number of pests of many crops.

Insect population sampling techniques include:

• Visual observation. Direct counts of any insect stages (eggs, larvae, adults, etc.) are accomplished by examining plants or plant parts (leaves, stems, flowers, fruits). Counts can be taken on single plants or a prescribed length of row, which will vary with the crop. Usually, quick moving insects are counted first, followed by those that are less mobile.

• Shake cloth (also known as a ground cloth). This sampling procedure consists of using a standard 3-foot by 3-foot shake cloth to assess insect populations. Randomly choose a site without disturbing the plants and carefully unroll the shake cloth between two rows. Bend the plants over the cloth one row at a time and beat the plants vigorously to dislodge insects held on stems, leaves, and branches. Count only insects that have landed on the shake cloth. The number of sampling sites per field will vary with the crop.

• Sweep net. This sampling procedure uses a standard 15-inch diameter sweep net to assess insect populations. While walking along one row, swing the net from side to side with a pendulum-like motion to face the direction of movement. The net should be rotated 180 degrees after each sweep and swung through the foliage. Each pass of the net is counted as one sweep. The number of sweeps per field will vary with the crop.

Weed population sampling techniques include:

• Weed identification. This first step is frequently skipped. Perennial weeds and certain serious annual weeds should be controlled before they can spread. Common annual weeds need only be controlled if they represent a threat to yield, quality, or harvestability. It is critical to know the weed history of a field prior to planting as many herbicides need to be applied pre-plant. Your county Extension office is an excellent resource for reliable weed identification.

• Growth stage determination. The ability of weeds to compete with the crop is related to size of the weed and size of the crop. Control of the weed using herbicides or mechanical methods is also dependant on weed size. A decision to control or not to control a weed must be carried out before the crop is affected and before the weed is too large to be controlled.
• Weed population. Weeds interfere with crop production in many ways. They may compete for light, water, nutrients, and space. The extent of this interference is dependant on population and is usually expressed as weeds per foot of row or weeds per square meter. Control measures are needed when the weed population exceeds the maximum tolerable population of that species.

Disease monitoring involves determining the growth stage of the crop, observing disease symptoms on plants, and/or the daily weather conditions in the field.

Disease control is often obtained by applying crop protectants on a regular schedule. For many diseases, application must begin at a certain growth stage and must be repeated every 7 to 10 days. When environmental conditions are favorable for disease development, delaying a spray program will result in a lack of control if the disease has progressed too far. For certain diseases that do not spread rapidly, fields should be scouted regularly.

Predictive systems are available for a few diseases. Temperature, rainfall, relative humidity, and duration of leaf wetness period are monitored, and the timing of fungicide application is determined by predicting when disease development is most likely to occur. One such program for Downy Mildew is available at: http://icdm.lpmipe.org/

Weather Conditions. These are important to consider before applying a pesticide. Spray only when wind velocity is less than 10 miles per hour. Do not spray when sensitive plants are wilted during the heat of the day. If possible, make applications when ideal weather conditions prevail.

Certain pesticides, including biological insecticides (e.g. BT’s) and some herbicides, are ineffective in cool weather. Others do not perform well or may cause crop injury when hot or humid conditions are prevalent. Optimum results can frequently be achieved when the air temperature is in the 70°F range during application.

Strive for Adequate Coverage of Plants.

Improved control of aphids can be achieved by adding and arranging nozzles so that the application is directed toward the plants from the sides as well as from the tops (also see Alkaline Water and Pesticides, which follows). In some cases, nozzles should be arranged so that the application is directed beneath the leaves. As the season progresses, plant size increases, as does the need for increased spray gallonage to ensure adequate coverage.

Applying insecticide and fungicide sprays with sufficient spray volume and pressure is important. Spray volumes should increase as the crop’s surface area increases. Sprays from high-volume-high-pressure rigs (airblast) should be applied at rates of 40 to 200 gallons per acre at 200 psi or greater. Sprays from low-volume-low-pressure rigs (boom type) should be applied at rates of 50 to 100 gallons per acre at 20 psi. The addition of a spreader-sticker improves coverage and control when wettable powders are applied to smooth-leaved plants, such as cole crops and onions.

Use a dedicated sprayer for herbicides and a different sprayer for fungicides and insecticides. Herbicide sprays should be applied at between 15 and 50 gallons of spray solution per acre using low pressure (20 to 40 psi). Never apply herbicides with a high-pressure sprayer that was designed for insecticide or fungicide application because excessive drift can result in damage to nontarget plants in adjacent fields and areas. Do not add oil concentrates, surfactants, spreader-stickers, or any other additive unless specified on the label, or crop injury is likely.

Select the Proper Pesticide. Know the pests to be controlled and choose the recommended pesticide and rate of application. When in doubt, consult your local Extension office. The herbicide choice should be based on weed species or cropping systems.

For insects that are extremely difficult to control or are resistant, it is essential to alternate labeled insecticides, especially with different classes of insecticides. Be alert for a possible aphid or mite buildup following the application of certain insecticides.

Caution: Proper application of soil systemic insecticides is extremely important. The insecticide should be placed according to the label instructions (which, in general, indicate application should be directed away from the seed) or crop injury may occur.

Be sure to properly identify the disease(s). Many fungicides control specific diseases but provide no control of others. For this reason, on several crops, fungicide combinations are recommended.

Pesticide Compatibility. To determine if two pesticides are compatible, use the following “jar test” before you tank-mix pesticides or tank-mix pesticides with liquid fertilizers:

1. Add 1 pint of water or fertilizer solution to a clean quart jar, then add the pesticides to the water or fertilizer solution in the same proportion as used in the field.

2. To a second clean quart jar, add 1 pint of water or fertilizer solution. Then add 1/2 teaspoon of an adjuvant to keep the mixture emulsified. Finally, add the pesticides to the water-adjuvant or fertilizer adjuvant in the same proportion as used in the field.

3. Close both jars tightly and mix thoroughly by inverting 10 times. Inspect the mixtures immediately and after standing for 30 minutes. If a uniform mix cannot be made, the mixture should not be used. If the mix in either jar remains uniform for 30 minutes, the combination can be used. If the mixture with adjuvant stays mixed and the mixture without adjuvant does not, use the adjuvant in the spray tank. If either mixture separates but readily remixes, constant agitation is required.

If nondispersible oil, sludge, or clumps of solids form, do not use the mixture.

Note: For compatibility testing, the pesticide can be added directly or premixed in water first. In actual tank-mixing for field application, unless label directions specify otherwise, add pesticides to the water in the tank in this order: first, wettable gran-
ules or powders, then flowables, emulsifiable concentrates, water solubles, and companion surfactants. If tank-mixed adjuvants are used, these should be added first to the fluid carrier in the tank. Thoroughly mix each product before adding the next product.

Select Correct Sprayer Tips. The choice of a sprayer tip for use with many pesticides is important. Flat fan-spray tips are designed for preemergence and postemergence application of herbicides. These nozzles produce a tapered-edge spray pattern that overlaps for uniform coverage when properly mounted on a boom. Standard flat fan-spray tips are designed to operate at low pressures (20-40 psi) to produce small-to medium-sized droplets that do not have excessive drift. Flat fan-nozzle tips are available in brass, plastic, ceramic, stainless steel, and hardened stainless steel. Brass nozzles are inexpensive and are satisfactory for spraying liquid pesticide formulations. Brass nozzles are least durable, and hardened stainless steel nozzles are most durable and are recommended for wettable powder formulations, which are more abrasive than liquid formulations. When using any wettable powder, it is essential to calibrate the sprayer frequently because, as a nozzle wears, the volume of spray material delivered through the nozzle increases.

Flood-type nozzle tips are generally used for complete fertilizers, liquid N, etc., and sometimes for spraying herbicides onto the soil surface prior to incorporation. They are less suitable for spraying postemergence herbicides or for applying fungicides or insecticides to plant foliage. Coverage of the target is often less uniform and complete when flood-type nozzles are used, compared with the coverage obtained with other types of nozzles. Results with postemergence herbicides applied with flood-type nozzles may be satisfactory if certain steps are taken to improve target coverage. Space flood-type nozzles a maximum of 20 inches apart, rather than the suggested 40-inch spacing. This will result in an overlapping spray pattern. Spray at the maximum pressure recommended for the nozzle. These techniques will improve target coverage with flood-type nozzles and result in more satisfactory weed control.

Full and hollow-cone nozzles deliver circular spray patterns and are used for application of insecticides and fungicides to crops where thorough coverage of the leaf surfaces is extremely important and where spray drift will not cause a problem. They are used when higher water volumes and spray pressures are recommended. With cone nozzles, the disk size and the number of holes in the whirl plate affect the output rate. Various combinations of disks and whirl plates can be used to achieve the desired spray coverage.

Alkaline Water and Pesticides. At times applicators have commented that a particular pesticide has given unsatisfactory results. Usually, these results can be attributed to poor application, a bad batch of chemical, pest resistance, weather conditions, etc. However, another possible reason for unsatisfactory results from a pesticide may be the pH of the mixing water.

Some materials carry a label cautioning the user against mixing the pesticide with alkaline materials. The reason for this caution is that some materials (in particular the organophosphate insecticides) undergo a chemical reaction know as “alkaline hydrolysis.” This reaction occurs when the pesticide is mixed with alkaline water; that is, water with a pH greater than 7. The more alkaline the water, the greater the breakdown (i.e., “hydrolysis”).

In addition to lime sulfur, several other materials provide alkaline conditions: caustic soda, caustic potash, soda ash, magnesia or dolomitic limestone, and liquid ammonia. Water sources in agricultural areas can vary in pH from less than 3 to greater than 10.

To check the pH of your water, purchase a pH meter or in most states you can submit a water sample to your state’s soil or water testing lab. If you have a problem with alkaline pH, there are several products available that are called nutrient buffers that will lower the pH of your water.

There are some instances when materials should not be acidified, namely, sprays containing fixed copper fungicides, including: Bordeaux mixture, copper oxide, basic copper sulfate, copper hydroxide, etc.

BENEFICIAL INSECTS

A number of environmental factors, such as weather, food availability, and natural enemies combine to keep insect populations under control naturally. In some human-altered landscapes, such as in agricultural crop fields, the levels of natural control are often not acceptable to us, and we have to intervene in order to lower pest populations. While some environmental factors, such as weather, cannot be altered to enhance control of pests, others such as populations of natural enemies, can be effected. The practice of taking advantage of and manipulating natural enemies in order to suppress pest populations is called biological control.

Approaches To Biological Control. There are three general approaches to biological control: importation, augmentation, and conservation of natural enemies. Each of these techniques can be used either alone or in combination in a biological control program.

Importation: Importation of natural enemies, sometimes referred to as classical biological control, is used when a pest of exotic origin is the target of the biocontrol program. Pests are constantly being imported into countries where they are not native, either accidentally, or in some cases, intentionally. Many of these introductions do not result in establishment or if they do, the organism may not become a pest. However, it is possible for some of these introduced organisms to become pests due to a lack of natural enemies to suppress their populations. In these cases, importation of natural enemies can be highly effective.

Once the country of origin of the pest is determined, exploration in the native region can be conducted to search for promising natural enemies. If such enemies are identified, they may be evaluated for potential impact on the pest organism in the native country or alternatively imported into the new country for further study. Natural enemies are imported into the U.S. only under permit from the U.S. Department of Agriculture. They must first be placed in quarantine for one or more generations to be sure that no undesirable species are accidentally imported (diseases, hyperparasitoids, etc.). Additional permits are required for interstate shipment and field release.
Augmentation: Augmentation is the direct manipulation of natural enemies to increase their effectiveness. This can be accomplished by one of two general methods or a combination of these methods: mass production and/or periodic colonization of natural enemies. The most commonly used of these approaches is the first, in which natural enemies are produced in insectaries, then released either inoculatively or inundatively. For example, in areas where a particular natural enemy cannot overwinter, an inoculative release each spring may allow the population to establish and adequately control a pest. Inundative releases involve the release of large numbers of a natural enemy such that their population completely overwhelms the pest.

Augmentation is used where populations of a natural enemy are not present or cannot respond quickly enough to the pest population. Therefore, augmentation usually does not provide permanent suppression of pests, as may occur with importation or conservation methods. An example of the inoculative release method is the use of the parasitoid wasp, Encarsia formosa Gahan, to suppress populations of the greenhouse whitefly, Trialeurodes vaporariorum (Westwood). The greenhouse whitefly is a ubiquitous pest of vegetable and floriculture crops that is notoriously difficult to manage, even with pesticides. Releases of relatively low densities (typically 0.25 to 2 per plant, depending on the crop) of Encarsia immediately after the first whiteflies have been detected on yellow sticky cards can effectively prevent populations from developing to damaging levels. However, releases should be made within the context of an integrated crop management program that takes into account the low tolerance of the parasitoids to pesticides. It is important to bear in mind that Encarsia can provide effective control of greenhouse whitefly, but not sweetpotato whitefly. Therefore, it is critical to identify which whitefly is present before releasing Encarsia. Another parasitoid, Eretmocerus californicus has shown promise against sweetpotato whitefly.

Because most augmentation involves mass-production and periodic colonization of natural enemies, this type of biological control has lent itself to commercial development. There are hundreds of biological control products available commercially for dozens of pest invertebrates (insects, spidermites, etc.), vertebrates (deer, rodents, etc.), weeds, and plant pathogens. A summary of these products and their target pests is presented in Table 13. The efficacy of these predators and parasites is dependent on many factors. Management of the target pest is more likely than 100% control. It is critical to familiarize yourself with proper usage of these predators and parasites otherwise you may not achieve satisfactory results and obtain inconsistent results. Selection of products and suppliers should be done with care, as with purchasing any product. Review publications for guidelines on how to purchase and utilize natural enemies.

Conservation: The most common form of biological control is conservation of natural enemies which already exist in a cropping situation. Conservation involves identifying the factor(s) which may limit the effectiveness of a particular natural enemy and modifying these factor(s) to increase the effectiveness of natural enemies. In general, this involves either reducing factors which interfere with natural enemies or providing resources that natural enemies need in their environment. The most common factor that interferes with natural enemy effectiveness is the application of pesticides. Some cultural practices such as tillage or burning of crop debris can also kill natural enemies or make the crop habitat unsuitable. In some crops, accumulation of dust

<table>
<thead>
<tr>
<th>TABLE 13. PREDATORS AND PARASITES OF VEGETABLE PESTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predators and Parasites</td>
</tr>
<tr>
<td>WASPS</td>
</tr>
<tr>
<td>Aphelidid Wasps *</td>
</tr>
<tr>
<td>Aphidiid Wasps *</td>
</tr>
<tr>
<td>Braconid Wasps *</td>
</tr>
<tr>
<td>Chlorid Wasps *</td>
</tr>
<tr>
<td>Cotesia Wasps (Braconid Family) *</td>
</tr>
<tr>
<td>Encarsia formosa *</td>
</tr>
<tr>
<td>Encyrtid Wasps</td>
</tr>
<tr>
<td>Eulophid Wasps</td>
</tr>
<tr>
<td>Ichneumonid Wasps *</td>
</tr>
<tr>
<td>Mymarid Egg Wasps</td>
</tr>
<tr>
<td>Pteromalid Wasps</td>
</tr>
<tr>
<td>Scelionid Egg Wasps</td>
</tr>
<tr>
<td>Tiphid Wasps</td>
</tr>
<tr>
<td>Trichogramma Wasps *</td>
</tr>
<tr>
<td>Thripobius semileucus (Eulophidae Family)*</td>
</tr>
<tr>
<td>Vespid Wasps (hornets, yellowjackets, etc.)*</td>
</tr>
</tbody>
</table>

* Insects marked with an asterisk represents species that are available commercially for purchase.
For a list of Biological Control (Beneficial Insects) Suppliers, see http://wiki.bugwood.org/Commercially_available Biological Controls
deposits on leaves from repeated tillage or a location near roadways may kill small predators and parasites and cause increases in certain insect and mite pests. In some cases, the chemical and physical defenses that plants use to protect themselves from pests may reduce the effectiveness of biological control.

An example of how conservation can work involves the diamondback moth, *Plutella xylostella* (L.). This insect has developed into the most important pest of crucifers in recent years due to the pest’s development of resistance to most pesticides. Two parasitoids, the Ichneumonid wasp *Diadegma insulare* (Cresson) and the braconid wasp *Cotesia plutellae* (Kurdjumov), can help reduce diamondback moth populations if excessive pesticide applications are avoided, especially with reductions in the use of pyrethroids. BT products can work well to suit this purpose. Therefore, by simply being selective in the type of pesticide used, and by spraying only when threshold levels are reached, free control can be provided by natural enemies already present in the field.

TABLE 13. PREDATORS AND PARASITES OF VEGETABLE PESTS (cont’d)

<table>
<thead>
<tr>
<th>Predators and Parasites</th>
<th>Approx. # North American Species</th>
<th>Pest(s) Controlled or Impacted</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aphid Flies (Chamaemyiid Flies)</td>
<td>36</td>
<td>Feed on aphids, mealybugs, and soft scales.</td>
</tr>
<tr>
<td>Bombyllid Flies (Bee Flies)</td>
<td>250</td>
<td>Internal and external parasites of various caterpillars and wasp larvae, beetle larvae, some eggs.</td>
</tr>
<tr>
<td>Nemestrinid Flies (Tangle Veined Flies)</td>
<td>250</td>
<td>Internal parasites of locusts and beetle larvae and pupae.</td>
</tr>
<tr>
<td>Phorid Flies (Humpbacked Flies)</td>
<td>350</td>
<td>Internal parasites of ants, bees, caterpillars, moth pupae, and fly larvae.</td>
</tr>
<tr>
<td>Pipunculid Flies (Big-Headed Flies)</td>
<td>100</td>
<td>Internal parasites of leafhoppers and planthoppers.</td>
</tr>
<tr>
<td>Predatory Midges (CecidomyiId Flies)*</td>
<td>10</td>
<td>Aphids and mites on some greenhouse crops.</td>
</tr>
<tr>
<td>Pyrogotidae (Pyrogotid Flies)</td>
<td>5</td>
<td>Internal parasites of June beetles and related Scarab beetles; nocturnal and rarely seen.</td>
</tr>
<tr>
<td>Syrphid Flies</td>
<td>1,000</td>
<td>Most larvae are predaceous upon aphids, whitefly pupae, and soft-bodied small insects.</td>
</tr>
<tr>
<td>Tachinid Flies</td>
<td>1,300</td>
<td>Most larvae are predaceous upon aphids, whitefly pupae, and soft-bodied small insects.</td>
</tr>
<tr>
<td>TRUE BUGS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assassin Bugs (Reduviidae)</td>
<td>160</td>
<td>Generalist predators against small and soft-bodied insects, eggs, and pupae.</td>
</tr>
<tr>
<td>Big-Eyed Bug, Geocoris spp.</td>
<td>25</td>
<td>Generalist predators feeding on a wide variety of insect eggs and small larvae. Both immature and adults are predaceous and feed on over 60 species of other insects.</td>
</tr>
<tr>
<td>Damsel Bugs (Nabidae)</td>
<td>34</td>
<td>Mites, aphids, caterpillars, leafhoppers, and other insects, especially soft-bodied insects.</td>
</tr>
<tr>
<td>Minute Pirate Bug, Oritus insidiosa (aka Flower Bug)*</td>
<td>1</td>
<td>Thrips, spider mites, aphids, small caterpillars small insects in sweet corn, potato, and on some greenhouse crops.</td>
</tr>
<tr>
<td>Predatory Stink Bug (Perillus, Podisus spp.)</td>
<td>14</td>
<td>Look similar to plant feeding Stink bugs, but feed on caterpillar pests, small insects and insect eggs, and Colorado Potato beetle (larvae). Effective in solanaceous crops, beans, cole crops and asparagus.</td>
</tr>
<tr>
<td>Spined Soldier Bug, Podisus maculiventris*</td>
<td>1</td>
<td>Generalist predator on many vegetables (i.e. potato, tomato, sweet corn, cole crops, beans, eggplant, cucurbits, asparagus, onions). Attacks larvae of European Corn borer, Diamondback moth, Corn Earworm, Beet Armyworm, Fall Armyworm, Colorado Potato beetle, Cabbage Looper, Imported Cabbageworm, and Mexican Bean beetle. A pheromone to attract Spined Soldier Bug is also available.</td>
</tr>
<tr>
<td>BEETLES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground Beetles (Carabid Beetles)</td>
<td>2,200</td>
<td>Both larvae and adults predaceous, nocturnal. Feed on mites and snails, soil dwelling beetle and fly eggs and pupae, some caterpillars, and other soft bodied insects. Most beneficial in cole crops, root crops, and onions.</td>
</tr>
<tr>
<td>Lady Beetles (Coccenelidae)*</td>
<td>400</td>
<td>Aphids, mites, whitefly, small insects, and insect eggs in most vegetable crops (especially potatos, tomatoes, sweet corn and cole crops. Release purchased lady beeties in evening, in vicinity of pest, and cover with a light sheet or cloth overnight for best predator retention.</td>
</tr>
<tr>
<td>Rove Beetles (Staphylinidae)</td>
<td>3,100</td>
<td>Distinguished by short outer wings and exposed abdomens, Rove beetles feed on a variety of eggs, pupae, larvae, and soft bodied insects (aphids, mites, whitefly).</td>
</tr>
<tr>
<td>Soft-Winged Flower Beetles (Melyridae)</td>
<td>450</td>
<td>Adults and larvae feed on aphids, leafhoppers, and other immature insects. Covered in fine hairs that give the insect a velvety appearance.</td>
</tr>
<tr>
<td>Soldier Beetles (Cantharididae, aka Leather-Winged Beetles)</td>
<td>100</td>
<td>All larvae, and some adults, are predaceous. Other adults feed on nectar and pollen, so can be attracted by flower plantings. Predators of eggs and larvae of beetles, butterflies, moths, aphids, others. Most effective in cole crops, cucurbits, and sweet corn.</td>
</tr>
<tr>
<td>Tiger Beetles (Clindicelid Beetles)</td>
<td>40</td>
<td>Adults and larvae prey on a wide variety of insects.</td>
</tr>
<tr>
<td>OTHER BENEFICIAL ORGANISMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Praying Mantis *</td>
<td></td>
<td>Flies, crickets, bees, moths. All life stages are predatory. Commercially available mantis are usually Tenodera aridifolia, a Chinese species.</td>
</tr>
<tr>
<td>Lacewings*</td>
<td>27</td>
<td>Aphids, thrips, small caterpillars, leafhoppers, mealybugs, psyllids, whiteflies, and insect eggs. Release purchased lacewings as soon as target pest is noticed in field to achieve good results.</td>
</tr>
<tr>
<td>Parasitic nematodes*</td>
<td></td>
<td>Cutworms, beetle larvae, root maggots.</td>
</tr>
<tr>
<td>Predatory mites (Phytoseiidae & 3 other families)*</td>
<td>6</td>
<td>Releases most beneficial in strawberries and greenhouse vegetables; avoid carbamates and organophosphates to encourage natural populations in field. Primarily effective against spider mites and thrips.</td>
</tr>
</tbody>
</table>

* Insects marked with an asterisk represents species that are available commercially for purchase.

For a list of Biological Control (Beneficial Insects) Suppliers, see http://wiki.bugwood.org/Commercially_available_biological_controls
Incorporating Biological Control Into A Pest Management Program: Biological control can be an effective, environmentally sound method of managing pests. However, when trying to make the best use of natural enemies in your crop, it may be helpful to consider the following suggestions.

First, make sure you have your pest(s) accurately identified. Extension can help with this. Consulting your local Extension office is a good practice regardless of which pest control method you use.

TABLE 13 A. RELATIVE IMPACT OF INSECTICIDES & MITICIDES ON KEY NATURAL ENEMY GROUPS

<table>
<thead>
<tr>
<th>IRAC Group</th>
<th>Common Name</th>
<th>Example Product</th>
<th>Predaceous Mites</th>
<th>Lepidopteran Parasitoids</th>
<th>Aphid Parasitoids</th>
<th>Coccinellids</th>
<th>Lacewings</th>
<th>Predatory Bugs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>carbaryl</td>
<td>Sevin</td>
<td>M</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td>methomyl</td>
<td>Lannate</td>
<td>M</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td>oxamyl</td>
<td>Vydate</td>
<td>M</td>
<td>H</td>
<td>H</td>
<td>M</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>1B</td>
<td>diazinon</td>
<td>-</td>
<td>M</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>M</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td>dimethoate</td>
<td>-</td>
<td>M</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td>malathion</td>
<td>-</td>
<td>M</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>3A</td>
<td>bifenthrin</td>
<td>Brigade</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td>cyfluthrin</td>
<td>Baythroid</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td>fenpropathrin</td>
<td>Danitol</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td>permethrin</td>
<td>Pounce</td>
<td>L</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td>ζ-cypermethrin</td>
<td>Mustang Max</td>
<td>H</td>
<td>M</td>
<td>M</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td>λ-cyhalothrin</td>
<td>Karate</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>4A</td>
<td>acetamiprid</td>
<td>Assail</td>
<td>M</td>
<td>H</td>
<td>H</td>
<td>M</td>
<td>H</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>clothianidin</td>
<td>Belay</td>
<td>M</td>
<td>H</td>
<td>H</td>
<td>M</td>
<td>H</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>dinotefuran</td>
<td>Venom</td>
<td>M</td>
<td>M/H</td>
<td>M/H</td>
<td>M/H</td>
<td>M/H</td>
<td>M/H</td>
</tr>
<tr>
<td></td>
<td>imidacloprid</td>
<td>Admire</td>
<td>M</td>
<td>H</td>
<td>H</td>
<td>M</td>
<td>M/H</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td>thiamethoxam</td>
<td>Actara/Platinum</td>
<td>L</td>
<td>M</td>
<td>L</td>
<td>M</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>4C</td>
<td>sulfoxaflor</td>
<td>Closer</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>L</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>4D</td>
<td>fluopyradifurone</td>
<td>Sivanto</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>5</td>
<td>spinosad</td>
<td>Entrust</td>
<td>L/M</td>
<td>L/M</td>
<td>L/M</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>spinetoram</td>
<td>Radiant</td>
<td>M</td>
<td>M/H</td>
<td>L</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>6</td>
<td>abamectin</td>
<td>Agri-Mek</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>M</td>
<td>L</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td>emamectin benzoate</td>
<td>Proclaim</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>7C</td>
<td>pyriproxyfen</td>
<td>Knack</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>9B</td>
<td>pymetrozine</td>
<td>Fulfill</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>10</td>
<td>etoxazole</td>
<td>Zeal</td>
<td>M</td>
<td>L</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>11</td>
<td>Bt</td>
<td>various</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>15</td>
<td>novaluron</td>
<td>Rimon</td>
<td>M</td>
<td>L</td>
<td>M</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>16</td>
<td>buprofezin</td>
<td>Courier</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>M</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>17</td>
<td>cyromazine</td>
<td>Trigard</td>
<td>M</td>
<td>L</td>
<td>L</td>
<td>M</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>18</td>
<td>methoxyfenozide</td>
<td>Intrepid</td>
<td>L</td>
<td>L</td>
<td>M</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>20B</td>
<td>acequinocyl</td>
<td>Kanemite</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>M</td>
</tr>
<tr>
<td>20D</td>
<td>bifenazate</td>
<td>Acramide</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>L</td>
<td>M</td>
<td>L</td>
</tr>
<tr>
<td>21A</td>
<td>fenpyroximate</td>
<td>Portal</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>M</td>
<td>M</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>tolfenpyrad</td>
<td>Torac</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22A</td>
<td>indoxacarb</td>
<td>Avaunt</td>
<td>L</td>
<td>M</td>
<td>L</td>
<td>M</td>
<td>L</td>
<td>M</td>
</tr>
<tr>
<td>23</td>
<td>spiromesifen</td>
<td>Oberon</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>spirotetramat</td>
<td>Movento</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>cyflumetron</td>
<td>Nealta</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>28</td>
<td>chlorantraniliprole</td>
<td>Coragen</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td>cyantraniliprole</td>
<td>Vermark/Exirel</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>29</td>
<td>flonicamid</td>
<td>Beleaf</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>UN</td>
<td>azadirachtin</td>
<td>NeeMix</td>
<td>L</td>
<td>M</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>sulfur</td>
<td>various</td>
<td></td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>insecticidal soap</td>
<td>various</td>
<td>M</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kaolin</td>
<td>various</td>
<td>M</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>spray oils</td>
<td>various</td>
<td>M</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key: L = Low impact, M = Medium impact, H = High impact, Blank space = no data currently available

Sources: Washington State University, University of California, North Carolina State University, Pest Management Science, Intech, Journal of Entomology and Zoology Studies, Journal of Economic Entomology, and Biocontrol Science and Technology
Second, determine if natural enemy releases are appropriate for your specific situation. Sometimes knowledge of crop and cultural practices that encourage naturally-occurring biological control agents can allow you to maximize the control they provide. By conserving these natural enemies, pesticide use (and therefore expense) can be minimized.

Usually, released natural enemies work best as a preventative pest management method. That is, if they are introduced into your crop at the beginning of a pest infestation, they can prevent that population from developing to damaging levels. If you wait until pests have become a problem before releasing natural enemies, the use of natural enemies usually will not work. Therefore, pest problems must be anticipated and planned for by carefully monitoring pest population development. Effective trapping, monitoring, and field scouting should be used to determine when pests appear, and to determine the timing of natural enemy releases.

If you decide to use commercially available biological control agents, you should choose your product and supplier carefully. Once you have received your natural enemies, handle them with care, following all instructions provided by your supplier. The number or rate of natural enemies to release can be determined through consultation with a reliable supplier, as can the timing of application. Because natural enemies are living organisms, adverse conditions (e.g. stormy weather, pesticide residues) can kill them or reduce their effectiveness. Because the actions of natural enemies are not as obvious as those of pesticides, it may be important to work with your supplier to develop a procedure to evaluate the effectiveness of your releases.

Further details of the above suggestions are provided in Table 13. Remember, just because an organism is sold as a “natural” or “biological” control does not mean it will work as you expect. For example, praying mantids are general “ambush” predators that will eat anything small enough (usually mobile insects) that pass in front of them. They do not specifically attack pests that growers are usually interested in removing. Another example is ladybeetle adults that have been “pre-conditioned.” These ladybeetles will just as readily leave the area that you have treated as ladybeetles that have been collected and not pre-conditioned.

This does not mean that biological control will not work for your situation. There are a number of products and approaches that can provide very satisfactory results.

Finally, if insecticides are necessary to control a pest, choose a product that is least harmful to the beneficial(s) you are trying to preserve. Listed in Table 13A is the relative safety of different pesticides to key groups of beneficial organisms in most important in vegetable systems.

For the most current information about suppliers of organisms and related products, the purchase of natural enemies, and how to effectively use them, consult with Extension.

DIAGNOSING VEGETABLE CROP PROBLEMS

When visiting a vegetable field, follow the steps outlined below to help solve any potential problems. All vegetable problems, such as poor growth, leaf blemishes, wilts, rots, and other problems should be promptly diagnosed. This is necessary for the grower to implement prompt and effective corrective measures or to help reduce the probability of its reoccurrence in following crops or its spread to susceptible neighboring crops.

1. Describe the problem.

2. Determine whether there is a pattern of symptomatic plants in the field.
 - a. Does the pattern correlate with a certain area in the field, such as a low spot, poor-drainage area, or sheltered area?
 - b. Does the pattern correlate with concurrent field operations, such as certain rows, time of planting, method of fertilization, or rate of fertilization?

3. Try to trace the history of the problem.
 - a. On what date were the symptoms first noticed?
 - b. Which fertilizer and liming practices were used?
 - c. Which pest-management practices were used to manage diseases, undesirable insects, and weeds — which chemicals (if any), were applied, at what application rates, and what was the previous use of equipment that was used for application?
 - d. What were the temperatures, soil moisture conditions, and level of sunlight?
 - e. What was the source of seed or planting stock?
 - f. Which crops were grown in the same area during the past 3 or 4 years?

4. Examine affected plants to determine whether the problem is related to insects, diseases, or cultural practices.
 - a. Do the symptoms point to insect problems? Insect problems are usually restricted to the crop. (A hand lens is usually essential to determine this.)
 (1) Look for the presence of insects, webbing, and frass on foliage, stems, and roots.
 (2) Look for feeding signs such as chewing, sucking, or boring injuries.
 - b. Do the symptoms suggest disease problems? These symptoms are usually not uniform; rather, they are specific for certain crops.
 (1) Look for necrotic (dead) areas on the roots, stems, leaves, flowers, and fruit.
 (2) Look for discoloration of the vascular tissue (plant veins).
 (3) Look for fungal growth.
 (4) Look for virus patterns; often these are similar to injury from 2,4-D or other hormones and nutritional problems.
 (5) Examine roots for twisting or galling.
c. Do the symptoms point to cultural problems? Look for the following:

1. Nutrient deficiencies. (A soil test from good areas and poor areas should be done as well as analysis of nutrient content of leaf tissue from the same areas.)
 - Nitrogen—light green or yellow foliage. Nitrogen deficiencies are more acute on lower leaves.
 - Phosphorus—purple coloration of leaves; plants are stunted.
 - Potassium—yellow or brown leaf margins and leaf curling.
 - Magnesium—interveinal chlorosis (yellowing between veins) of mid level or lower leaves.
 - Boron—development of lateral growth; hollow, brownish stems; cracked petioles.
 - Iron—light green or yellow foliage occurs first and is more acute on young leaves.
 - Molybdenum—"whiptail" leaf symptoms on cauliflower and other crops in the cabbage family.

2. Chemical toxicities.
 - Toxicity of minor elements—boron, zinc, manganese.
 - Soluble salt injury—wilting of the plant when wet; death, usually from excessive fertilizer application or accumulation of salts from irrigation water.

3. Soil problems. (Take soil tests of good and poor areas.)
 - Poor drainage.
 - Poor soil structure, compaction, etc.
 - Hard pans or plow pans.

4. Pesticide injury. (Usually uniform in the area or shows definite patterns, and more than one plant species, such as weeds, are often symptomatic.)
 - Insecticide burning or stunting.
 - Weed-killer (herbicide) burning or abnormal growth.

5. Climatic damage.
 - High-temperature injury.
 - Low-temperature (chilling) injury.
 - Lack of water.
 - Excessive moisture (lack of soil oxygen).
 - Frost or freeze damage.

6. Physiological damage.
 - Air-pollution injury.
 - Genetic mutations (this is rare).

In summary, when trying to solve a vegetable crop problem, take notes of problem areas, look for a pattern to the symptoms, trace the history of the problem, and examine the plants and soil closely. These notes can be used to avoid the problem in the future or to assist others in helping solve their problem. Publications and bulletins designed to help the grower identify specific vegetable problems are available from Extension.

AIR POLLUTION INJURY

The extent of plant damage by particular pollutants in any given year depends on meteorological factors leading to air stagnation, the presence of a pollution source, and the susceptibility of the plants.

Some pollutants that affect vegetable crops are sulfur dioxide (SO₂), ozone (O₃), peroxyacetyl nitrate (PAN), chlorine (Cl), and ammonia (NH₃).

Sulfur dioxide. SO₂ causes acute and chronic plant injury. Acute injury is characterized by clearly marked dead tissue between the veins or on leaf margins. The dead tissue may be bleached, ivory, tan, orange, red, reddish brown, or brown, depending on plant species, time of year, and weather conditions. Chronic injury is marked by brownish red, turgid, or bleached white areas on the leaf blade. Young leaves rarely display damage, whereas fully expanded leaves are very sensitive.

Some crops sensitive to sulfur dioxide are: squash, pumpkin, mustard, spinach, lettuce, endive, Swiss chard, broccoli, bean, carrot, and tomato.

Ozone. A common symptom of O₃ injury is small stipplelike or flecklike lesions visible only on the upper leaf surface. These very small, irregularly shaped spots may be dark brown to black (stipplelike) or light tan to white (flecklike). Very young leaves are normally resistant to ozone. Recently matured leaves are most susceptible. Leaves become more susceptible as they mature, and the lesions spread over a greater portion of the leaf with successive ozone exposures. Injury is usually more pronounced at the leaf tip and along the margins. With severe damage, symptoms may extend to the lower leaf surface.

Pest feeding (red spider mite and certain leafhoppers) produces flecks on the upper surface of leaves much like ozone injury. Flecks from insect feeding, however, are usually spread uniformly over the leaf, whereas ozone flecks are concentrated in specific areas. Some older watermelon varieties and red varieties of potatoes and beans are particularly sensitive to ozone.

Peroxyacetyl nitrate. PAN affects the undersides of newly matured leaves, and it causes bronzing, glazing, or silvering on the lower surface of sensitive leaf areas.

The leaf apex of broadleaved plants becomes sensitive to PAN about 5 days after leaf emergence. Since PAN toxicity is specific for tissue of a particular stage of development, only about four leaves on a shoot are sensitive at any one time. With PAN only successive exposures will cause the entire leaf to develop injury. Injury may consist of bronzing or glazing with little or no tissue collapse on the upper leaf surface. Pale green to white stipplelike areas may appear on upper and lower leaf surfaces. Complete tissue collapse in a diffuse band across the leaf is helpful in identifying PAN injury.

Glazing of lower leaf surfaces may be produced by the feeding of thrips or other insects or by insecticides and herbicides, but differences should be detectable by careful examination.

Sensitive crops are: Swiss chard, lettuce, beet, escarole, mustard, dill, pepper, potato, spinach, tomato, and cantaloupe.
Chlorine. Injury from chlorine is usually of an acute type, and it is similar in pattern to sulfur dioxide injury. Foliar necrosis and bleaching are common. Necrosis is marginal in some species, but scattered in others either between or along veins. Lettuce plants exhibit necrotic injury on the margins of outer leaves, which often extends into solid areas toward the center and base of the leaf. Inner leaves remain unmarked. Crops sensitive to chlorine are: Chinese cabbage, lettuce, Swiss chard, beet, escarole, mustard, dill, pepper, potato, spinach, tomato, cantaloupe, corn, onion, and radish.

Ammonia. Field injury from NH₃ has been primarily due to accidental spillage or use of ammoniated fertilizers under plastic mulch on light sandy soils. Slight amounts of the gas produce color changes in the pigments of vegetable skin. The dry outer scales of red onions may become greenish or black, whereas scales of yellow or brown onions may turn dark brown. In addition, chicken litter may be high in ammonia (NH₃) and ammonium (NH₄), and if sufficient time is not allowed between litter application and planting, substantial damage from ammonia toxicity may occur to seeds or seedlings.

FOOD SAFETY

While there are many regulations and buyer requirements that surround produce production, the ultimate goal is for fruits and vegetables to be as safe as possible for all families and communities. This section provides a simple overview of produce safety and provides some resources for your farm. It is estimated that over 48 million individuals are sickened by foodborne illnesses yearly in the US, and nearly half (46%) are caused by outbreaks linked to fresh produce. Fruits and vegetables can become contaminated at any point in the production chain. Once contamination occurs, it cannot be removed from the produce and, since many crops are eaten without cooking, prevention is the most important step in reducing outbreaks. Microorganisms that can cause foodborne illnesses are commonly found in human and animal feces, including *Salmonella*, pathogenic *E. coli* (e.g., O157:H7), and *Campylobacter* spp. Some viruses, such as norovirus and hepatitis A, can also survive for longer periods and can contaminate fresh produce. Human parasites are not commonly associated with produce contamination in the US; however, *Cyclospora cayetanensis* has become an emerging concern in the past few years, especially in irrigation water sources.

Foodborne pathogens can cause mild to severe illnesses depending on several factors, including number of pathogens in the food, health of individuals, strain of the microorganism that is causing illness, and type and amount of contaminated food consumed. Symptoms might take hours to days to appear. For example, people with *Salmonella* infections might have no symptoms; while others develop diarrhea, fever, and abdominal cramps within 8 to 72 hours. Most healthy people recover within a few days without treatment and do not need to be hospitalized. On the other hand, *Listeria monocytogenes* can be serious to pregnant women, people older than 65, and people with weakened immune systems. Listeriosis symptoms can start from 1 to 4 weeks after consuming contaminated food.

WHAT ARE GOOD AGRICULTURAL PRACTICES (GAPS)?

The term Good Agricultural Practices (GAPs) refers to basic practices that minimize food safety risks. The purpose of GAPs is to provide guidance for the safe production, packing, handling, and holding of fruits and vegetables resulting from a well-developed farm food safety plan. Worker hygiene and health, manure use, and water quality throughout the production and harvesting processes are areas that GAPs cover. Growers, packers, and shippers are urged to take a proactive role in minimizing food safety risks associated with fresh produce. Furthermore, operators should encourage the adoption of safety practices by their partners along the farm-to-table food chain. This includes distributors, exporters, importers, retailers, transporters, food service operators, and consumers. Being familiar with potential biological, chemical, and physical hazards that exist on the farm is the first step toward minimizing risk. This helps to protect the consumer, as well as the growers’ families, communities, and livelihoods. Some of the areas of the farm that could be potential sources of contamination and should be considered are:

- **The growing site:** Take into consideration the surrounding area, topography, soil amendments, and irrigation water source. Think about the effect of surrounding land use on contamination of produce and how GAPs will be implemented to reduce risk long before planting. Recent research has shown the potential for nearby animal production areas to contaminate produce through irrigation water and wind spread. Vegetative buffers, berms, diversion ditches, and woody areas may help reduce this risk. Furthermore, planning for the use of manure and compost and using it safely is key to producing the safest possible product.

- **Water use:** If water touches the harvestable portion of the crop or is used on surfaces the produce touches after harvest, then water quality becomes a key concern. In these situations, water should be tested to ensure that it meets current microbial quality guidelines. The U.S. Food and Drug Administration (FDA) and the Produce Safety Alliance (PSA) are reliable sources for this information.

- **Domesticated and wild animal intrusion:** Both domesticated and wild animals can carry and shed human pathogens. Sometimes this is because they have carried pathogens from a nearby animal production area or human contamination source. It is important to minimize contamination from animals in the production and packing areas, including farm pets. Most growers are already doing a lot to prevent animals from damaging their crops.

- **Worker hygiene and sanitation:** Provide workers with appropriate training to help them understand the importance of hygiene in handling produce. Providing convenient, clean, and well-stocked restrooms and handwashing facilities will enable workers to properly wash hands after eating, smoking, handling non-produce items, using the restroom and other times when hands may have become contaminated. Sick workers must be restricted from handling produce so that they do not pass along pathogens.
• Equipment and transportation: Equipment used in the production, harvest, postharvest and transportation of produce can be a source of contamination. When possible, designate specific equipment for different areas of the farm. For example, designate a set of cleaning tools for bathroom-use only and have a different set of cleaning tools for the packing line and harvest containers. The cleaning and sanitation of equipment should be conducted and documented on a regular schedule.

The above items are just a few that warrant the attention in a farm food safety plan. Documentation of the practices and who performs them is essential for accountability and continuous improvement.

FOOD SAFETY MODERNIZATION ACT (FSMA) PRODUCE SAFETY RULE (PSR)

FSMA was signed into law on 4 January 2011 initiating a new public health mandate for the FDA to establish science-based standards for the prevention of foodborne illness. Per the FSMA, FDA has set minimum standards for practices conducted by those who harvest, grow, process, transport, and store food. This law is also meant to ensure that foreign producers who import into the U.S. meet these same standards.

One of several FSMA Rules is the “Standards for the Growing, Harvesting, Packing, and Holding of Produce for Human Consumption,” commonly referred to as the Produce Safety Rule or PSR. The PSR outlines standards that minimize the possibility of consumers becoming ill from eating fresh fruits and vegetables contaminated with pathogens and is based on the GAPs described above. The PSR focuses on microbial hazards, such as foodborne illness pathogens. Key areas of the regulation include water quality; biological soil amendments; sprout production; domesticated and wild animals; worker health and hygiene; and equipment, tools, and buildings. The PSR went into effect 26 Jan 2016 and allows some farms to qualify for an exemption from some of the requirements. More information can be found on the FDA website (in link below). Note that the compliance date for the water related standards is delayed until 2022 unless modified by the FDA.

More information on the FSMA PSR:

PRODUCE SAFETY ALLIANCE TRAININGS

One important aspect of the PSR is that it establishes training requirements. The PSR requires that at least one supervisor or other responsible party completes a PSR food safety training. The Produce Safety Alliance (PSA) Grower Training Course is one way to meet this requirement. PSA training provides an overview of GAPs and the standards set in the PSR that growers must follow. For a list of PSA trainings visit:

Upcoming grower training:
https://producesafetyalliance.cornell.edu/training/grower-training-courses/upcoming-grower-trainings/

ON-FARM READINESS REVIEW - NATIONAL ASSOCIATION OF STATE DEPARTMENTS OF AGRICULTURE

Most states are also offering a free and voluntary educational visit called an On-Farm Readiness Review (OFRR) for farms to assess their readiness for a PSR inspection. State contacts to schedule an OFRR can be found on the National Association of State Departments of Agriculture website.

Find an OFRR contact in your state:

FOOD SAFETY AUDITS VERSUS PSR INSPECTIONS

Food safety audits for produce growers and packers have been around since the 1990’s as an industry response to several produce related foodborne illness outbreaks. There are several tiers of audits available now. USDA offers GAP/Good Handling Practice (GHP), Harmonized GAP (aligns with PSR), and Harmonized GAP Plus+ (aligns with both PSR and Global Food Safety Initiative [GFSI]). These require increasing amounts of grower investment. It is important to check with your buyers to see what they require. By comparison, PSR inspections are another requirement of the FSMA PSR and a relatively new concept with inspections beginning the summer 2019. Although the practices required for audits and inspections are both based on GAPs, the specific practices required, and the scope can differ. There are also some notable differences between the two, namely:

• An audit is a way to voluntarily provide assurance to a buyer that produce is grown to minimize food safety risks while a PSR inspection is required by law for farms covered by the PSR.

• Typically, an audit is conducted by an independent third party (e.g., USDA-AMS, Quality Certification Services (QCS), and PrimusLabs) or a produce buyer, while inspections in the southeast are conducted by state’s departments of agriculture.

• Audits tend to be expensive while there is no charge for a PSR inspection.

• A food safety plan is required by audits. While a food safety plan is not required by the PSR, a plan can be helpful in developing a farm food safety program that will meet the PSR requirements.

• Audits cover specific crops chosen by the grower for market access purposes, while a PSR inspection is concerned with PSR covered crops and covered activities.
FOOD SAFETY RESOURCES IN YOUR STATE

Alabama:
- Food Safety & Quality - Agents and Specialists -
 Alabama Cooperative Extension System:
 https://ssl.acesag.auburn.edu/directory-new/programAgentSearch.php?program=8
- Produce Safety Training Options for Alabama Growers:
 https://www.aces.edu/blog/topics/food-safety/produce-safety-training-options-for-alabama-growers/
- ANR-2556 Food Safety Considerations During Flooding - Gulf States Multistate Resource:

Arkansas:
- University of Arkansas Produce Safety Outreach, Education, and Technical Assistance Program:
 www.uaex.uada.edu/producesafety
- Arkansas Department of Agriculture Produce Safety Program (FSMA and GAP):
 https://www.arkansas.gov/plant-industries/regulatory-section/produce-safety-program/
- Arkansas Water Resources Laboratory:
 https://awrc.uada.edu/

Georgia:
- Waters Agricultural Laboratories, Inc (Ag water testing):
 https://watersag.com/services/
- University of Georgia - Agricultural & Environmental Services Labs (Ag water testing):
 https://aesl.ces.uga.edu/water.html
- Workshop and Training Calendar - Dept of Food Science & Technology – UGA:
 https://extension.uga.edu/programs-services/food-science/workshops.html

North Carolina:
- NC Fresh Produce Safety Resources:
 https://ncfreshproducesafety.ces.ncsu.edu
- Certified Laboratory Listing in NC:

Tennessee:
- UT Produce Safety:
 https://vegetables.tennessee.edu/food-safety/
- Tennessee Department of Agriculture Produce Safety:
- Tennessee Water Quality Testing Labs

Texas:
- Testing laboratories: Food Safety Net Services:
 https://fsns.com/services/
- Texas Department of Agriculture FSMA:
 https://www.texasagriculture.gov/RegulatoryPrograms/FoodSafetyModernizationAct(FSMA).aspx
- Texas International Produce Association:
 https://texasipa.org/page/2/

Virginia:
- Virginia Fresh Produce Food Safety:
 https://pspex.vt.edu/
- Virginia Produce Safety Program
- Virginia Cooperative Extension (VCE) Resources (factsheets, info)
 https://resources.ext.vt.edu/
- Virginia Water Testing Labs
- VCE PSR Worker Training Curriculum
 https://register.ext.vt.edu/search/publicCourseSearchDetails.do?method=load&courseId=1222895&selectedProgramAreaId=25579&selectedProgramStreamId=
- VCE Is my farm covered or exempt from the Produce Safety Rule?
 https://vce.az1.qualtrics.com/jfe/form/SV_emnhR0UpFpiVvlr

POSTHARVEST HANDLING
Maintaining Quality through Temperature Management

Once harvested, a vegetable continues life processes independent of the plant, and as a result, must utilize its own stored energy reserves. Within hours of harvest, crops held at field or packinghouse temperatures can suffer irreversible losses in quality, reducing postharvest life. Additionally, many vegetables, such as greens and lettuce, are cut at harvest, and this wound further increases stress on the plant. Respiration is the process of life by which \(\text{O}_2 \) is combined with stored carbohydrates and other components to produce heat, chemical energy, water, \(\text{CO}_2 \), and other products. The relative perishability of a crop is reflected in its respiration rate. The respiration rate varies by commodity; those commodities with high respiration rates utilize the reserves faster and are more perishable than those with lower respiration rates. Therefore, vegetables with higher respiration rates, such as broccoli and sweet corn, must be rapidly cooled to the optimal storage temperature to slow metabolism and extend postharvest life during subsequent shipping and handling operations. Still, all perishable crops will benefit from cooling after harvest.

Rapid cooling (precooling) allows produce to be shipped to distant markets while maintaining high quality. Commercial cooling is defined as the rapid removal of field heat to temperatures approaching optimal storage temperature and it is the first
line of defense in slowing down the biological processes that reduce vegetable quality. Cooling, in conjunction with refrigeration during subsequent handling operations, provides a "cold chain" from packinghouse to supermarket to maximize shelf-life and control diseases and pests. Timeliness during handling is also essential in maintaining produce quality: timely and careful harvest and transport to the packinghouse, rapid packing and cooling, and rapid transport to the market or buyer. Everyone involved at each of the steps during product handling (e.g., shippers, truckers, receivers) must take care to ensure that the refrigerated cold chain is not broken.

Many shippers are well equipped to rapidly cool their crops, and a growing number are incorporating cooling or improving their existing facilities. Simple placement of packed vegetables in a refrigerated cooler is not sufficient to maintain quality for product destined for distant markets. Neither should non-cooled vegetables be loaded directly into refrigerated trailers. In both situations, the product cools very slowly, at best. Refrigerated trailers are designed to maintain product temperature during transport, and they do not have the refrigeration capacity to quickly remove field heat. Therefore, only produce that has been properly cooled should be loaded, and only into trailers that have been cooled prior to loading.

STORAGE REQUIREMENTS
Horticultural crops may be grouped and stored into two broad categories based on sensitivity to storage temperatures. Those crops that are chilling sensitive should be held at temperatures generally above 50°F (10°C). Storage below this threshold will give rise to a physiological disorder known as chilling injury. Chilling injury symptoms are characterized by development of sunken lesions on the skin, increased susceptibility to decay, increased shriveling, and incomplete ripening (poor flavor, texture, aroma, and color). Vegetables most susceptible to chilling injury include cucumber, eggplant, melons, okra, peppers, potatoes, summer squash, sweetpotatoes, and tomatoes. The extent of chilling symptoms is also dependent on the length of exposure to low temperatures. Short exposure times will result in less injury than longer exposure to chilling temperatures. Those crops not as sensitive to chilling injury may be stored at temperatures as low as 32°F (0°C).

In addition to maintaining storage rooms at proper storage temperatures, the relative humidity should also be controlled to reduce water loss from the crop. Optimal storage recommendations and precooling methods are included for a wide range of vegetable commodities in Table 14.

OPTIMIZING COMMERCIAL COOLING

COOLING CONCEPTS
Cooling is a term that can mean different things, depending on your market. To be effective and significantly benefit the shipping life of the product, commercial cooling for perishable crops is defined as: the rapid removal of at least 7/8 of the field heat from the crop by a compatible cooling method. The time required to remove 7/8 of the field heat is known as the 7/8 Cooling Time. Removal of 7/8 of the field heat during cooling is strongly recommended to provide adequate shipping life for shipment to distant markets; also, 7/8 of the heat can be removed in a short amount of time. Removal of the remaining 1/8 of the field heat will occur during subsequent refrigerated storage and handling with little detriment to the product. However, even for local markets, cooling is the most important step in ensuring quality and shelf-life of the product.

The rate of heat transfer, or the cooling rate, is critical for efficient removal of field heat to achieve cooling. As a form of energy, heat always seeks equilibrium. In the case of cooling, the field heat from the product is transferred to the cooling medium. The efficiency of cooling is dependent on time, temperature, and contact. To achieve maximum cooling, the product must remain in the precooler for sufficient time to remove heat. The cooling medium (air, water, crushed ice) must be maintained at constant temperature throughout the cooling period. The cooling medium also must have continuous contact with the surfaces of the individual vegetables. For reasonable cooling efficiency, the cooling medium temperature should be at least at the recommended storage temperature for the commodity found in Table 14. Inappropriately designed containers with insufficient vent or drain openings or incorrectly stacked pallets can markedly restrict the flow of the cooling medium and increase cooling time.

COOLING METHODS
The cooling rate is not only dependent upon time, temperature, and contact with the commodity; it is also dependent upon the cooling method being used. The various cooling methods have different capacities to remove heat.

ROOM COOLING
The simplest, but slowest, cooling method is room cooling, in which the bulk or containerized commodity is placed in a refrigerated room for several days. Air is circulated by fans past the evaporator coil to the room. Vented containers and proper stacking are critical to minimize obstructions to air flow and ensure maximum heat removal. Room cooling is generally used for long storage crops and is satisfactory only for commodities with low respiration rates, such as mature potatoes, dried onions, and cured sweetpotatoes. Even these crops may require precooling, when harvested under high ambient temperatures. It is important to maintain high humidity in the room, as room cooling can also cause significant water loss. More information can be found on this in the forced-air cooling section below.

FORCED-AIR COOLING
The cooling efficiency of refrigerated rooms can be greatly improved by increasing the airflow through the product. This principle led to the development of forced-air, or pressure cooling, in which refrigerated room air is drawn at a high flow rate through specially stacked containers or bins by means of a high-capacity fan. This method can cool as much as four times faster than room cooling. Forced-air cooling is an efficient method for precooling. In many cases, cold storage rooms can be retrofitted for forced-air cooling, which requires less capital investment than other cooling methods. However, to achieve such rapid heat re-
moval, the refrigeration capacity of the room may need to be increased to be able to maintain the desired air temperature during cooling. Portable systems can be taken to the field.

With either room cooling or forced-air cooling, precautions must be taken to minimize water loss from the product. The refrigeration system dehumidifies the cold-room air as water vapor in the air condenses on the evaporator coil. This condensation lowers the relative humidity in the room. As a result, the product loses moisture to the air. To minimize water loss during cooling and storage, the ambient relative humidity should be maintained at the recommended level for the specific crop (commercial humidification systems are available) and the product should be promptly removed from the forced-air precooler upon achieving 7/8 Cooling. Forced-air cooling is recommended for most of the fruit-type vegetables and is especially appropriate for vegetables such as peppers and tomatoes but would not be appropriate for leafy crops.

HYDROCOOLING

Hydrocooling removes heat at a faster rate than forced-air cooling. The heat capacity of refrigerated water is greater than that for air, which means that a given volume of water can remove more heat than the same volume of air at the same temperature. Hydrocooling is beneficial in that it does not remove water from the commodity. It is most efficient (and, therefore, most rapid) when individual vegetables are cooled by immersion in flumes or by overhead drench, since the water completely covers the product surfaces. Cooling becomes less efficient when the commodity is hydrocooled in closed containers, and even less efficient when containers are palletized and hydrocooled. It is important to continuously monitor the hydrocooler water and product temperatures and adjust the amount of time the product is in the hydrocooler accordingly to achieve thorough cooling.

Sanitation of the hydrocooling water is critical since it is re-circulated. Decay organisms and foodborne illness pathogens present on the vegetables can accumulate in the water, inoculating subsequent product being hydrocooled. Cooling water should be changed frequently. Commodities that are hydrocooled must be sufficiently resistant to withstand the force of the water drench. The container must also have sufficient strength to resist the application of water. Crops recommended for hydrocooling include sweet corn, snap beans, cucumbers, and summer squash.

CONTACT ICING

Contact icing has been used for both cooling and temperature maintenance during shipping. Heat from the product is absorbed by the ice, causing it to melt. Provided the contact between the ice and produce is maintained, cooling is rapid, and the melted ice serves to maintain a very high humidity level in the package, which keeps the produce fresh and crisp. Non-uniform distribution of ice reduces the cooling efficiency. There are two types of contact icing: top icing and package icing.

Top icing involves placement of crushed ice over the top layer of product in a container prior to closure. Although relatively inexpensive, the cooling rate can be slow since the ice only directly contacts the product on the top layer. For this reason, it is recommended that top icing be applied after precooling to crops with lower respiration rates such as celery but is not appropriate for chilling sensitive crops. Prior to shipping, ice is blown on top of containers loaded in truck trailers to aid in cooling and maintenance of higher relative humidity. However, care should be taken to avoid blockage of vent spaces in the load; this restricts air-flow, which results in warming of product in the center of the load during shipment. Ice should also be “tempered” with water to bring the temperature to 32°F (0°C) to avoid freezing of the product.

Package Icing. Crushed ice distributed within the container is known as package icing. Cooling is faster and more uniform than for top icing, but it can be more labor intensive to apply.

A modified version of package icing utilizes a slurry of refrigerated water and finely chopped ice drenched over either bulk or containerized produce or injected into side hand holds. This “slush ice” method has been widely adopted for commodities tolerant to direct contact with water and requiring storage at 32°F (0°C). The water acts as a carrier for the ice so that the resulting slush, or slurry, can be pumped into a packed container. The rapidly flowing slush causes the product in the container to float momentarily until the water drains out the bottom. As the product settles in the container, the ice encases the individual vegetables by filling air voids, thus providing good contact for heat removal. Slush icing is somewhat slower than forced-air cooling, but it does reduce pulp temperatures to 32°F (0°C) within a reasonable amount of time and maintains an environment of high relative humidity. Container selection is critical. The container must be oversized to accommodate sufficient ice to provide cooling. Corrugated fiberboard cartons must be resistant to contact with water (usually impregnated with paraffin wax) and must be of sufficient strength so as not to deform. Shipping operations must also tolerate water dripping from the melting ice during handling and storage. Package icing is successfully used for leafy crops, broccoli, sweet corn, green onions, and cantaloupes.

VACUUM COOLING

Vacuum cooling is a very rapid method of cooling and is most efficient for commodities with a high surface-to-volume ratio such as leafy crops. This method is based on the principle that, as the atmospheric pressure is reduced, the boiling point of water decreases. Containerized or bulk product is thoroughly wetted, placed in a vacuum chamber (tube) and sealed. The pressure in the chamber is reduced until the water on the product surface evaporates at the desired precooling temperature. As water on the product surface evaporates, it removes field heat; the resultant vapor is condensed on evaporator coils within the vacuum tube to increase cooling efficiency. Any water that evaporates from the vegetable tissue is removed uniformly throughout the product. Therefore, it does not tend to result in visible wilting in most cases.

Precautions must be taken so as not to cool the products below their chilling temperature threshold. Vacuum coolers are costly to purchase and operate and are normally used only in high volume operations or are shared among several growers. Commodities that can be cooled readily by vacuum cooling include leafy crops, such as spinach, lettuce, and collards.
SUMMARY
When selecting an appropriate cooling method, several factors must be considered, including: the maximum volume of product requiring precooling on a given day, the compatibility of the method with the commodities to be cooled, subsequent storage and shipping conditions, and fixed/variable costs of the system.

Table 14. Recommended Storage Conditions and Cooling Methods for Maximum Postharvest Life of Commerciy Grown Vegetables

<table>
<thead>
<tr>
<th>Crop</th>
<th>Temperature °F</th>
<th>°C</th>
<th>% Relative Humidity</th>
<th>Approximate Storage Life</th>
<th>Cooling Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asparagus</td>
<td>32-35</td>
<td>0-2</td>
<td>95-100</td>
<td>2-3 weeks</td>
<td>HY</td>
</tr>
<tr>
<td>Bean, green or snap</td>
<td>40-45</td>
<td>4-7</td>
<td>95</td>
<td>7-10 days</td>
<td>HY, FA</td>
</tr>
<tr>
<td>Bean, lima (butterbean)</td>
<td>37-41</td>
<td>3-5</td>
<td>95</td>
<td>5-7 days</td>
<td>HY</td>
</tr>
<tr>
<td>Bean, lima, shelled</td>
<td>32</td>
<td>0</td>
<td>95-100</td>
<td>2-3 days</td>
<td>ROOM, FA</td>
</tr>
<tr>
<td>Beet, topped</td>
<td>32</td>
<td>0</td>
<td>98-100</td>
<td>4-6 months</td>
<td>ROOM</td>
</tr>
<tr>
<td>Broccoli</td>
<td>32</td>
<td>0</td>
<td>95-100</td>
<td>10-14 days</td>
<td>HY, ICE</td>
</tr>
<tr>
<td>Cabbage, early</td>
<td>32</td>
<td>0</td>
<td>98-100</td>
<td>3-6 weeks</td>
<td>ROOM</td>
</tr>
<tr>
<td>Cabbage, Chinese</td>
<td>32</td>
<td>0</td>
<td>95-100</td>
<td>2-3 months</td>
<td>HY, VAC</td>
</tr>
<tr>
<td>Carrot, bunched</td>
<td>32</td>
<td>0</td>
<td>95-100</td>
<td>2 weeks</td>
<td>HY</td>
</tr>
<tr>
<td>Carrot, mature, topped</td>
<td>32</td>
<td>0</td>
<td>98-100</td>
<td>7-9 months</td>
<td>HY</td>
</tr>
<tr>
<td>Cauliflower</td>
<td>32</td>
<td>0</td>
<td>95-98</td>
<td>3-4 weeks</td>
<td>HY, VA</td>
</tr>
<tr>
<td>Collard</td>
<td>32</td>
<td>0</td>
<td>95-100</td>
<td>10-14 days</td>
<td>HY, ICE, VAC</td>
</tr>
<tr>
<td>Cucumber</td>
<td>50-55</td>
<td>10-13</td>
<td>95</td>
<td>10-14 days</td>
<td>HY</td>
</tr>
<tr>
<td>Eggplant</td>
<td>46-54</td>
<td>8-12</td>
<td>90-95</td>
<td>1 week</td>
<td>FA</td>
</tr>
<tr>
<td>Endive and escarole</td>
<td>32</td>
<td>0</td>
<td>95-100</td>
<td>2-3 weeks</td>
<td>HY, ICE, VAC</td>
</tr>
<tr>
<td>Garlic</td>
<td>32</td>
<td>0</td>
<td>95-100</td>
<td>6-7 months</td>
<td>ROOM</td>
</tr>
<tr>
<td>Greens, leafy</td>
<td>32</td>
<td>0</td>
<td>95-100</td>
<td>10-14 days</td>
<td>HY, ICE, VAC</td>
</tr>
<tr>
<td>Kale</td>
<td>32</td>
<td>0</td>
<td>95-100</td>
<td>2-3 weeks</td>
<td>HY, ICE, VAC</td>
</tr>
<tr>
<td>Kohlrabi</td>
<td>32</td>
<td>0</td>
<td>98-100</td>
<td>2-3 months</td>
<td>ROOM</td>
</tr>
<tr>
<td>Leek</td>
<td>32</td>
<td>0</td>
<td>95-100</td>
<td>2-3 months</td>
<td>HY, ICE, VAC</td>
</tr>
<tr>
<td>Lettuce</td>
<td>32</td>
<td>0</td>
<td>98-100</td>
<td>2-3 weeks</td>
<td>HY, VAC, ICE</td>
</tr>
<tr>
<td>Melon</td>
<td>36-41</td>
<td>2-5</td>
<td>95</td>
<td>15 days</td>
<td>FA, HY</td>
</tr>
<tr>
<td>Cantaloupe, 3/4-slip</td>
<td>45-50</td>
<td>6-10</td>
<td>90-95</td>
<td>2-3 weeks</td>
<td>FA, HY</td>
</tr>
<tr>
<td>Mixed melons</td>
<td>50-60</td>
<td>10-15</td>
<td>90</td>
<td>2-3 weeks</td>
<td>ROOM, FA</td>
</tr>
<tr>
<td>Watermelon</td>
<td>45-50</td>
<td>7-10</td>
<td>90-95</td>
<td>7-10 days</td>
<td>FA</td>
</tr>
<tr>
<td>Okra</td>
<td>32</td>
<td>0</td>
<td>95-100</td>
<td>3-4 weeks</td>
<td>HY, ICE</td>
</tr>
<tr>
<td>Onion, dry 2</td>
<td>32</td>
<td>0</td>
<td>65-70</td>
<td>1-8 months</td>
<td>ROOM</td>
</tr>
<tr>
<td>Parsley</td>
<td>32</td>
<td>0</td>
<td>95-100</td>
<td>2-2.5 months</td>
<td>HY, ICE</td>
</tr>
<tr>
<td>Parsnip</td>
<td>32</td>
<td>0</td>
<td>98-100</td>
<td>4-6 months</td>
<td>ROOM</td>
</tr>
<tr>
<td>Pea, green or English</td>
<td>32</td>
<td>0</td>
<td>95-98</td>
<td>1-2 weeks</td>
<td>HY, ICE</td>
</tr>
<tr>
<td>Southernpea</td>
<td>40-41</td>
<td>4-5</td>
<td>95</td>
<td>6-8 days</td>
<td>FA, HY</td>
</tr>
<tr>
<td>Pepper, sweet (bell)</td>
<td>45-55</td>
<td>7-13</td>
<td>90-95</td>
<td>2-3 weeks</td>
<td>FA, ROOM</td>
</tr>
<tr>
<td>Potato (Irish) 2</td>
<td>40</td>
<td>4</td>
<td>90-95</td>
<td>4-5 months</td>
<td>HY, ROOM, FA</td>
</tr>
<tr>
<td>Pumpkin</td>
<td>50-55</td>
<td>10-13</td>
<td>90-95</td>
<td>4-5 months</td>
<td>HY, ROOM, FA</td>
</tr>
<tr>
<td>Radish, spring</td>
<td>32</td>
<td>0</td>
<td>95-100</td>
<td>3-4 weeks</td>
<td>HY, FA</td>
</tr>
<tr>
<td>Radish, oriental</td>
<td>32</td>
<td>0</td>
<td>95-100</td>
<td>2-4 months</td>
<td>ROOM</td>
</tr>
<tr>
<td>Rutabaga</td>
<td>32</td>
<td>0</td>
<td>98-100</td>
<td>4-6 months</td>
<td>ROOM</td>
</tr>
<tr>
<td>Spinach</td>
<td>32</td>
<td>0</td>
<td>95-100</td>
<td>10-14 days</td>
<td>ICE, HY, VAC</td>
</tr>
<tr>
<td>Squash, summer</td>
<td>41-50</td>
<td>5-10</td>
<td>95</td>
<td>1-2 weeks</td>
<td>FA, HY</td>
</tr>
<tr>
<td>Sweet corn</td>
<td>32</td>
<td>0</td>
<td>95-98</td>
<td>5-6 days</td>
<td>HY, ICE, VAC</td>
</tr>
<tr>
<td>Squash, winter</td>
<td>50</td>
<td>10</td>
<td>50-70</td>
<td>Depending on type</td>
<td>ROOM</td>
</tr>
<tr>
<td>Sweetpotato 2</td>
<td>55-60</td>
<td>13-16</td>
<td>85-90</td>
<td>4-7 months</td>
<td>ROOM</td>
</tr>
<tr>
<td>Tomato, mature-green</td>
<td>55-70</td>
<td>13-21</td>
<td>90-95</td>
<td>1-3 weeks</td>
<td>FA, ROOM</td>
</tr>
<tr>
<td>Tomato, firm-red</td>
<td>46-50</td>
<td>8-10</td>
<td>90-95</td>
<td>4-7 days</td>
<td>FA, ROOM</td>
</tr>
<tr>
<td>Turnip</td>
<td>32</td>
<td>0</td>
<td>95</td>
<td>4-5 months</td>
<td>FA, ROOM</td>
</tr>
</tbody>
</table>

1 FA = Forced-air cooling; HY = Hydrocooling; ICE = Package ice, slush ice; ROOM = Room cooling; VAC = Vacuum cooling
2 Curing required prior to long term storage. ‘Curing’ of dry onions actually involves drying the outer bulb scales, reducing the fresh weight by 5-6%.
Specific Crop Recommendations

For further information about Insect, Disease and Weed Control, see the appropriate control section after these specific crop recommendations.

ASPARAGUS (Asparagus officinalis)

<table>
<thead>
<tr>
<th>VARIETIES 1</th>
<th>AL</th>
<th>GA</th>
<th>KY</th>
<th>LA</th>
<th>MS</th>
<th>NC</th>
<th>OK</th>
<th>SC</th>
<th>TN</th>
<th>VA</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASPARAGUS</td>
<td></td>
</tr>
<tr>
<td>Jersey Giant 2</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>S</td>
<td>T</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Jersey King 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Jersey Knight 2</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>O</td>
<td>S</td>
<td>T</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Jersey Supreme 2</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>S</td>
<td>T</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Purple Passion</td>
<td>A</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td>V</td>
</tr>
<tr>
<td>Millennium 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>UC157 F 1</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>O</td>
</tr>
</tbody>
</table>

1 Abbreviations for state where recommended. 2 Male hybrid.

Soil Preparation. Be sure to soil test in order to determine liming and fertilizer requirements. The ideal pH for asparagus is between 6.7 and 7.0. Asparagus does not tolerate acidic soils and will not grow well at or below a pH of 6.0. Fungal diseases that contribute to asparagus decline (Fusarium Crown and Root rot) survive better at lower pH. Liming the soil 7.0 – 7.5 will reduce the survivability of Fusarium. Apply 100 lbs/acre of nitrogen. If no soil test is performed, supply sufficient phosphorus and potassium so that the soil contains 250 lbs/acre of available phosphorus and 300 lbs/acre of available potassium. Phosphorus does not move readily in the soil and cannot be incorporated into the soil after the asparagus is planted, so it must be incorporated prior to planting.

Asparagus grows and yields best in a deep, well-drained sandy loam soil, but will tolerate heavier soils as long as the soil has good internal drainage and the water table does not come within four feet of the soil surface as this would interfere with the extensive and deep root system.

Broadcast the fertilizer and plow it under when preparing the land for the planting furrows. Then, each year after harvest is complete, broadcast 100 lbs/acre nitrogen and other nutrients (if needed). Lime can also be added at this time. For the first four years, soil test yearly to determine if fertility and pH adjustments are necessary. Fertilizing in the spring before spears emerge will not benefit the developing crop since the buds on the crown were formed utilizing nutrients from the previous year. After four years, soil test every two years.

Planting. An optimal soil temperature of 50°F is critical for rapid growth by crowns. See “Asparagus Planting Dates” table for suggested dates. Avoid planting crowns into cold soils. Prolonged exposure to cool, wet soils will make crowns more susceptible to Fusarium Crown and Root Rot. If crowns are received before the field is ready to plant, crowns must be stored between 33 - 38°F. Otherwise, the buds on the crowns will sprout, causing the fleshy crown roots to shrivel and die.

Asparagus crowns and transplants are placed into furrows. Make furrows 6” deep. On a heavy soil, plant crowns no deeper than 5” and on a light textured soil, no more than 6”. Apply fertilizer in the bottom of the furrow before planting crowns. Place crowns in the bottom of the furrow and cover with 1 to 2” of soil. The fertilizer will not burn the crowns. Although crown orientation is not important, crowns placed with their buds oriented upward will emerge faster. Research shows that pre-plant applications of phosphorus below the crown are an important factor in long-term asparagus production. Omitting the phosphorus placed in the bottom of the furrow will reduce yields in subsequent years as compared to not applying the additional phosphorus.

NOTE: Asparagus crowns are received in bulk or in bundles of 25 crowns per bundle. After receiving, separate the crowns by size into small, medium, or large. When ready to plant, plant all the smalls together in the same row, all the mediums together, and all the large crowns together. Do not plant a small crown next to a medium or large sized crown. This will cause the larger crown to shade the smaller one, which will then never attain its full growth potential.

Spacing. Crowns can be spaced 12” to 18” within the row. Research shows that there is no advantage of planting 9” between crowns in the row. Although a larger yield is obtained earlier with 9” spacing, after 4 or 5 years, the yield will be the same as with 18” in row spacing. Also, the closer the crowns are spaced in the row, the more crowns needed, increasing cost (for example, 18” in row x 5 feet between row = 5,808 crowns per acre; 12” crowns in row x 5 feet between row = 8,712 crowns per acre).

Asparagus should not be planted in a solid block; rather, plant the field with drive rows spaced between a block of five rows. In order to obtain optimal spray coverage, an air-blast sprayer is needed to evenly apply insecticides and fungicides into the dense fern canopy from both sides of the five-row block. Boom sprayers usually cannot be set high enough to prevent the knocking over of ferns causing damage.

The furrows can be filled-in completely to soil level after planting without damaging the crowns. Do not drive on or comp-
pact the soil over the newly planted furrows, however; or emergence of the spears will be severely delayed or reduced. With good soil moisture, the new spears will break through the soil in 1-2 weeks.

ASPARAGUS PLANTING DATES

<table>
<thead>
<tr>
<th>Area</th>
<th>Planting Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL North</td>
<td>2/15–4/15</td>
</tr>
<tr>
<td>AL South</td>
<td>1/15–3/15</td>
</tr>
<tr>
<td>GA North</td>
<td>2/15–4/15</td>
</tr>
<tr>
<td>GA South</td>
<td>3/15–4/30</td>
</tr>
<tr>
<td>MS</td>
<td>3/15–4/15</td>
</tr>
<tr>
<td>KY East</td>
<td>3/20–4/1</td>
</tr>
<tr>
<td>KY Central</td>
<td>3/15–3/25</td>
</tr>
<tr>
<td>KY West</td>
<td>3/10–3/20</td>
</tr>
<tr>
<td>NC East</td>
<td>2/15–3/31</td>
</tr>
<tr>
<td>NC West</td>
<td>4/1–5/31</td>
</tr>
<tr>
<td>OK</td>
<td>3/15–4/15</td>
</tr>
<tr>
<td>SC East</td>
<td>2/1–3/15</td>
</tr>
<tr>
<td>SC West</td>
<td>3/1–4/15</td>
</tr>
<tr>
<td>TN East</td>
<td>3/1–3/31</td>
</tr>
<tr>
<td>TN West</td>
<td>2/25–3/15</td>
</tr>
<tr>
<td>VA East (coastal)</td>
<td>3/1–4/15</td>
</tr>
<tr>
<td>VA West (mountains)</td>
<td>4/1–5/31</td>
</tr>
</tbody>
</table>

*After the last frost date for your area of the state.

SPECIAL NOTES FOR PEST MANAGEMENT

WEED MANAGEMENT
Weed control is critical in asparagus. If young plants compete with weeds, these young plants will become stressed preventing them from developing good fern growth. Cultivation is not recommended as there are effective herbicides labeled for use. Research shows that even the shallowest of cultivations between asparagus rows cuts and injures roots, predisposing them to Fusarium root rot fungus that eventually will kill the asparagus. Apply a pre-emergence and post-emergence herbicide over the entire field after planting crowns and again after the old fern growth is mowed each spring. Apply an herbicide three weeks prior to the emergence of new spears and ferns, so that these newly emerging spears and fern growth will not compete with weeds.

Although asparagus is highly salt tolerant and salt can be used to control weeds, salt will cause severe soil crusting; impeding water infiltration and percolation. Additionally, salts can leach horizontally through the soil killing other vegetables adjacent to the asparagus which are not as salt tolerant.

INSECTS AND DISEASES MANAGEMENT

Cutworms feed on the spear tips at night before emerging from the soil. They feed on one side of the spear, causing the tip to bend over. Cutworms can easily be managed with approved insecticides.

Asparagus Beetle adults chew on ferns reducing photosynthesis. Any reduction in leaf area causes a loss of stored food reserves in the crown which is needed for next year’s crop. Asparagus beetles also lay eggs on the spears during harvest and will result in further damage. During this period, the best way to manage the beetle is to pick on a timely basis preventing any spear getting tall and spindly, or allowing them to fern out.

Cercospora Needle Blight is a fungal disease that produces spores that are wind-blown during the summer when hot and humid. Cercospora Needle Blight turns the needles of the fern yellow, then brown, and then they fall off. This severely reduces the photosynthetic capability of the ferns to manufacture carbohydrates which are critical for next year’s spears. Spray an approved fungicide to manage Cercospora when reddish-brown, football-shaped lesions on the fern stalks are first noticed. Research in NC has demonstrated that spraying once every 7 days from early July through September, alternating with chlorothalonil and mancozeb weekly successfully manages Cercospora. Spray once every 7 to 10 days through September. Neglecting to spray might reduce spear yields up to 40% the following year. Burning the old ferns off instead of mowing them off and letting the residue remain on the ground will not prevent Cercospora. Be prepared to spray, regardless if the old ferns are burned or not.

Fusarium Crown and Root Rot are the major destructive diseases of asparagus and the ones that usually take fields out of production. There are no controls once the plants succumb to these diseases. The main way to prevent infection is to prevent stresses from occurring to the plant. These stresses include: overharvesting; low soil pH; low soil fertility; frost damage to spears; waterlogged soil; and insect, disease, and weed pressures.

HARVESTING AND STORAGE
During the second year about 3 weeks before the spears emerge, mow off the dead ferns and spray a tank-mix of an approved pre-emergence and post-emergence herbicide. Mow the dead ferns off as close to the ground as possible. Do not cut ferns down in the fall because the dead ferns will capture moisture in the winter and will keep the soil temperature about 5 degrees colder than the temperature of bare soil. This colder soil temperature will delay spear emergence in the early spring when warm day temperatures force the growth of new spears in bare soil causing frost injury on spears.

With air temperatures (<70°F), harvesting might be done once every 2 to 3 days, harvesting a 7” to 9” tall spear with tight tips. Air temperatures over 70°F will cause the tips of the spears to open up or “fern out” at a shorter height causing fiber development in the spears making them tough. Fiber development is determined by the tightness of the spear tip but has no bearing on spear toughness. Harvesting under warm temperatures forces the grower to pick shorter, 5” to 7” tall spears before the spear tips fern out. Otherwise, the spears will lack tenderness and quality. This involves harvesting in the morning and evening of the same day as spears elongate rapidly under high temperatures.

Asparagus can be harvested safely for 2 weeks during the second year (the year following initial establishment of crowns), 4 weeks during the third year, 6 weeks during the fourth year, and 8 weeks during the fifth year. It is best to determine when to stop harvesting by looking at the spear diameter. When 3/4 of the spears are pencil-sized in diameter, stop harvesting. This will take some experience to determine.
Asparagus can be harvested with a knife, below the soil, but snapping is preferred. Using a knife results in a tough and fibrous butt being produced that has to be trimmed off. Cutting below the soil with a knife increases the chances of cutting into other buds on the crown that would normally produce more spears. Snapping involves using the thumb and index finger together to gently break the spear just above the soil line. Snapped asparagus contains no fibrous butt that needs to be removed. The harvested spear is all usable.

Do not allow any small spindly spears to grow into ferns while harvesting. These ferns can provide a site for asparagus beetles to lay their eggs, develop into larvae, then into adult beetles. The field should be free of any tall, spindly spears or fern growth during harvest, except for new spears coming up or ones ready to be harvested.

Harvest asparagus in the morning when the temperatures are cool. Asparagus has a very high respiration rate, just like a fresh cut flower. Place harvested spears into plastic containers that have holes in them to let water pass through. Plunge them into ice-cold water for about 5 minutes. This will remove the field heat out of the spears. Next, allow containers to drain and put them into plastic bags. Place into refrigerated storage set at 36°F with 95-100% RH. Storage life at 36°F is about 2 weeks, but growers should try to sell the asparagus soon after it is picked, to let the consumer hold it for 2 weeks, if needed. See Table 14 for further postharvest information.
BEANS: LIMA/BUTTER (*Phaseolus lunatus*) AND SNAP (*Phaseolus vulgaris*)

<table>
<thead>
<tr>
<th>VARIETIES</th>
<th>AL</th>
<th>GA</th>
<th>KY</th>
<th>LA</th>
<th>MS</th>
<th>NC</th>
<th>OK</th>
<th>SC</th>
<th>TN</th>
<th>VA</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEANS - Lima</td>
<td></td>
</tr>
<tr>
<td>Bush (small seeded)</td>
<td></td>
</tr>
<tr>
<td>Bridgeton</td>
<td>A</td>
<td>G</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
<td>S</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dixie Butterpea</td>
<td>A</td>
<td>G</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Early Thorogreen</td>
<td>A</td>
<td>G</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Henderson Bush</td>
<td>A</td>
<td>G</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jackson Wonder</td>
<td>A</td>
<td>L</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td>T</td>
</tr>
<tr>
<td>Bush (large seeded)</td>
<td></td>
</tr>
<tr>
<td>Fordhook 242</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>N</td>
<td>S</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dixie Speckled Butterpea</td>
<td>A</td>
<td>G</td>
<td>M</td>
<td>N</td>
<td>S</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pole (large seeded)</td>
<td></td>
</tr>
<tr>
<td>Christmas Pole</td>
<td></td>
</tr>
<tr>
<td>Carolina Sieva</td>
<td>A</td>
<td>G</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Florida Speckled Butterpea</td>
<td>G</td>
<td>L</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>King of the Garden</td>
<td>A</td>
<td>G</td>
<td>L</td>
<td>N</td>
<td>S</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Willow Leaf</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEANS - Snap</td>
<td></td>
</tr>
<tr>
<td>Bush (Fresh Market)</td>
<td></td>
</tr>
<tr>
<td>Ambition</td>
<td></td>
</tr>
<tr>
<td>Baron</td>
<td></td>
</tr>
<tr>
<td>Bronco</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>N</td>
<td>O</td>
<td>S</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bush Blue Lake 274</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>N</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caprice</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>N</td>
<td>S</td>
<td>T</td>
<td></td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colter</td>
<td></td>
</tr>
<tr>
<td>Hialeah</td>
<td>A</td>
<td></td>
<td>K</td>
<td>L</td>
<td>N</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jade</td>
<td>A</td>
<td></td>
<td>K</td>
<td>N</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lewis</td>
<td>A</td>
<td></td>
<td>K</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lynx</td>
<td></td>
<td>L</td>
<td></td>
<td>N</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnum</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>M</td>
<td>N</td>
<td></td>
<td></td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Momentum</td>
<td></td>
</tr>
<tr>
<td>Pony Express</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prevail</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provider</td>
<td></td>
</tr>
<tr>
<td>Roma II (flat pod)</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>M</td>
<td>N</td>
<td>O</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strike</td>
<td>A</td>
<td>G</td>
<td>L</td>
<td></td>
<td>N</td>
<td>O</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valentino</td>
<td></td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T</td>
</tr>
<tr>
<td>Pole</td>
<td></td>
</tr>
<tr>
<td>Kentucky Blue</td>
<td></td>
</tr>
<tr>
<td>Louisiana Purple Pole</td>
<td></td>
</tr>
<tr>
<td>McCaslan</td>
<td>A</td>
<td>G</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rattlesnake</td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>M</td>
<td></td>
<td></td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red Noodle</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T</td>
</tr>
<tr>
<td>State Half Runner</td>
<td>G</td>
<td>K</td>
<td></td>
<td>N</td>
<td></td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stringless Blue Lake</td>
<td>A</td>
<td>G</td>
<td>L</td>
<td></td>
<td>N</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volunteer/Tennessee Half Runner</td>
<td>G</td>
<td>K</td>
<td></td>
<td>N</td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White Seeded Kentucky Wonder 191</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
<td>S</td>
<td>T</td>
<td></td>
</tr>
</tbody>
</table>

1 Abbreviations for state where recommended.
2 Yard long/Asparagus bean.
3 Fall production only.
4 Not for Coastal Plain areas.
Seed Treatment. To protect against root rots and damping off, use treated seed or treat with an appropriate protectant at manufacturer’s recommendation. Further information on seed treatments can be found under SEED TREATMENTS in the disease management section of the handbook. Rough handling of seed greatly reduces germination.

MARKET SNAP PLANTING DATES

<table>
<thead>
<tr>
<th></th>
<th>Spring</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL North</td>
<td>4/1–7/15</td>
<td>NR</td>
</tr>
<tr>
<td>AL South</td>
<td>2/10–4/30</td>
<td>8/15–9/20</td>
</tr>
<tr>
<td>GA North</td>
<td>5/1–7/15</td>
<td>NR</td>
</tr>
<tr>
<td>GA South</td>
<td>2/15–4/30</td>
<td>7/15–9/15</td>
</tr>
<tr>
<td>KY East</td>
<td>5/1–7/15</td>
<td>NR</td>
</tr>
<tr>
<td>KY Central</td>
<td>4/25–7/25</td>
<td>NR</td>
</tr>
<tr>
<td>KY West</td>
<td>4/10–8/1</td>
<td>NR</td>
</tr>
<tr>
<td>LA North</td>
<td>4/1–5/15</td>
<td>8/15–9/15</td>
</tr>
<tr>
<td>LA South</td>
<td>3/1–5/31</td>
<td>8/15–9/15</td>
</tr>
<tr>
<td>MS North</td>
<td>3/30–5/10</td>
<td>8/15–9/1</td>
</tr>
<tr>
<td>MS South</td>
<td>2/10–5/1</td>
<td>8/15–9/20</td>
</tr>
<tr>
<td>NC East</td>
<td>3/20–6/15</td>
<td>8/15–9/15</td>
</tr>
<tr>
<td>NC West</td>
<td>5/1–8/15</td>
<td>NR</td>
</tr>
<tr>
<td>OK</td>
<td>4/15–4/30</td>
<td>NR</td>
</tr>
<tr>
<td>SC East</td>
<td>4/1–6/1</td>
<td>8/15–9/1</td>
</tr>
<tr>
<td>SC West</td>
<td>4/15–7/1</td>
<td>7/20–8/1</td>
</tr>
<tr>
<td>TN West</td>
<td>4/1–6/1</td>
<td>NR</td>
</tr>
<tr>
<td>VA (coastal)</td>
<td>3/30–5/20</td>
<td>NR</td>
</tr>
<tr>
<td>VA (mountains)</td>
<td>4/10–7/30</td>
<td>NR</td>
</tr>
<tr>
<td>NR = Not recommended</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PROCESSING SNAPS PLANTING DATES

<table>
<thead>
<tr>
<th></th>
<th>Spring</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL North</td>
<td>4/1–7/15</td>
<td>NR</td>
</tr>
<tr>
<td>AL South</td>
<td>2/10–4/30</td>
<td>8/15–9/20</td>
</tr>
<tr>
<td>GA North</td>
<td>5/1–7/15</td>
<td>NR</td>
</tr>
<tr>
<td>GA South</td>
<td>2/15–4/30</td>
<td>7/15–9/15</td>
</tr>
<tr>
<td>KY East</td>
<td>5/1–7/15</td>
<td>NR</td>
</tr>
<tr>
<td>KY Central</td>
<td>4/25–7/25</td>
<td>NR</td>
</tr>
<tr>
<td>KY West</td>
<td>4/10–8/1</td>
<td>NR</td>
</tr>
<tr>
<td>MS North</td>
<td>4/1–5/15</td>
<td>9/5–9/20</td>
</tr>
<tr>
<td>MS South</td>
<td>2/10–4/30</td>
<td>8/15–9/20</td>
</tr>
<tr>
<td>NC East</td>
<td>4/1–6/15</td>
<td>NR</td>
</tr>
<tr>
<td>NC West</td>
<td>5/15–7/31</td>
<td>NR</td>
</tr>
<tr>
<td>SC East</td>
<td>4/1–6/1</td>
<td>8/15–9/1</td>
</tr>
<tr>
<td>SC West</td>
<td>4/15–7/1</td>
<td>7/20–8/1</td>
</tr>
<tr>
<td>TN East</td>
<td>4/20–8/20</td>
<td>7/15–8/20</td>
</tr>
<tr>
<td>TN West</td>
<td>4/1–7/15</td>
<td>NR</td>
</tr>
<tr>
<td>NR = Not recommended</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LARGE & SMALL LIMAS PLANTING DATES

<table>
<thead>
<tr>
<th></th>
<th>Spring</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL North</td>
<td>4/1–7/1</td>
<td>NR</td>
</tr>
<tr>
<td>AL South</td>
<td>2/10–5/1</td>
<td>8/15–9/20</td>
</tr>
<tr>
<td>GA North</td>
<td>5/1–7/1</td>
<td>NR</td>
</tr>
<tr>
<td>GA South</td>
<td>3/1–5/1</td>
<td>7/15–9/1</td>
</tr>
<tr>
<td>KY East</td>
<td>5/10–7/10</td>
<td>NR</td>
</tr>
<tr>
<td>KY Central</td>
<td>5/1–7/20</td>
<td>NR</td>
</tr>
<tr>
<td>KY West</td>
<td>4/15–7/1</td>
<td>NR</td>
</tr>
<tr>
<td>MS North</td>
<td>4/1–7/25</td>
<td>NR</td>
</tr>
<tr>
<td>MS South</td>
<td>3/1–8/15</td>
<td>NR</td>
</tr>
</tbody>
</table>

SOIL AND FERTILITY

Snapbeans grow best on medium-textured, well drained soils, with a pH of 5.5 to 6.2. Commercial producers generally apply 65 lbs N/A by banding at planting 2 inches to each side and 3 inches below the seed. Direct contact with seed can cause injury or kill germinating seed.

SPACING

Snap Beans: With rows 30 to 36 inches apart, plant 5 to 7 seeds per foot. To increase yield plant in rows 18 to 24 inches apart with 4 to 6 seeds per foot. Calibrate planter according to seed size. Sow 1 to 1.5 inches deep in light sandy soil; shallower in heavier soil.

Lima Beans, Large Seeded: Plant in rows 30 to 36 inches apart, 2 seeds per foot, 1 to 1.5 inches deep.

Lima Beans, Small Seeded: Space rows 30 to 36 inches apart, 2 seeds per foot, 0.75 to 1.25 inches deep (deeper if soil is dry). For mechanically harvested irrigated fields: Rows 18 to 30 inches apart, 4 to 5 inches between plants.

Edamame: Edamame are green, immature soybeans sold as fresh vegetables with the seeds in the pods. Grown like bush beans, the pods are harvested when the seeds have reached full size but before the pods begin to yellow. Some commonly grown varieties include Midori Giant, Tohya, Lanco, and Envy.

SPECIAL NOTES FOR PEST MANAGEMENT

INSECT MANAGEMENT

Seed Maggot: See the “Seed Treatment” section, or use approved soil systemic insecticides at planting time if probability of pest outbreak is high.

Experience has shown that effective insect control with systemics usually lasts from 4 to 6 weeks after application. Frequent field inspections are necessary after this period to determine pest incidence and the need for additional spray controls.

Thrips: Treatments should be applied if thrips are present from cotyledon stage to when the first true leaves are established and/or when first blossoms form.

Mites: Spot treat areas along edges of fields when white stippling along veins on undersides of leaves is first noticed and 10 mites per trifoliate are present.
Aphids: Treat only if aphids are well-distributed throughout the field (50% or more of terminals with five or more aphids), when weather favors population increase, and if beneficial species are lacking.

Leafhoppers: Treat only if the number of adults plus nymphs exceeds 1 to 2 adults per sweep.

Tarnished Plant Bug (Lygus): Treat only if the number of adults and/or nymphs exceeds 15 per 50 sweeps from the pin pod stage until harvest.

Beet Armyworm (BAW), Cabbage Looper (CL): Treat if the number of worms (BAW and CL) averages 15 per 3 feet of row.

European Corn Borer (ECB)–Snap Beans Only: Treat when moth catches in local blacklight traps average five or more per night. The first application should be applied during the bud–early bloom stage and the second application during the late bloom–early pin stage. Additional sprays may be needed between the pin spray and harvest. Consult a pest management specialist for local black-light trap information and recommended spray intervals.

Corn Earworm (CEW), Fall Armyworm (FAW): In snap beans, treat every 5 to 7 days if CEW catches in local blacklight traps average 20 or more per night and most corn in the area is mature. The use of pheromone (insect sex attractants) and blacklight traps is very helpful in detecting population build-up of various insects.

For limas, treat when CEW populations exceed one per 6 feet of row from the late flat pod stage to harvest.

For both lima bean types, treatment should be timed when 50% or more of the CEW and/or FAW populations reach a length of 1/2 inch or longer. Treating too early for young CEW/FAW populations will eliminate natural control and may result in the need for additional sprays for reinfections. Consult a pest management specialist for more refined decision-making.

Whiteflies: Treat when whiteflies exceed five adults per fully expanded leaflet.

Nematode Management. Use nematicides listed in the “Nematode Control in Vegetable Crops” table in the Disease Control section.

Soybean cyst nematode, races I and III, are present in soybeans in some areas. Snap beans are susceptible, but small seeded lima beans are resistant to this nematode. Growers who rotate snap beans with soybeans should be alert to the possibility of problems in infested fields.

WEED CONTROL
Since beans are a quickly maturing crop, early weed control is essential. Weeds can reduce yield, quality and the efficiency of the mechanical harvester. Preparing a weed-free seedbed is the first step of a weed control program. A weed-free seed bed allows the bean plants to get off to a quick start without interference from weed growth. Carefully read herbicide labels to make sure that beans can tolerate the material. Be sure to avoid planting beans after other crops for which herbicides with a long residual have been used.

MINIMUM TILLAGE
When planning to use minimum tillage practices, give consideration to bean variety, date of planting, soil fertility practices, insect control, planting equipment, cover crop, and weed species in the field. Minimum tillage might not be suited to all growing areas around the SE US. Soil type and other environmental conditions might limit its success. Consult with your local Extension office for the latest recommendations.

Harvesting and Storage
See Table 14 for postharvest information.
BEETS (Beta vulgaris)

VARIETIES\(^1\)

<table>
<thead>
<tr>
<th>VARIETIES</th>
<th>AL</th>
<th>GA</th>
<th>KY</th>
<th>LA</th>
<th>MS</th>
<th>NC</th>
<th>OK</th>
<th>SC</th>
<th>TN</th>
<th>VA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avalanche (white interior)</td>
<td></td>
<td>K</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boldor (yellow interior)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boro</td>
<td></td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bull’s Blood (for greens)</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
<td>S</td>
<td>T</td>
<td>V</td>
</tr>
<tr>
<td>Chioggia (red and white interior)</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>N</td>
<td></td>
<td>O</td>
<td>S</td>
<td>T</td>
<td>V</td>
</tr>
<tr>
<td>Detroit Dark Red</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td></td>
<td>O</td>
<td>S</td>
<td>T</td>
<td>V</td>
</tr>
<tr>
<td>Early Wonder Tall Top</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red Ace</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>N</td>
<td>O</td>
<td>S</td>
<td>T</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Red Cloud</td>
<td></td>
<td></td>
<td>K</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ruby Queen</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>N</td>
<td>O</td>
<td>S</td>
<td>T</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Solo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T</td>
</tr>
<tr>
<td>Touchstone Gold (yellow interior)</td>
<td>K</td>
<td></td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) Abbreviations for state where recommended.
Note: For consistent root size, beets should be thinned. Most beet seeds are naturally “multigerm” varieties. Multigerm seed contain more than one embryo. When these germinate, they will produce 2 to 5 seedlings at once.

Light, well-drained soils are best for root development in beets. Beets are frost tolerant and produce the best commercial quality when grown during cool temperatures (50° to 65°F). Lighter color and wider zoning within the roots occur during periods of rapid growth in warm temperatures. If plants are exposed to 2 or 3 weeks of temperatures below 50°F after several true leaves have formed, seedstalks (undesirable because they will reduce root quality) will form. Cultivars vary in their sensitivity to this problem with newer cultivars generally being less sensitive to it.

Beets are susceptible to boron deficiency and will develop internal black spot if soil boron is not adequate. If boron is deficient, apply 2 to 3 lb. of boron per acre with broadcast fertilizer, or for smaller plantings, apply ½ oz. Borax per 100 square feet of row with initial fertilizer application.

Seeding and Spacing. Optimum germination temperature for beets ranges from 50° to 85°F, but early plantings can be made 4 to 6 weeks before the average last spring frost. Germination takes between 10-14 days, but can be hastened by soaking seed in warm water prior to planting. Space rows 15 to 20 inches apart; thin plants to 3 inches apart. Seeds remain viable for 2-3 years when stored properly.

BEET PLANTING DATES (cont’d)

<table>
<thead>
<tr>
<th></th>
<th>Spring</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC East</td>
<td>3/1-4/15</td>
<td>8/1-9/15</td>
</tr>
<tr>
<td>NC West</td>
<td>4/1-5/31</td>
<td>7/15-8/15</td>
</tr>
<tr>
<td>SC East</td>
<td>2/15-3/31</td>
<td>8/15-9/30</td>
</tr>
<tr>
<td>TN East</td>
<td>3/15-4/15</td>
<td>9/1-9/30</td>
</tr>
<tr>
<td>TN West</td>
<td>3/1-4/1</td>
<td>9/15-10/1</td>
</tr>
<tr>
<td>VA East</td>
<td>3/15-4/15</td>
<td>8/1-8/31</td>
</tr>
<tr>
<td>VA West (mountains)</td>
<td>4/1-5/31</td>
<td>7/15-8/15</td>
</tr>
<tr>
<td>NR</td>
<td></td>
<td>Not recommended</td>
</tr>
</tbody>
</table>

SPECIAL NOTES FOR PEST MANAGEMENT

DISEASE MANAGEMENT

Seed rot and damping-off may be a problem, especially in early spring plantings when soils are cool. Seeds should be treated with an appropriate fungicide to protect the seed.

Cercospora leaf spot is the most common disease that occurs on beets. Circular spots with reddish brown or purplish margins are the first signs. Spray every 2 to 3 weeks with an appropriate crop protectant.

INSECT MANAGEMENT

The most common insect pests of beets are aphids, leafminers, flea beetles, and webworms. Sanitation and crop rotation should be practiced to avoid pest build ups.

Harvesting and Storage

Market beets are hand-harvested when 1-3/4 to 2 inches in diameter, usually about 50-75 days after planting. Expected yield per 100 row feet is 100 lbs. See Table 14 for further postharvest information.
BROCCOLI, CABBAGE, CAULIFLOWER, COLLARDS, KALE, AND KOHLRABI
Brassica spp.

Varieties

<table>
<thead>
<tr>
<th>Variety</th>
<th>AL</th>
<th>AR</th>
<th>GA</th>
<th>KY</th>
<th>LA</th>
<th>MS</th>
<th>NC</th>
<th>OK</th>
<th>SC</th>
<th>TN</th>
<th>VA</th>
</tr>
</thead>
<tbody>
<tr>
<td>BROCCOLI</td>
<td></td>
</tr>
<tr>
<td>Arcadia 5, 10 (69 DTH*)</td>
<td>A</td>
<td>R</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>S</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belstar (65 DTH*)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M</td>
<td>N</td>
</tr>
<tr>
<td>Blue Wind (49 DTH*)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burgundy 15, 19 (37 DTH)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>Burney (60 DTH*)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Castle Dome (50 DTH*)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
<td>S</td>
<td>T</td>
</tr>
<tr>
<td>Destiny 2, 3 (70-75 DTH*)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M</td>
<td>S</td>
</tr>
<tr>
<td>Diplomat 10 (68 DTH*)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td>L</td>
<td>N</td>
<td>S</td>
<td>T</td>
<td>V</td>
</tr>
<tr>
<td>DuraPak 10, 14 (90-100 DTH*)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Emerald Crown (59 DTH*)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td>K</td>
<td>M</td>
<td>N</td>
<td>O</td>
<td>S</td>
</tr>
<tr>
<td>Emerald Pride (97 DTH*)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td>L</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emerald Star (105 DTH*)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>Emperor (70 DTH*)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
</tr>
<tr>
<td>Green Magic 2, 11 (57 DTH*)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
</tr>
<tr>
<td>Greenbelt 10 (68 DTH*)</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Gypsy 10 (60 DTH*)</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Imperial 14 (66 DTH*)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K</td>
</tr>
<tr>
<td>Ironman 5, 7 (50 DTH*)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>S</td>
</tr>
<tr>
<td>Jacaranda 5 (50 DTH*)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>Lieutenant 5 (55-65 DTH*)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M</td>
<td>N</td>
<td>O</td>
<td>S</td>
<td>T</td>
</tr>
<tr>
<td>Marathon 1, 3, 7, 10 (68 DTH*)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Packman (50 DTH*)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T</td>
</tr>
<tr>
<td>Patron 2, 10 (94 DTH*)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>Premium Crop 10, 12 (65 DTH*)</td>
<td></td>
</tr>
</tbody>
</table>

BRUSSELS SPROUTS

<table>
<thead>
<tr>
<th>Variety</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Attis 5 (140 DTH*)</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Capitola (130 DTH*)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confidant (130 DTH*)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>Dagan (100 DTH*)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td>L</td>
<td>N</td>
<td>S</td>
</tr>
<tr>
<td>Dimitri (105 DTH*)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Price Marvel (85 DTH*)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M</td>
<td></td>
<td>S</td>
<td>T</td>
</tr>
<tr>
<td>Franklin (125 DTH*)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>S</td>
<td>T</td>
<td>V</td>
</tr>
<tr>
<td>Gustus (100 DTH*)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td></td>
<td>O</td>
<td>S</td>
</tr>
<tr>
<td>Hestia (93 DTH*)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td></td>
<td>O</td>
<td>S</td>
</tr>
<tr>
<td>Jade Cross E (85 DTH*)</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Marte (130 DTH*)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>Nautic (150 DTH*)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>S</td>
</tr>
</tbody>
</table>

CABBAGE: green

<table>
<thead>
<tr>
<th>Variety</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Acclaim 5, 6</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>Blue Dynasty 4, 6, 9</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td></td>
<td>T</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Blue Vantage 4, 6, 9</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Bravo 4, 9</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>O</td>
</tr>
<tr>
<td>Bronco 4, 9</td>
<td></td>
</tr>
</tbody>
</table>

*DTH = Days to harvest

1 Abbreviations for state where recommended.
2 Bolting tolerant.
3 Bolting susceptible.
4 Tip burn tolerant.
5 Hollow stem tolerance/resistance.
6 Black rot tolerance/resistance.
7 Bacterial leaf spot tolerance/resistance.
8 Bacterial speck tolerance/resistance.
9 Fusarium yellows tolerance/resistance.
10 Downy mildew tolerance/resistance.
11 Powdery mildew tolerance/resistance.
12 Suitable for side shoot production.
13 Dinosaur or Tuscan kale.
14 Warm weather tolerance.
15 Orange.
16 Purple.
17 Miniature.
18 Fall only.
19 Sprouting broccoli.
<table>
<thead>
<tr>
<th>Varieties</th>
<th>AL</th>
<th>AR</th>
<th>GA</th>
<th>KY</th>
<th>LA</th>
<th>MS</th>
<th>NC</th>
<th>OK</th>
<th>SC</th>
<th>TN</th>
<th>VA</th>
</tr>
</thead>
<tbody>
<tr>
<td>CABBAGE: green (cont’d)</td>
<td></td>
</tr>
<tr>
<td>Cheers 5, 6, 9</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>S</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emblem 4, 6</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Platinum Dynasty 5, 6, 9</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Royal Vantage 4, 6, 9</td>
<td>A</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Savoy Ace 4, 6</td>
<td>A</td>
<td></td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solid Blue 780 4, 6, 9</td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>M</td>
<td>N</td>
<td></td>
<td></td>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thunderhead 4, 6, 9</td>
<td>A</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vantage Point 4, 6, 9</td>
<td></td>
</tr>
<tr>
<td>CABBAGE: red</td>
<td></td>
</tr>
<tr>
<td>Red Dynasty 4, 6</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>N</td>
<td>S</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red Rookie</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>N</td>
<td></td>
<td>S</td>
<td></td>
<td></td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ruby Perfection 6</td>
<td>A</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHINESE CABBAGE</td>
<td></td>
</tr>
<tr>
<td>Napa Cabbage</td>
<td></td>
</tr>
<tr>
<td>Allred (red) 16</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>China Express</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minuet 17</td>
<td>A</td>
<td></td>
<td></td>
<td>M</td>
<td></td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rubicon</td>
<td></td>
<td></td>
<td>L</td>
<td>M</td>
<td></td>
<td>N</td>
<td></td>
<td>S</td>
<td></td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>Michihili</td>
<td></td>
</tr>
<tr>
<td>Green Rocket</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M</td>
<td></td>
<td></td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monument</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Choi</td>
<td></td>
</tr>
<tr>
<td>Joi Choi</td>
<td>A</td>
<td></td>
<td>L</td>
<td>M</td>
<td></td>
<td>N</td>
<td></td>
<td></td>
<td>S</td>
<td></td>
<td>T</td>
</tr>
<tr>
<td>Mei Qing Choi</td>
<td>A</td>
<td></td>
<td>L</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Win Win Choi</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAULIFLOWER</td>
<td></td>
</tr>
<tr>
<td>Candid Charm</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheddar 15</td>
<td>A</td>
<td>G</td>
<td></td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colonia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Early Snowball</td>
<td>A</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td></td>
<td>S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flamenco (fall)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freedom</td>
<td>A</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fremont</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td></td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fujiyama (fall)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graffiti 16</td>
<td>A</td>
<td>G</td>
<td></td>
<td>L</td>
<td></td>
<td></td>
<td>S</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incline</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Majestic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K</td>
<td></td>
<td>L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minuteman</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>O</td>
<td></td>
<td></td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symphony</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Snow Crown</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td></td>
<td>O</td>
<td>S</td>
<td></td>
<td>T</td>
</tr>
<tr>
<td>Super Snowball</td>
<td>A</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td></td>
<td>S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White Magic</td>
<td>A</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>COLLARDS</td>
<td></td>
</tr>
<tr>
<td>Blue Max 2</td>
<td>A</td>
<td>G</td>
<td></td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Champion</td>
<td></td>
<td></td>
<td>K</td>
<td></td>
<td>L</td>
<td></td>
<td>M</td>
<td>N</td>
<td></td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>Flash</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td></td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
<td>S</td>
<td></td>
<td>T</td>
</tr>
<tr>
<td>Georgia Southern 3</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td></td>
<td>L</td>
<td>M</td>
<td>N</td>
<td></td>
<td>S</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>Morris Heading</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top Bunch 2.0 7</td>
<td>A</td>
<td>R</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td></td>
<td>M</td>
<td>N</td>
<td>O</td>
<td>S</td>
<td>T</td>
</tr>
<tr>
<td>Vates</td>
<td>A</td>
<td>R</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
<td>S</td>
<td></td>
<td>T</td>
</tr>
</tbody>
</table>

* DTH = Days to harvest

1 Abbreviations for state where recommended.
2 Bolting tolerant.
3 Bolting susceptible.
4 Tip burn tolerant.
5 Hollow stem tolerance/resistance.
6 Black rot tolerance/resistance.
7 Bacterial leaf spot tolerance/resistance.
8 Bacterial speck tolerance/resistance.
9 Fusarium yellows tolerance/resistance.
10 Downy mildew tolerance/resistance.
11 Powdery mildew tolerance/resistance.
12 Suitable for side shoot production.
13 Dinosaur or Tuscan kale.
14 Warm weather tolerance.
15 Orange.
16 Purple.
17 Miniature.
18 Fall only.
19 Sprouting broccoli.
Seed Treatment. Check with seed supplier to determine if seed is hot-water treated for black rot control. If not, soak seed at 122°F. Use a 20-minute soak for broccoli, cauliflower, collards, kale, and Chinese cabbage. Soak cabbage for 25 minutes. Note. Hot water seed treatment may reduce seed germination. Following either treatment above, dry the seed, then treat with a labeled fungicide to prevent damping-off. Further information on seed treatments can be found under SEED TREATMENTS in the disease management section of the handbook.

BROCCOLI PLANTING DATES

<table>
<thead>
<tr>
<th>Varieties</th>
<th>AL</th>
<th>AR</th>
<th>GA</th>
<th>KY</th>
<th>LA</th>
<th>MS</th>
<th>NC</th>
<th>OK</th>
<th>SC</th>
<th>TN</th>
<th>VA</th>
</tr>
</thead>
<tbody>
<tr>
<td>KALE</td>
<td></td>
</tr>
<tr>
<td>Black Magic 13</td>
<td>A</td>
<td>K</td>
<td>M</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blue Ridge 2</td>
<td>A</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Darkbor</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lacinato 13</td>
<td>A</td>
<td>G</td>
<td></td>
<td>N</td>
<td>O</td>
<td>S</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Premier</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Red Russian</td>
<td>A</td>
<td>K</td>
<td>M</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Redbor</td>
<td>A</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siberian</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td></td>
<td>S</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Starbor</td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>Vates</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td></td>
<td>O</td>
<td>S</td>
<td>T</td>
<td>V</td>
</tr>
<tr>
<td>Winterbor</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td></td>
<td>M</td>
<td>N</td>
<td></td>
<td></td>
<td>S</td>
<td>T</td>
<td>V</td>
</tr>
</tbody>
</table>

KOHLRABI

<table>
<thead>
<tr>
<th>Varieties</th>
<th>AL</th>
<th>AR</th>
<th>GA</th>
<th>KY</th>
<th>LA</th>
<th>MS</th>
<th>NC</th>
<th>OK</th>
<th>SC</th>
<th>TN</th>
<th>VA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early Purple Vienna 16</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td></td>
<td></td>
<td>S</td>
<td>T</td>
<td>V</td>
</tr>
<tr>
<td>Kolibri 16</td>
<td>A</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kossak</td>
<td></td>
</tr>
<tr>
<td>Quickstar</td>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>

Varieties 1: Abbreviations for state where recommended.

1. DTH = Days to harvest
2. Bolting tolerant.
4. Tip burn tolerant.
5. Hollow stem tolerance/resistance.
8. Bacterial speck tolerance/resistance.
10. Downy mildew tolerance/resistance.
12. Suitable for side shoot production.
13. Dinosaur or Tuscan kale.
14. Warm weather tolerance.
15. Orange.
17. Miniature.
18. Fall only.
19. Sprouting broccoli.

BRUSSELS SPROUTS PLANTING DATES

<table>
<thead>
<tr>
<th>Varieties</th>
<th>Spring</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL North</td>
<td>NR</td>
<td>6/30-8/15</td>
</tr>
<tr>
<td>AL South</td>
<td>NR</td>
<td>8/1-9/15</td>
</tr>
<tr>
<td>GA North</td>
<td>NR</td>
<td>6/30-8/15</td>
</tr>
<tr>
<td>GA South</td>
<td>NR</td>
<td>8/1-9/15</td>
</tr>
<tr>
<td>KY East</td>
<td>NR</td>
<td>6/15-7/15</td>
</tr>
<tr>
<td>KY Central</td>
<td>NR</td>
<td>7/1-8/15</td>
</tr>
<tr>
<td>KY West</td>
<td>NR</td>
<td>7/15-8/15</td>
</tr>
<tr>
<td>LA North</td>
<td>NR</td>
<td>8/1-10/1</td>
</tr>
<tr>
<td>LA South</td>
<td>NR</td>
<td>8/15-10/15</td>
</tr>
<tr>
<td>MS North</td>
<td>NR</td>
<td>7/15-8/15</td>
</tr>
<tr>
<td>MS South</td>
<td>NR</td>
<td>8/1-9/15</td>
</tr>
<tr>
<td>NC East</td>
<td>NR</td>
<td>7/15-8/15</td>
</tr>
<tr>
<td>NC West</td>
<td>NR</td>
<td>4/15-5/15</td>
</tr>
<tr>
<td>OK</td>
<td>NR</td>
<td>2/15-3/10</td>
</tr>
<tr>
<td>SC East</td>
<td>NR</td>
<td>9/15-10/15</td>
</tr>
<tr>
<td>SC West</td>
<td>NR</td>
<td>8/15-9/15</td>
</tr>
<tr>
<td>TN East</td>
<td>5/15-6/30</td>
<td>7/15-8/15</td>
</tr>
<tr>
<td>TN West</td>
<td>4/20-6/20</td>
<td>8/1-9/1</td>
</tr>
<tr>
<td>VA East (coastal)</td>
<td>NR</td>
<td>8/1-9/15</td>
</tr>
<tr>
<td>VA West (mountain)</td>
<td>NR</td>
<td>8/1-9/11*</td>
</tr>
</tbody>
</table>

Note: Planting dates in the spring could be earlier if low tunnels or other season extension measures are used in some locations. Use transplants.

CABBAGE PLANTING DATES

<table>
<thead>
<tr>
<th>Varieties</th>
<th>Spring</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL North</td>
<td>3/15-7/1</td>
<td>NR</td>
</tr>
<tr>
<td>AL South</td>
<td>2/1-3/15</td>
<td>8/1-10/31</td>
</tr>
<tr>
<td>GA North</td>
<td>3/15-7/1</td>
<td>7/25-8/15</td>
</tr>
<tr>
<td>GA South</td>
<td>2/1-3/15</td>
<td>8/1-9/30</td>
</tr>
<tr>
<td>KY East</td>
<td>4/10-4/30</td>
<td>7/1-7/15</td>
</tr>
<tr>
<td>KY Central</td>
<td>4/5-4/20</td>
<td>7/15-8/1</td>
</tr>
<tr>
<td>KY West</td>
<td>3/30-4/10</td>
<td>8/1-8/15</td>
</tr>
<tr>
<td>LA North</td>
<td>1/15-3/15</td>
<td>8/1-10/31</td>
</tr>
<tr>
<td>LA South</td>
<td>1/15-3/15</td>
<td>8/1-10/31</td>
</tr>
<tr>
<td>MS North</td>
<td>2/15-3/15</td>
<td>7/25-8/15</td>
</tr>
<tr>
<td>MS South</td>
<td>1/15-3/10</td>
<td>8/5-9/15</td>
</tr>
<tr>
<td>NC East</td>
<td>2/15-4/15</td>
<td>8/1-9/15</td>
</tr>
<tr>
<td>NC West</td>
<td>4/1-8/15</td>
<td>NR</td>
</tr>
<tr>
<td>OK</td>
<td>3/1-3/31</td>
<td>7/15-8/15</td>
</tr>
<tr>
<td>SC East</td>
<td>3/1-4/10</td>
<td>9/1-9/30</td>
</tr>
<tr>
<td>SC West</td>
<td>3/20-4/30</td>
<td>8/15-9/15</td>
</tr>
<tr>
<td>TN East</td>
<td>3/25-4/25</td>
<td>8/1-8/31</td>
</tr>
<tr>
<td>TN West</td>
<td>3/15-4/5</td>
<td>8/10-8/31</td>
</tr>
<tr>
<td>VA East (coastal)</td>
<td>3/15-4/15</td>
<td>7/1-7/31</td>
</tr>
<tr>
<td>VA West (mountain)</td>
<td>4/1-4/20</td>
<td>6/20-7/20</td>
</tr>
</tbody>
</table>

Note: Planting dates in the spring could be earlier if low tunnels or other season extension measures are used in some locations.

NR = Not recommended
Cabbage Planting Dates (cont’d)

<table>
<thead>
<tr>
<th>Region</th>
<th>Spring</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS North</td>
<td>2/5–4/1</td>
<td>7/25–8/15</td>
</tr>
<tr>
<td>MS South</td>
<td>1/15–3/15</td>
<td>8/5–9/15</td>
</tr>
<tr>
<td>NC East</td>
<td>2/15–4/15</td>
<td>8/1–9/15</td>
</tr>
<tr>
<td>NC West</td>
<td>4/1–8/15</td>
<td>NR</td>
</tr>
<tr>
<td>OK</td>
<td>2/15–3/10</td>
<td>8/1–8/25</td>
</tr>
<tr>
<td>SC East</td>
<td>2/1–3/31</td>
<td>8/15–9/30</td>
</tr>
<tr>
<td>SC West</td>
<td>3/15–4/30</td>
<td>7/15–8/30</td>
</tr>
<tr>
<td>VA East (coastal)</td>
<td>3/15–4/15</td>
<td>7/1–8/15</td>
</tr>
<tr>
<td>VA West (mountain)</td>
<td>4/1–4/30</td>
<td>6/20–7/20</td>
</tr>
</tbody>
</table>

Note: Planting dates in the spring could be earlier if low tunnels or other season extension measures are used in some locations.

NR = Not recommended

Cauliflower Planting Dates

<table>
<thead>
<tr>
<th>Region</th>
<th>Spring</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL North</td>
<td>3/15–7/1</td>
<td>NR</td>
</tr>
<tr>
<td>AL South</td>
<td>2/1–3/31</td>
<td>8/1–9/30</td>
</tr>
<tr>
<td>GA North</td>
<td>3/15–7/1</td>
<td>7/25–8/15</td>
</tr>
<tr>
<td>GA South</td>
<td>2/1–3/31</td>
<td>8/1–9/30</td>
</tr>
<tr>
<td>KY East</td>
<td>4/10–4/30</td>
<td>7/1–7/15</td>
</tr>
<tr>
<td>KY Central</td>
<td>4/5–4/20</td>
<td>7/15–8/1</td>
</tr>
<tr>
<td>KY West</td>
<td>3/30–4/10</td>
<td>8/1–8/15</td>
</tr>
<tr>
<td>LA North</td>
<td>2/1–3/15</td>
<td>7/15–10/31</td>
</tr>
<tr>
<td>LA South</td>
<td>2/1–3/15</td>
<td>7/15–10/31</td>
</tr>
<tr>
<td>MS North</td>
<td>2/15–3/15</td>
<td>7/25–8/15</td>
</tr>
<tr>
<td>MS South</td>
<td>1/15–3/10</td>
<td>8/5–9/15</td>
</tr>
<tr>
<td>NC East</td>
<td>2/1–3/15</td>
<td>8/1–9/30</td>
</tr>
<tr>
<td>NC West</td>
<td>4/1–8/15</td>
<td>NR</td>
</tr>
<tr>
<td>OK</td>
<td>2/15–3/10</td>
<td>8/1–8/25</td>
</tr>
<tr>
<td>SC East</td>
<td>3/1–4/10</td>
<td>8/15–8/30</td>
</tr>
<tr>
<td>SC West</td>
<td>3/20–4/30</td>
<td>7/15–8/30</td>
</tr>
<tr>
<td>TN West</td>
<td>3/15–4/15</td>
<td>8/1–8/20</td>
</tr>
<tr>
<td>VA East (coastal)</td>
<td>NR</td>
<td>7/1–7/30</td>
</tr>
<tr>
<td>VA West (mountain)</td>
<td>4/1–4/20</td>
<td>6/20–7/20</td>
</tr>
</tbody>
</table>

Note: Planting dates in the spring could be earlier if low tunnels or other season extension measures are used in some locations.

NR = Not recommended

Kales Planting Dates

<table>
<thead>
<tr>
<th>Region</th>
<th>Spring</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL North</td>
<td>3/15–7/1</td>
<td>NR</td>
</tr>
<tr>
<td>AL South</td>
<td>2/1–3/31</td>
<td>8/1–9/30</td>
</tr>
<tr>
<td>GA North</td>
<td>3/15–7/1</td>
<td>8/1–9/30</td>
</tr>
<tr>
<td>GA South</td>
<td>2/1–3/31</td>
<td>8/1–9/30</td>
</tr>
<tr>
<td>KY East</td>
<td>4/10–4/30</td>
<td>7/1–7/15</td>
</tr>
<tr>
<td>KY Central</td>
<td>4/5–4/20</td>
<td>7/15–8/1</td>
</tr>
<tr>
<td>KY West</td>
<td>3/30–4/10</td>
<td>8/1–8/15</td>
</tr>
<tr>
<td>LA North</td>
<td>2/1–3/15</td>
<td>7/15–10/31</td>
</tr>
<tr>
<td>LA South</td>
<td>2/1–3/15</td>
<td>7/15–10/31</td>
</tr>
<tr>
<td>MS North</td>
<td>2/1–3/31</td>
<td>8/1–9/30</td>
</tr>
<tr>
<td>MS South</td>
<td>1/15–3/10</td>
<td>8/1–9/30</td>
</tr>
<tr>
<td>NC East</td>
<td>2/1–3/15</td>
<td>8/1–9/30</td>
</tr>
<tr>
<td>NC West</td>
<td>4/1–8/15</td>
<td>NR</td>
</tr>
<tr>
<td>OK</td>
<td>2/15–3/10</td>
<td>8/1–8/15</td>
</tr>
<tr>
<td>SC East</td>
<td>2/1–3/10</td>
<td>8/1–9/30</td>
</tr>
<tr>
<td>SC West</td>
<td>3/15–4/30</td>
<td>8/1–9/30</td>
</tr>
<tr>
<td>TN East</td>
<td>3/15–5/1</td>
<td>7/15–8/15</td>
</tr>
<tr>
<td>TN West</td>
<td>2/15–4/15</td>
<td>8/1–8/20</td>
</tr>
</tbody>
</table>

Note: Planting dates in the spring could be earlier if low tunnels or other season extension measures are used in some locations.

NR = Not recommended

Kohlrabi Planting Dates

<table>
<thead>
<tr>
<th>Region</th>
<th>Spring</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL North</td>
<td>3/15–7/1</td>
<td>NR</td>
</tr>
<tr>
<td>AL South</td>
<td>2/1–3/31</td>
<td>8/1–9/30</td>
</tr>
<tr>
<td>GA North</td>
<td>3/15–7/1</td>
<td>8/1–9/30</td>
</tr>
<tr>
<td>GA South</td>
<td>2/1–3/31</td>
<td>8/1–9/30</td>
</tr>
<tr>
<td>KY East</td>
<td>4/10–4/30</td>
<td>7/1–7/15</td>
</tr>
<tr>
<td>KY Central</td>
<td>4/5–4/20</td>
<td>7/15–8/1</td>
</tr>
<tr>
<td>KY West</td>
<td>3/30–4/10</td>
<td>8/1–8/15</td>
</tr>
<tr>
<td>LA North</td>
<td>2/1–3/15</td>
<td>7/15–10/31</td>
</tr>
<tr>
<td>LA South</td>
<td>2/1–3/15</td>
<td>7/15–10/31</td>
</tr>
<tr>
<td>MS</td>
<td>2/1–3/31</td>
<td>8/1–9/30</td>
</tr>
<tr>
<td>NC East</td>
<td>2/1–3/15</td>
<td>8/1–9/30</td>
</tr>
<tr>
<td>NC West</td>
<td>4/1–8/15</td>
<td>NR</td>
</tr>
<tr>
<td>OK</td>
<td>2/15–3/10</td>
<td>8/1–8/25</td>
</tr>
<tr>
<td>SC East</td>
<td>2/1–3/10</td>
<td>8/1–9/30</td>
</tr>
<tr>
<td>SC West</td>
<td>3/15–4/30</td>
<td>8/1–9/30</td>
</tr>
<tr>
<td>TN East</td>
<td>3/15–4/15</td>
<td>7/1–7/31</td>
</tr>
<tr>
<td>TN West</td>
<td>3/15–4/15</td>
<td>8/1–8/20</td>
</tr>
<tr>
<td>VA East (coastal)</td>
<td>3/15–4/15</td>
<td>7/1–7/31</td>
</tr>
<tr>
<td>VA West (mountain)</td>
<td>4/1–4/20</td>
<td>6/20–7/15</td>
</tr>
</tbody>
</table>

Note: Planting dates in the spring could be earlier if low tunnels or other season extension measures are used in some locations.

NR = Not recommended
PLASTIC MULCH
Early spring cabbage, cauliflower, and broccoli are frequently grown using plastic mulch, with black mulch used in the spring and white on black or black mulch painted white used in the fall.

Broccoli. Space raised beds 36-40 inches apart; seed twin rows per bed 6-12 inches apart within row and 12 inches between row; for bunch broccolli use the shorter within row spacing which will also require a more aggressive pest management program; for organic production single rows per bed can be used and within row spacing increased to as much 6-24 inch spacing to aide in pest prevention and maximum fertilizer management.

Brussels Sprouts. Use transplants for best results. Sow seed 4-6 weeks prior to setting seedlings out. Space transplants 18-24” between plants into rows 30-36” apart. Using raised mulch covered beds will allow tighter plant spacings and enhance earliness. It is critical to maintain soil moisture and fertility levels for successful production.

Cabbage. The early cabbage crop is grown from transplants seeded at the rate of 1 ounce for 3,000 plants. Transplants are ready for field planting 4 to 6 weeks after seeding. Storage of pulled, field-grown cabbage transplants should not exceed 9 days at 32°F or 5 days at 66°F prior to planting in the field. Precision seeders can be used for direct seeding. However, seed should be sown 15 to 20 days in advance of the normal transplant date for the same maturity date. Early varieties require 85 to 90 days from seeding to harvest, and main-season crops require 110 to 115 days. Set transplants in rows 2 to 3 feet apart and 9 to 15 inches apart in the row for early plantings and 9 to 18 inches apart for late plantings, depending on variety, fertility, and market use. With cabbage for slaw or krait, wider in-row spacings are used to ensure larger heads.

Chinese Cabbage. Chinese cabbage is a diverse group of growth types of Brassica rapa. Napa and Michihli resemble romaine lettuce with densely overlapping broad leaves with flat mid veins. Napa cabbage is barrel shaped while Michihli is tall and slender. Choi types have a vase shaped growth with broad petioles of white or green with green leaves at the top of the vase. Production inputs are the same as ball head cabbage. Both types grow more quickly than ball head cabbage with most cultivars maturing in 50 days from seeding.

Cauliflower. Cauliflower can be more challenging to grow than other Brassicas in this section. Consider a small test plot to determine the best methods (planting dates, varieties, etc.) to use in your area. Start seed in greenhouse or protected frames 4 to 6 weeks before planting. Use 1 ounce of seed for 3,000 plants. Set transplants in rows 3 to 4 feet apart, and plants are set 18 to 24 inches apart in the row. Make successive plantings in the field at dates indicated in preceding table.

Collards and Kale. Seed at the rate of 2 pounds per acre and thin to desired spacing. For precision, air-assist planters use 1/3 to 1/2 pound per acre for twin rows on 3 foot centers, or use half of this rate for single rows on 3 foot centers. When using transplants, set plants in rows 16 to 24 inches apart and 6 to 18 inches apart within the row.

Kohlrabi. Transplants may be used for a spring crop. Seed 6 weeks before expected transplant date. Use precision seeder for hybrid varieties. Space rows 18 to 24 inches apart and 6 to 8 between plants.

Bolting. Bolting in cabbage, collards and kale, and buttoning in cauliflower, can occur if the early-planted crop is subjected to 10 or more continuous days of temperatures between 35° to 50°F. However, sensitivity to bolting depends upon the variety. Note: A Low level of calcium in plant tissue can also induce bolting.

SPECIAL NOTES FOR PEST MANAGEMENT
Note: The use of a spreader-sticker is recommended for cole crops in any case; the heavy wax coating on the leaves reduces deposition of spray materials. These adjuvants allow the spray to spread out and stick to the leaves. Multiple nozzles per row or bed will provide the under leaf coverage and high coverage rates necessary to manage caterpillar pests of cole crops.

INSECT MANAGEMENT
Aphids: The cabbage aphid can be a serious problem on these crops and should be treated immediately if noticed. Other aphid species are found on these crops and should be treated if the crop is near harvest or their level of infestation is increasing. Often parasitic wasps take out these species if broad-spectrum insecticides use is avoided.

Cabbage Root Maggot: Root maggots and other similar insects such as the seed corn maggot can be a problem in heavier soils in the Southeast especially during cool, damp times of the year. Avoid planting into soils with freshly plowed down crop residue or high levels of organic matter.

Caterpillars: A number of moth and butterfly larvae feed on cole crops. The major ones are the cabbage looper (CL), the imported cabbageworm (ICW), and the diamondback moth (DBM) referred to as the cabbageworm complex. Other caterpillars found on cole crops are the cross-striped cabbageworm, corn earworm, armyworms, and webworms. Webworms often damage the bud of the young plants and should be treated immediately; very young larvae are much more easily managed than older ones.

Scouting and using a threshold for spray applications is a cost effective method of managing these pests. Broad-spectrum insecticides that reduce the natural enemies in the field should be avoided if at all possible. If the cabbageworm complex is the major group of pests, a threshold of 1 cabbage looper equivalent (CLE) per 10 plants can be used. A cabbage looper equivalent relates the feeding amounts of the three caterpillars. One cabbage looper is equivalent to 1.5 imported cabbageworms or 5 diamondback moth larvae. (Example: 10 DBM larvae per 10 plants would be like 2 CLEs per 10 plants; this level would require treatment.) In other areas of the South where armyworms are common pests of cole crops, a threshold of 1 caterpillar (regardless of the kind) per 3 plants has been effectively used as a
threshold. The use of a threshold to determine the need for treatment usually reduces the number of sprays per crop without loss of crop quality and improves the profit margin.

Note: *Bacillus thuringiensis* (BT) preparations are effective against most of these pests but must be eaten by the larvae. Thorough coverage of the plant particularly the undersurface of the leaf is essential, and the use of a spreader-sticker is strongly recommended.

Note: Several of these insects are prone to develop resistance to insecticides. Growers must rotate among classes of insecticides for each pest generation. See the section on resistance management.

Nematode Management. Use nematicides listed in the “Nematode Control in Vegetate Crops” tables in the Disease Control section.

HARVESTING AND STORAGE

Fresh market cabbage should be harvested when heads are firm and weigh 2.5 to 3.0 pounds. Most markets require one to three wrapper leaves to remain. The heads should be dense and free of insect damage. Cabbage for slaw or kraut usually has much larger heads and weighs 3 to 12 pounds.

Broccoli should be harvested when the beads (flower buds) are still tight, but a few outer beads have begun to loosen. The stalks should be 7 inches long from top of the crown to the butt. Broccoli is usually bunched in 1.5 pound bunches with 2 to 3 heads per bunch. Secure bunches with a rubber band or twist tie.

Brussels sprouts are ready to harvest when they are firm, green, and 1 to 2 inches in diameter. Remove sprouts by twisting them until they break away from the plant.

Kohlrabi should be harvested when the bulbs are 2 to 3 inches in diameter and before internal fibers begin to harden.

Cauliflower is harvested while the heads are pure white and before the curds become loose and ricey. Heads are blanched by tying outer leaves over the heads when heads are 3 to 4 inches in diameter. Blanching takes about 1 week in hot weather and 2 weeks in cooler weather.

Kale is harvested by cutting off the entire plant near ground level, or lower leaves may be stripped from plant. Collards may be harvested at any stage of growth. See Table 14 for further postharvest information on these crops.
CARROTS (Daucus carota)

<table>
<thead>
<tr>
<th>VARIETIES</th>
<th>AL</th>
<th>GA</th>
<th>KY</th>
<th>LA</th>
<th>MS</th>
<th>NC</th>
<th>OK</th>
<th>SC</th>
<th>TN</th>
<th>VA</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARROTS</td>
<td></td>
</tr>
<tr>
<td>Apache</td>
<td>A</td>
<td>G</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>S</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baltimore</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belgrado</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bolero</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Danvers</td>
<td>A</td>
<td>L</td>
<td>N</td>
<td>S</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deep Purple</td>
<td>A</td>
<td>L</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mavenick</td>
<td>G</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mellow Yellow</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mokum</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Napoli</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nelson</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purple Haze</td>
<td>A</td>
<td>G</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>S</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Romance</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sugarsnax 54</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>N</td>
<td>S</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yellow Bunch</td>
<td>A</td>
<td>L</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Abbreviations for state where recommended.
2 Purple.
3 Imperator type: 7-8 inches long w/ long conical shape and narrow shoulders.
4 Nantes type: Smooth, cylindrical over entire length w/ a blunt end.
5 Danvers type: Tapering root w/ a semi-blunt tip.
6 Nantes x Imperator type.
7 Yellow.
8 Chantenay type: 6-7 inches lone and cone-shaped.
9 Processing type.

Seeding Dates. Small carrot seedlings up to six leaves cannot withstand hard freezes but are somewhat frost tolerant. Optimum temperatures are in the range of 60-70°F, with daytime highs of 75°F and nighttime lows of 55°F ideal. Although the crop can be grown outside this range with little or no effect on tops, temperatures differing drastically from the above can adversely affect root color, texture, flavor, and shape. Lower temperatures in this range may induce slow growth and make roots longer, more slender and lighter in color. Carrots with a root less than one inch in diameter are more susceptible to cold injury than larger roots. Soil temperatures should be above 40°F and below 85°F for best stand establishment.

CARROT PLANTING DATES (cont’d)

<table>
<thead>
<tr>
<th>Spring</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>TN East</td>
<td>3/15–4/30</td>
</tr>
<tr>
<td>TN West</td>
<td>4/1–7/31</td>
</tr>
<tr>
<td>VA East (coastal)</td>
<td>3/15–4/30</td>
</tr>
<tr>
<td>VA West (mountain)</td>
<td>4/1–6/15</td>
</tr>
</tbody>
</table>

SPACING

Spatial arrangements for planting can differ markedly. Carrots can be planted with vacuum, belt, or plate seeders. Often a special attachment called a scatter plate or spreader shoe is added to the plate planters to scatter the seed in a narrow band. Carrots should be spaced 1½ to 2 inches apart within the row. Carrot seed should be planted no deeper than ¼-½ inch. A final stand of 14 to 18 plants per foot of twin row is ideal. Three or four of these twin rows are situated on one bed, depending on the width of the bed. One arrangement is to plant three twin rows on beds that are on 72-inch centers. Another arrangement is to plant four twin rows on a 92-inch bed (center to center). The sets of twin rows are 14 to 18 inches apart. Beds on 72-inch centers will have approximately 48 inches of formed bed. Row spacing wider than 18 inches will reduce total plant stand per acre and thus, will reduce total yield. Ideal plant populations should be in the range of 400,000 for fresh market carrots and 250,000 for processing carrots.
PLANTING AND LAND PREPARATION

Beds that are slightly raised are advantageous because they allow for good drainage. Beds should be firmed and not freshly tilled before planting and soil should be firmed over the seed at planting. A basket or roller attachment is often used to firm the soil over the seed as they are planted. Light irrigation will be required frequently during warm, dry periods for adequate germination.

Windbreaks are almost essential in areas with primarily sandy soils. Sand particles moved by wind can severely damage young carrot plants, reducing stands. Small grain strips planted between beds or at least planted between every few beds can help reduce this sandblasting injury.

Begin by deep turning soils to bury any litter and debris and breaking soils to a depth of 12-14 inches. Compacted soils or those with tillage pans should be subsoiled to break the compacted areas. If uncorrected, compact soil or tillage pans can result in restriction of root expansion. It is best to apply lime after deep turning to prevent turning up acid soil after lime application. Prepare a good seedbed using bed-shaping equipment. Do not use disks or rototiller to avoid soil compaction. Carrots should be planted on a slightly raised bed (2-3 inches) to improve drainage. After beds are tilled and prepared for seeding, it is best to allow the beds to settle slightly before planting. Avoid other tillage practices that can increase soil compaction. Following in the same tracks for all field operations will help reduce compaction in planting areas.

SPECIAL NOTES FOR PEST MANAGEMENT

DISEASE MANAGEMENT

Root-Knot Nematode: By far, the most destructive problem in carrots is root-knot nematodes. Root-knot nematodes are small eel-like worms that live in the soil and feed on plant roots. Since the root of the carrot is the harvested portion of the plant, no root-knot damage can be allowed. Root-knot causes poor growth and distorted or deformed root systems which results in a non marketable root. Root-knot damage also allows entry for other diseases such as Fusarium, Pythium, and Erwinia.

If any root-knot nematodes are found in a soil assay, treatment is recommended. Good success has been obtained using field soil fumigation to eradicate root-knot nematodes in the root zone of carrots. Use nematicides or fumigants listed in the “Nematode Control in Vegetate Crops” tables in the Disease Control section.

SOIL-BORNE ROOT DISEASES

Depending on the cropping history of the field, Pythium, Southern Blight, and Sclerotinia may cause problems. It is advisable to avoid fields where these diseases have been identified in the previous crop. Deep turning is also necessary to help prevent root diseases.

Pythium Blight: is usually characterized by flagging of the foliage indicating some root damage is occurring. Under wet conditions, Pythium may cause serious problems to the root causing a white mycelium mat to grow on the infected area which rapidly turns to a watery soft rot. Forking of the root system is also a common symptom associated with Pythium infection. Rotation is considered a major factor in reducing Pythium along with the use of fungicides.

Southern Blight: Southern blight causes serious damage to carrots. This disease is usually associated with carrots remaining in the field after the soil begins to warm in the spring. This disease causes a yellow top to develop with a cottony white fungal growth associated with the upper part of the carrot root. The top of the root and the surrounding soil may be covered with a white mycelium with tan sclerotia developing as the disease progresses. Southern Blight is best controlled by using rotation and deep turning.

Sclerotinia Blight: Sclerotinia blight causes serious damage to the roots of carrots. This disease is usually associated with carrots remaining under wet soil conditions. White mycelium forms around the infected area and later, dark sclerotia develop on the white mycelium which is a good indicator of Sclerotinia rot. This disease causes a progressive watery soft rot of the carrot root tissue and is considered a potential problem in the production of carrots. Rotation and deep turning of the soil are recommended to reduce losses to this disease.

Rhizoctonia: Rhizoctonia rot causes brown to black lesions to develop on the sides of the carrot root. The disease is much worse under cool, wet conditions. Saturated soil conditions often enhance all soil-borne diseases which are potential problems in carrot production. Rhizoctonia damage can be minimized by using rotation and good cultural practices. Soil fumigation will prevent damage with any of the soil inhabiting fungi.

FOLIAR DISEASES

Bacterial Blight: Bacterial blight causes irregular brown spots on the leaves and dark brown streaks on the petioles and stems. The lesions on the foliage begin as small yellow areas with the centers becoming dry and brittle, with an irregular halo. The bacterium affects the leaflets, stems and petioles as the disease progresses. Some of these lesions may crack open and ooze the bacteria. These bacteria may be washed down to the crown of the plant causing brown lesions on the top of the root. The earlier the infection occurs the greater the damage to the root. The bacterial is spread by splashing water and takes about 10-12 days before symptoms appear after inoculation. Disease development progresses rapidly between 77° and 86° F. Crop rotation is a major factor in controlling Bacterial blight.

Alternaria Blight: Alternaria blight causes small dark brown to black spots with yellow edges forming mostly on the leaf margins. The spot increases as the disease progresses and in some cases entire leaflets may be killed. In moist weather, the disease can move so rapidly it resembles frost injury. Such conditions can reduce the efficiency of mechanical harvesters which require strong healthy tops to remove the carrot from the soil. Alternaria may also cause damping off of seedlings and a black decay of roots. The spores and mycelium are spread by splashing rains,
contaminated soil, or on cultivation tools. The disease can manifest itself in about 10 days after infection. The optimum temperature for Alternaria blight is 82˚ F.

Cercospora Leaf Blight: Cercospora blight causes lesions to form on the leaves, petioles and stems of the carrot plant. The symptoms appear to mimic that of Alternaria blight but can be separated using a compound microscope. Cercospora blight progresses in warm, wet weather and spots appear in about 10 days after infection. The youngest leaves are usually more susceptible to Cercospora infection.

INSECT MANAGEMENT

Soil Insects: Wireworms, white grubs, and the granulate cutworm may be partially controlled with good cultural practices. Soil should be deep turned in sufficient time prior to planting to allow destruction of previous crop residue that may harbor soil insects. When possible, avoid planting just after crops that are slow to decompose such as tobacco and corn. Avoid planting behind peanuts and root crops such as sweetpotatoes and turnips. If a field has a history of soil insect problems, either avoid these or, broadcast incorporate a soil insecticide prior to planting. Plantings in fields that were recently in permanent pasture should be avoided as should fields recently planted to sod/turf, although these are not as critical. Fields with a history of whitefringed beetle larvae should not be planted to carrots because there are no currently registered insecticides effective on this pest.

Flea beetle larvae can damage roots by feeding from the surface into the cortex. The damage will take on the appearance of narrow “s” shaped canals on the surface. Flea beetle larvae can be prevented easily with soil insecticides.

The seedcorn maggot is an opportunistic pest that takes advantage of crops that are under stress or where there is decaying organic matter. At-planting soil insecticides will prevent the development of maggot infestations for several weeks after planting. Seedcorn maggots cannot be effectively controlled after the infestation begins. If plants become stressed during the period of high root maggot potential, preventive applications of insecticides should be sprayed every seven days until the stress is minimized.

FOLIAR INSECTS

Foliar insect pests may be monitored and insecticides applied as needed. Carrots should be scouted at least once per week for developing populations of foliage pests.

Aphids: Several species of aphids may develop on carrots. The most common aphids to inhabit carrots are the green peach aphid and the cotton or melon aphid. Often parasitic wasps and fungal diseases will control these aphids. If populations persist and colonize plants rapidly over several weeks and honeydew or sooty mold is observed readily, then foliar insecticides are justified.

Flea Beetles: Fleas beetle adults may cause severe damage to the foliage on occasion. If carrots are attacked during the seedling stage and infestations persist over time, an insecticide application may be necessary. If plants are in the cotyledon to first true leaf stage, treatments should be made if damage or flea beetles are observed on more than 5% of the plants. After plants are well established, flea beetles should be controlled only if foliage losses are projected to be moderate to high, e.g., 15% or more.

Vegetable Weevil: The adult and larvae of the vegetable weevil may attack carrots. The adult and larvae feed on the foliage. Vegetable weevil larvae often will feed near the crown of plants and, if shoulders are exposed at the soil surface, larvae will feed on tender carrots. Treatments are justified if adults or larvae and damage are easily found in several locations.

Armyworms: The armyworm can cause damage in carrots. Armyworms may move from grain crops or weeds into carrots or adults may lay eggs directly on carrot plants. Armyworms are easily managed with foliar insecticides.

Beet Armyworm: The beet armyworm infests carrots in the late spring. Usually natural predators and especially parasites regulate beet armyworm populations below economically damaging levels.

Whiteflies: The silverleaf whitefly can be a problem during the early seedling stage of fall plantings. Silverleaf whitefly migrates from agronomic crops and other vegetables during the late summer. Infestation may become severe on carrots grown in these production areas. Often whiteflies may be controlled by several natural enemies and diseases by early fall so, treatments may not be justified. However, if whiteflies develop generally heavy populations, treatment of young plantings is justified.

HARVESTING AND STORAGE

Topped Carrots: will last 4 to 5 months at 32°F and 90% to 95% relative humidity. See Table 14 for further post harvest information.
CUCUMBERS (Cucumis sativus)

<table>
<thead>
<tr>
<th>VARIEDIES</th>
<th>AL</th>
<th>GA</th>
<th>KY</th>
<th>LA</th>
<th>MS</th>
<th>NC</th>
<th>OK</th>
<th>SC</th>
<th>TN</th>
<th>VA</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUCUMBERS</td>
<td></td>
</tr>
<tr>
<td>Slicer / Fresh Market</td>
<td></td>
</tr>
<tr>
<td>Brickyard</td>
<td>2, 4, 5, 6, 7, 8, 9, 10</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bristol</td>
<td>2, 4, 5, 6, 7, 8, 10</td>
<td>A</td>
<td>N</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cobra</td>
<td>2, 3, 5, 6, 7, 8, 9, 10</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cortez</td>
<td>2, 3, 5, 6, 7, 8, 9, 10</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>S</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dasher II</td>
<td>2, 3, 4, 5, 6, 10</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
<td>S</td>
<td>T</td>
</tr>
<tr>
<td>General Lee</td>
<td>4, 5, 6, 10</td>
<td>A</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>O</td>
<td>S</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poinsett</td>
<td>2, 3, 5, 10</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raceway</td>
<td>2, 3, 4, 5, 6, 7, 8, 10</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rockingham</td>
<td>2, 3, 5, 6, 7, 8, 9, 10</td>
<td>A</td>
<td>K</td>
<td>M</td>
<td>N</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slice More</td>
<td>2, 4, 5, 6, 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speedway</td>
<td>2, 3, 4, 5, 6, 10</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>S</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stonewall</td>
<td>2, 3, 4, 5, 6, 10</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>N</td>
<td></td>
<td>S</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SV 4142</td>
<td>2, 3, 4, 5, 6, 10</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SV 4719CS</td>
<td>2, 3, 4, 5, 6, 8, 10, 14</td>
<td>A</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thunder</td>
<td>1, 4, 5, 6, 8, 10</td>
<td>A</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>S</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pickling Types - Multiple Harvest</td>
<td></td>
</tr>
<tr>
<td>Calypso</td>
<td>2, 3, 4, 5, 6, 10</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>S</td>
<td>T</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Eureka</td>
<td>2, 3, 4, 5, 6, 7, 8, 9, 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K</td>
<td>V</td>
</tr>
<tr>
<td>Fancipak</td>
<td>2, 3, 4, 5, 6, 10</td>
<td>A</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>O</td>
<td>S</td>
</tr>
<tr>
<td>Vlasstar</td>
<td>2, 3, 5, 6, 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pickling Types - Multiple or Once-over Harvest</td>
<td></td>
</tr>
<tr>
<td>Arabian</td>
<td>2, 3, 4, 5, 6, 10</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peacemaker</td>
<td>2, 3, 4, 5, 6, 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parthenocarpic Types - Seedless Pickling – Multiple Harvest</td>
<td></td>
</tr>
<tr>
<td>Bernstein</td>
<td>5, 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liszt</td>
<td>5, 6, 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parthenocarpic Types – Seedless Pickling – Multiple or Once-over Harvest</td>
<td></td>
</tr>
<tr>
<td>Gershwin</td>
<td>5, 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rubenstein</td>
<td>5, 6, 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parthenocarpic Types – Seedless Pickling – Once-over Harvest</td>
<td></td>
</tr>
<tr>
<td>Bowie</td>
<td>5, 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GREENHOUSE CUCUMBERS

Long Dutch/English Types

<table>
<thead>
<tr>
<th></th>
<th>AL</th>
<th>GA</th>
<th>KY</th>
<th>LA</th>
<th>MS</th>
<th>NC</th>
<th>OK</th>
<th>SC</th>
<th>TN</th>
<th>VA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bologna</td>
<td>7, 10, 11</td>
<td>A</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>S</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Camaro</td>
<td>13, 14</td>
<td>A</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cumlaude</td>
<td>2, 3, 10, 14</td>
<td>A</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>S</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kasja</td>
<td>5, 11</td>
<td>A</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verdon</td>
<td>5, 6, 10, 11, 12</td>
<td>A</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Beit Alpha/Mini Types

<table>
<thead>
<tr>
<th></th>
<th>AL</th>
<th>GA</th>
<th>KY</th>
<th>LA</th>
<th>MS</th>
<th>NC</th>
<th>OK</th>
<th>SC</th>
<th>TN</th>
<th>VA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delta Star</td>
<td>5, 6, 12</td>
<td>A</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>S</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jawell</td>
<td>6, 14</td>
<td>A</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Katrina</td>
<td>5, 6, 12</td>
<td>A</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manar</td>
<td>5, 6, 14</td>
<td>A</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Picowell</td>
<td>3</td>
<td>A</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sarig</td>
<td>5</td>
<td>A</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Abbreviations for state where recommended.
2. Anthracnose tolerance/resistance.
3. Angular Leaf Spot tolerance/resistance.
4. Downy Mildew tolerance/resistance.
5. Powdery Mildew tolerance/resistance.
6. Cucumber Mosaic Virus tolerance/resistance.
7. Papaya Ring Spot Virus tolerance/resistance.
8. Zucchini Yellows Mosaic Virus tolerance/resistance.
10. Scab and gummosis tolerance/resistance.
11. Target spot tolerance/resistance.
13. Low light tolerant.
14. All female (gynoecious).
Field Production. For earlier cucumber production and higher, more concentrated yields, use gynoecious varieties. A gynoe-
cious plant produces only female flowers. Upon pollination fe-
male flowers will develop into fruit. To produce pollen, 10% to
15% pollenizer plants must be planted; seed suppliers add this
seed to the gynoecious variety. Both pickling and slicing gynoe-
cious varieties are available. For machine harvest of pickling
cucumbers, high plant populations (55,000 per acre or more)
concentrate fruit maturity for increased yields.

Planting Dates. For earliness container-grown transplants are
planted when daily mean soil temperatures have reached 60°F
but most cucumbers are direct seeded. Consult the following ta-
ble for planting dates for transplants in your area. Early plant-
ings should be protected from winds with hot caps or row cov-
ers. Growing on plastic mulch can also enhance earliness.

CUCUMBER SLICERS PLANTING DATES

<table>
<thead>
<tr>
<th></th>
<th>Spring</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL North</td>
<td>4/15-7/15</td>
<td>8/1-8/30</td>
</tr>
<tr>
<td>AL South</td>
<td>3/1-4/30</td>
<td>8/1-9/15</td>
</tr>
<tr>
<td>GA North</td>
<td>4/15-7/15</td>
<td>8/1-8/30</td>
</tr>
<tr>
<td>GA South</td>
<td>3/1-4/30</td>
<td>8/1-9/15</td>
</tr>
<tr>
<td>KY East</td>
<td>5/10-6/1</td>
<td>6/1-6/15</td>
</tr>
<tr>
<td>KY Central</td>
<td>5/5-6/1</td>
<td>6/1-7/1</td>
</tr>
<tr>
<td>KY West</td>
<td>4/25-5/15</td>
<td>5/15-7/15</td>
</tr>
<tr>
<td>LA South</td>
<td>3/1-5/15</td>
<td>8/1-9/15</td>
</tr>
<tr>
<td>MS North</td>
<td>4/1-5/15</td>
<td>7/25-8/21</td>
</tr>
<tr>
<td>MS South</td>
<td>3/15-5/1</td>
<td>8/14-9/14</td>
</tr>
<tr>
<td>NC West</td>
<td>5/15-7/31</td>
<td>NR</td>
</tr>
<tr>
<td>OK</td>
<td>4/15-6/15</td>
<td>7/10-8/15</td>
</tr>
<tr>
<td>SC East</td>
<td>3/15-5/15</td>
<td>8/1-8/30</td>
</tr>
<tr>
<td>SC West</td>
<td>4/15-6/5</td>
<td>8/1-8/30</td>
</tr>
<tr>
<td>TN East</td>
<td>5/5-6/15</td>
<td>7/1-8/10</td>
</tr>
<tr>
<td>TN West</td>
<td>5/1-6/1</td>
<td>7/25-8/25</td>
</tr>
<tr>
<td>VA East (coastal)</td>
<td>4/15-6/15</td>
<td>7/1-7/31</td>
</tr>
<tr>
<td>VA West (mountains)</td>
<td>5/15-6/30</td>
<td>6/15-7/31</td>
</tr>
<tr>
<td>NR = Not recommended</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CUCUMBER PICKLES PLANTING DATES

<table>
<thead>
<tr>
<th></th>
<th>Spring</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL North</td>
<td>4/15-7/15</td>
<td>8/1-8/30</td>
</tr>
<tr>
<td>AL South</td>
<td>3/1-4/30</td>
<td>8/1-9/15</td>
</tr>
<tr>
<td>GA North</td>
<td>4/15-7/15</td>
<td>NR</td>
</tr>
<tr>
<td>GA South</td>
<td>3/1-4/30</td>
<td>8/1-9/15</td>
</tr>
<tr>
<td>KY East</td>
<td>5/10-6/1</td>
<td>6/1-6/15</td>
</tr>
<tr>
<td>KY Central</td>
<td>5/5-6/1</td>
<td>6/1-7/1</td>
</tr>
<tr>
<td>KY West</td>
<td>4/25-5/15</td>
<td>5/15-7/15</td>
</tr>
<tr>
<td>LA North</td>
<td>4/1-5/15</td>
<td>7/15-8/31</td>
</tr>
<tr>
<td>LA South</td>
<td>3/15-5/15</td>
<td>8/1-9/15</td>
</tr>
<tr>
<td>MS South</td>
<td>4/1-4/15</td>
<td>NR</td>
</tr>
<tr>
<td>NC East</td>
<td>4/20-5/20</td>
<td>7/15-8/15</td>
</tr>
<tr>
<td>NC West</td>
<td>5/25-7/31</td>
<td>NR</td>
</tr>
<tr>
<td>SC East</td>
<td>3/15-5/15</td>
<td>8/1-8/30</td>
</tr>
<tr>
<td>SC West</td>
<td>4/15-6/15</td>
<td>8/1-8/30</td>
</tr>
<tr>
<td>TN East</td>
<td>5/5-6/15</td>
<td>7/1-8/10</td>
</tr>
<tr>
<td>TN West</td>
<td>5/1-6/1</td>
<td>7/25-8/25</td>
</tr>
<tr>
<td>VA East (coastal)</td>
<td>4/15-6/15</td>
<td>7/1-7/31</td>
</tr>
<tr>
<td>VA West (mountains)</td>
<td>5/15-6/30</td>
<td>6/15-7/31</td>
</tr>
<tr>
<td>NR = Not recommended</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bitterness

Bitterness can be a common problem in cucumber. Cucumbers (and all other cucurbits) produce a group of chem-
icals called cucurbitacins which can cause bitterness to devel-
op. As cucurbitacin concentrations increase, the more bitter the
cucumber will taste. Generally, the amount of cucurbitacin in a
cucubit fruit is low and cannot be tasted. Mild bitterness results
from higher levels of cucurbitacin often triggered by environ-
mental stresses, including high temperatures, wide tempera-
ture swings, or too little water. Uneven watering practices (too wet
followed by too dry), low soil fertility, and low soil pH are also
possible factors. Over-mature or improperly stored cucumbers
may also develop a mild bitterness, although it is not usually
severe.

Mulching

Fumigated soil aids in the control of weeds and soil-
borne diseases. Black plastic mulch laid before field planting
conserves moisture, increases soil temperature, and increases
early and total yield. Plastic and fumigant should be applied on
well-prepared planting beds 2 to 4 weeks before field plant-
ing. Plastic should be placed immediately over the fumigated soil.
The soil must be moist when laying the plastic. Fumiga-
tion alone may not provide satisfactory weed control under clear
plastic. Herbicides labeled and recommended for use on cucum-
bers may not provide satisfactory weed control when used under
clear plastic mulch on nonfumigated soil. Black plastic can be
used without a herbicide. Fertilizer must be applied during bed
preparation. At least 50% of the nitrogen (N) should be in the
nitrate (NO₃⁻) form.

Foil and other reflective mulches can be used to repel
aphids that transmit viruses in fall-planted (after July 1) cu-
cumbers. Direct seeding through the mulch is recommended for
maximum virus protection. Fumigation will be necessary when
there is a history of soilborne diseases in the field. Growers
should consider drip irrigation with plastic mulch. For more in-
formation, see the section on “Irrigation”.

SUGGESTED FERTIGATION SCHEDULE

<table>
<thead>
<tr>
<th>Days after planting</th>
<th>Daily nitrogen</th>
<th>Daily potash</th>
<th>Cumulative Nitrogen</th>
<th>Cumulative Potash</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(lb / A)</td>
<td>(lb / A)</td>
<td>(lb)</td>
<td>(lb)</td>
</tr>
<tr>
<td>Preplant</td>
<td>25.0</td>
<td>45.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-14</td>
<td>0.9</td>
<td>1.8</td>
<td>37.6</td>
<td>75.2</td>
</tr>
<tr>
<td>15-63</td>
<td>1.5</td>
<td>3.0</td>
<td>110.3</td>
<td>196.6</td>
</tr>
<tr>
<td>64-77</td>
<td>0.7</td>
<td>1.4</td>
<td>120.1</td>
<td>216.6</td>
</tr>
</tbody>
</table>
Alternative Fertigation Schedule for Cucumber* (N:K, 1:1)

<table>
<thead>
<tr>
<th>Days after planting</th>
<th>Daily nitrogen</th>
<th>Daily potash</th>
<th>Cumulative Nitrogen</th>
<th>Cumulative Potash</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(lb / A)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preplant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-7</td>
<td>1.0</td>
<td>1.0</td>
<td>31.0</td>
<td>31.0</td>
</tr>
<tr>
<td>8-21</td>
<td>1.5</td>
<td>1.5</td>
<td>52.0</td>
<td>52.0</td>
</tr>
<tr>
<td>22-63</td>
<td>2.0</td>
<td>2.0</td>
<td>136.0</td>
<td>136.0</td>
</tr>
<tr>
<td>64-70</td>
<td>1.5</td>
<td>1.5</td>
<td>150.0</td>
<td>150.0</td>
</tr>
</tbody>
</table>

*Adjust based on tissue analysis.

Greenhouse Cucumber Production. If you plan on growing cucumbers to maturity in the greenhouse, you need to select a greenhouse variety. This is because these varieties have been bred specifically for greenhouse conditions – lower light, higher humidity and temperature, etc., and they have better disease resistance than field types.

Nearly all greenhouse cucumber varieties are gynoecious, parthenocarpic hybrids. This means that these varieties produce only female flowers and the fruit are seedless. Since they are all female, no pollination is needed. The seedless characteristic makes the fruit very tender to eat. Greenhouse cucumbers are also thin skinned which makes them more desirable than field varieties. While non-greenhouse types would grow in the greenhouse, the yield and quality would be reduced, and therefore they may not be profitable.

Variety selection is based on yield, fruit size, uniformity, disease resistance, and lack of physiological disorders, as well as the market demand for the type grown. In some markets the long, European types sell better, while in others, the small beit alpha types, also referred to as “minis”, are preferred. For suggestions on varieties, see the variety table above. Insect and disease control methods for greenhouse vegetables can be found in Tables 2-29 (in the Insect section) and 3-45 (in Disease section), respectively.

Special Notes for Pest Management

Insect Management

Cucumber Beetle: Cucumber beetles can transmit bacterial wilt; however, losses from this disease vary greatly from field to field and among different varieties. Pickling cucumbers grown in high-density rows for once-over harvesting can compensate for at least 10% stand losses. On farms with a history of bacterial wilt infections and where susceptible cultivars are used, foliar insecticides should be used to control adult beetles before they feed extensively on the cotyledons and first true leaves. Begin spraying shortly after plant emergence and repeat applications at weekly intervals if new beetles continue to invade fields. Treatments may be required until stems begin vining (usually about 3 weeks after plant emergence), at which time plants are less susceptible to wilt infections.

Pickleworm, Melonworm: Make one treatment prior to fruit set, and then treat weekly.

Aphids: Aphids transmit several viruses (CMV, WMV, PRSV, etc.) and can delay plant maturity. Thorough spray coverage beneath leaves is important. For further information on aphid controls, see the preceding “Mulching” section. Treat seedlings every 5 to 7 days as needed.

Mites: Mite infestations generally begin around field margins and grassy areas. CAUTION: DO NOT mow or maintain these areas after midsummer because this forces mites into the crop. Localized infestations can be spot-treated. Begin treatment when 50% of the terminal leaves show infestation. Note: Continuous use of pyrethroids may result in mite outbreaks.

Disease Management

Cucurbit Downy Mildew Forecasting System: Cucurbit downy mildew (CDM) is a devastating foliar cucurbit disease. While difficult, if not impossible to control, CDM can be prevented by using effective IPM practices. A useful tool for prevention of CDM is the CDM forecasting system. This program depends on the accurate reporting of CDM in the field as well as the monitoring of over 50 strategically placed sentinel plots. These plots are monitored by Plant Pathologists at multiple Land Grant Universities throughout the United States and Canada. Forecasts of the epidemic movement of the disease are generated 3 times a week. Risk maps are produced from these forecasts. For forecasts, maps, local contacts and other helpful information please visit our website, http://cdm.ipmpipe.org. If you think you have CDM, please contact your local Extension office.

Phytophthora Blight: To minimize the occurrence of this disease, fields should be adequately drained to ensure that soil water does not accumulate around the base of the plants. Just before plants begin vining, subsoil between rows to allow for faster drainage following rainfall.

Belly Rot: Belly rot is a soil-borne disease. Application of appropriate crop protectant at last cultivation may be helpful.

Weed Management: See the previous “Mulching” section for further information on weed control under clear plastic mulch.

Nematode Management. Use nematicides listed in the “Nematode Control in Vegetables” tables in the Disease Control section.

Pollination

Bees are critical for insuring that pollination and cucumber fruit set occurs. Supplementing a field with bee hives can be especially helpful when native bee populations are low or lacking. Having sufficient bees provides the opportunity to maximize cucumber yields and quality. Lack of sufficient pollination can result in a variety of misshapen fruits; dogbone, crooks, nubs, etc.

Rented honeybee hives are often placed in cucumber fields as plants begins to flower. The timing of hive placement is important because cucumber flowers are not that attractive to honeybees. If the honeybee hives are placed by cucumber fields prematurely before the crop flowers, the honeybees may forage to wild flowers nearby which are more attractive due to their higher nectar and pollen supply. If this occurs, the honeybees may be predisposed to visit these wild flowers even though cucumber flowers are in full bloom a few days later. Assuming that the
honeybee hive is a healthy hive, one hive per acre is recommend-
ed for hand-harvested pickling and slicing cucumbers with rec-
ommended plant populations of approximately 25,000 to 30,000
plants per acre. For mechanical or once-over harvested pickling
cucumbers, the recommended plant populations are generally
55,000 to 60,000 plants per acre. Therefore, two honeybee hives
should be placed per acre to account for the increased number of
flowers from the increased plant population used for mechanical-
ly harvested cucumbers. When hybrid cucumbers are grown at
high plant populations for machine harvest, flowers require 15 to
20 visits for maximum fruit set. Generally, as the number of vis-
its increase, there will be an increase in the numbers of fruit set
and an increase in number of seed per fruit, as well as improved
fruit shape and fruit weight.

Bumblebees are an effective pollinator alternative to honey-
bees in cucumber production. Bumblebees have some advantag-
es compared to honeybees; flying under more adverse weather
conditions in which it is cool, rainy or windy. They will also visit
flowers earlier in the morning than honeybees, and fly later in
the afternoon and early evening when the temperatures cool. Be-
cause bumblebees have a larger body size than honeybees, few-
er flower visits are required by bumblebees in order to achieve
good pollination and fruit set.

As with honeybees, bumblebees should be placed in the cu-
cumber field shortly after the crop begins to flower. Bumblebees
will typically last for 6 to 12 weeks and will meet the pollination
needs of 2 to 3 sequentially planted cucumber crops.

Bumblebee hives are sold as a quad or four hives per quad.
A quad is the minimum order that can be purchased from a
supplier. Generally one bumblebee hive contains 200 to 250
bees and is equivalent to one honeybee hive. Thus, one quad
of bumblebees (minimum order, contains 4 bumblebee hives)
would provide good pollination for four acres of hand-harvest-
ed cucumbers. For machine-harvest pickling cucumbers, one
quad would provide good pollination for every two acres. Bum-
blebee hives should not be placed in direct sunlight so that the
bees work more efficiently. No more than two bumblebee quads
should be placed in one location so that pollination is more uni-
form in the field. As with honeybees, one must carefully plan
when to spray insecticides so that the bumblebees are not killed.
Because bumblebees are most active from dawn until late morn-
ing and from about 4 PM to sunset, the hives need to be closed
around 11 AM so that the bees in the hive remain protected
during a late evening spray application. Bumblebee quads should
be located a minimum of 650 to 700 feet away from the other
quads in order to maximize pollinator efficiency.

See the section on “Pollination” in the General Production
Recommendations for additional information.

HARVESTING AND STORAGE
See Table 14 for postharvest information.
EGGPLANT (Solanum melongena)

EGGPLANT PLANTING DATES

<table>
<thead>
<tr>
<th>Spring</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL North</td>
<td>4/1–7/15</td>
</tr>
<tr>
<td>AL South</td>
<td>3/1–4/30</td>
</tr>
<tr>
<td>GA North</td>
<td>4/15–7/15</td>
</tr>
<tr>
<td>GA South</td>
<td>3/1–4/30</td>
</tr>
<tr>
<td>KY East</td>
<td>5/15–6/1</td>
</tr>
<tr>
<td>KY Central</td>
<td>5/10–6/15</td>
</tr>
<tr>
<td>KY West</td>
<td>5/1–7/1</td>
</tr>
<tr>
<td>LA North</td>
<td>4/15–5/15</td>
</tr>
<tr>
<td>LA South</td>
<td>3/15–5/15</td>
</tr>
<tr>
<td>MS North</td>
<td>4/15–6/15</td>
</tr>
<tr>
<td>MS South</td>
<td>3/1–4/30</td>
</tr>
<tr>
<td>NC East</td>
<td>4/15–5/10</td>
</tr>
<tr>
<td>NC West</td>
<td>5/15–7/15</td>
</tr>
<tr>
<td>OK</td>
<td>4/10–4/30</td>
</tr>
<tr>
<td>SC East</td>
<td>4/1–4/30</td>
</tr>
<tr>
<td>SC West</td>
<td>5/1–6/30</td>
</tr>
</tbody>
</table>

EGGPLANT PLANTING DATES (cont’d)

<table>
<thead>
<tr>
<th>Spring</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>TN East</td>
<td>4/25–7/15</td>
</tr>
<tr>
<td>TN West</td>
<td>4/15–6/15</td>
</tr>
<tr>
<td>VA East (coastal)</td>
<td>5/1–6/30</td>
</tr>
<tr>
<td>VA West (mountains)</td>
<td>5/15–6/30</td>
</tr>
</tbody>
</table>

NR = Not recommended

Eggplant is a warm-season crop that grows best at temperatures between 70°F to 85°F. Temperatures below 65°F result in poor growth and fruit set.

Seed Treatment. Information on seed treatments can be found under SEED TREATMENTS in the disease management section of the handbook.

EGGPLANT PLANTING DATES

<table>
<thead>
<tr>
<th>Spring</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL North</td>
<td>4/1–7/15</td>
</tr>
<tr>
<td>AL South</td>
<td>3/1–4/30</td>
</tr>
<tr>
<td>GA North</td>
<td>4/15–7/15</td>
</tr>
<tr>
<td>GA South</td>
<td>3/1–4/30</td>
</tr>
<tr>
<td>KY East</td>
<td>5/15–6/1</td>
</tr>
<tr>
<td>KY Central</td>
<td>5/10–6/15</td>
</tr>
<tr>
<td>KY West</td>
<td>5/1–7/1</td>
</tr>
<tr>
<td>LA North</td>
<td>4/15–5/15</td>
</tr>
<tr>
<td>LA South</td>
<td>3/15–5/15</td>
</tr>
<tr>
<td>MS North</td>
<td>4/15–6/15</td>
</tr>
<tr>
<td>MS South</td>
<td>3/1–4/30</td>
</tr>
<tr>
<td>NC East</td>
<td>4/15–5/10</td>
</tr>
<tr>
<td>NC West</td>
<td>5/15–7/15</td>
</tr>
<tr>
<td>OK</td>
<td>4/10–4/30</td>
</tr>
<tr>
<td>SC East</td>
<td>4/1–4/30</td>
</tr>
<tr>
<td>SC West</td>
<td>5/1–6/30</td>
</tr>
</tbody>
</table>

Spacing. Rows: 4 to 5 feet apart; plants 2 to 3 feet apart in the row.

Staking. Staking eggplant improves quality and yield, while reducing decay. Use a 5 foot tomato stake between every other plant and place string along each side of the plants as they grow. This is described in detail in the tomato section of this guide. Side branches of eggplant should be pruned up to the first fruit and 2 main stems should be used. If additional stems grow too large remove them. The first fruit should be pruned off until the flower is at least 8 inches above the ground, this will allow for straight fruit to form.

Transplant Production. Sow seed in the greenhouse 8 to 10 weeks before field planting. Three to 4 ounces of seed are necessary to produce plants for 1 acre. Optimum temperatures for germination and growth are 70°F to 75°F. Seedlings should be transplanted to 2-inch or larger pots or containers anytime after...
the first true leaves appear, or seed can be sown directly into the pots and thinned to a single plant per pot. Control aphids on seedlings in greenhouse before transplanting to field.

Transplanting Dates. Harden plants for a few days at 60° to 65°F and set in field after danger of frost and when average daily temperatures have reached 65° to 70°F.

Drip Irrigation and Fertilization. After mulching and installing the drip irrigation system, the soluble fertilizer program should be initiated using the following table. On low to low-medium boron soils, also include 0.5 pound per acre of actual boron.

The first soluble fertilizer application should be applied through the drip irrigation system within a week after field-transplanting the eggplant. Continue fertigating until the last harvest.

SUGGESTED FERTIGATION SCHEDULE FOR EGGPLANT *(high soil potassium)*

<table>
<thead>
<tr>
<th>Days after planting</th>
<th>Daily nitrogen (lb / A)</th>
<th>Daily potash (lb / A)</th>
<th>Cumulative Nitrogen (lb / A)</th>
<th>Cumulative Potash (lb / A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preplant</td>
<td>50.0</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-22</td>
<td>0.5</td>
<td>0.5</td>
<td>60.5</td>
<td>110.5</td>
</tr>
<tr>
<td>22-49</td>
<td>0.7</td>
<td>0.7</td>
<td>80.1</td>
<td>130.1</td>
</tr>
<tr>
<td>50-70</td>
<td>1.0</td>
<td>1.0</td>
<td>101.1</td>
<td>151.1</td>
</tr>
<tr>
<td>71-91</td>
<td>1.1</td>
<td>1.1</td>
<td>124.2</td>
<td>174.2</td>
</tr>
<tr>
<td>92-112</td>
<td>1.0</td>
<td>2.0</td>
<td>145.2</td>
<td>195.2</td>
</tr>
</tbody>
</table>

ALTERNATIVE FERTIGATION SCHEDULE FOR EGGPLANT *(low soil potassium)*

<table>
<thead>
<tr>
<th>Days after planting</th>
<th>Daily nitrogen (lb / A)</th>
<th>Daily potash (lb / A)</th>
<th>Cumulative Nitrogen (lb / A)</th>
<th>Cumulative Potash (lb / A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-22</td>
<td>0.5</td>
<td>0.5</td>
<td>60.5</td>
<td>111.0</td>
</tr>
<tr>
<td>22-49</td>
<td>0.7</td>
<td>1.4</td>
<td>80.1</td>
<td>150.2</td>
</tr>
<tr>
<td>50-70</td>
<td>1.0</td>
<td>2.0</td>
<td>101.1</td>
<td>192.5</td>
</tr>
<tr>
<td>71-91</td>
<td>1.1</td>
<td>2.2</td>
<td>124.2</td>
<td>238.7</td>
</tr>
<tr>
<td>92-112</td>
<td>1.0</td>
<td>2.0</td>
<td>145.2</td>
<td>280.7</td>
</tr>
</tbody>
</table>

*Adjust based on tissue analysis.

SPECIAL NOTES FOR PEST MANAGEMENT

INSECT MANAGEMENT

Colorado Potato Beetle (CPB), Flea Beetles (FB): CPB has the ability to rapidly develop resistance to insecticides. Refer to “Eggplant” insecticide section for management options. The use of row covers can be highly effective for flea beetle management early in the season while plants become established and before flowering at which time row covers will need to be removed for optimum pollination.

Silverleaf Whitefly: Treat when an average of 5 or more adults are found per leaf.

Weed Management. See “Mulching” section for further information on weed control under clear plastic mulch.

RATOONING EGGPLANT: PRODUCING A FALL CROP FROM A SPRING PLANTED CROP

Ratooning eggplants can be done after the first crop is complete to allow a second crop to develop. Depending on the location, the first crop may be completed by June or July. Plants at this point will appear “topped out," not producing any more flowers and any subsequent fruits. Mow plants 6 to 8 inches above the soil line, being sure to leave two to three leaf axils. Next, fertilize with 50 to 60 pounds of nitrogen per acre and 80 to 100 pounds of potash per acre (K₂O). This combination will produce vigorous re-growth and stimulate flowering. Plants will begin producing fruit 4 to 6 weeks after ratooning and should produce eggplants until frost.

HARVESTING AND STORAGE

Eggplant may be harvested once the fruit has reached one-half to full size for a given variety. However, harvesting prior to full size may reduce potential yields.

Harvest-ready fruit have a glossy appearance and are firm, without wrinkles. Harvest eggplant fruit before they become over mature. When over mature, the fruit is dull in color, seeds are hard and dark, and the flesh is characteristically spongy. Although the fruit can often be “snapped” from the plant, they should be clipped with a sharp knife or scissors to prevent damage. When harvesting, cut the stem approximately 1/4 inch from the fruit. Eggplant skin is tender and easily bruised, so handle with care. See Table 14 for further postharvest information.
Most garlic that is available from retail markets tends to be softneck types. When selecting softneck garlic for planting be sure to secure a strain of softneck garlic from a local grower who has had success with fall-planted garlic. Unlike many strains sold commercially, such a strain should be well adapted to your area to overwinter. Avoid planting the Creole types of softneck garlic in the northern range (also called Early, Louisiana, White Mexican, etc.), because they are not very winter-hardy and do not keep well. Both the Italian and Creole types have a white outer skin covering the bulb, but the Italian type has a pink skin around each clove, whereas the skin around each Creole clove is white. Elephant-type garlic (milder than regular garlic and up to four times larger) may not yield very well when fall-planted in areas with severe cold or extensive freezing and thawing cycles, which cause heaving. Elephant garlic has performed well, however, in western North Carolina when it is well-hilled with soil or mulched with straw. The Italian and Elephant types take about 220 days to mature.

Many of the most productive Italian garlic strains produce seed heads prior to harvest. Whether removed as they form or left intact, they have produced satisfactory yields. Research in Kentucky and North Carolina has shown that hardneck types of garlic produce superior yields and are more winter-hardy than softneck types. Unlike softneck types, which will produce large numbers of small cloves per bulb; hardneck garlic will produce bulbs with 7-10 large cloves. Hardneck types have a hard “seedstalk” (called a “scape”) that is typically removed prior to harvest. Scapes are sometimes sold at farmers markets as a specialty item.

Seed pieces for hardneck garlic are often more expensive and harder to find than softneck types, but improved winter-hardiness and bulb quality in the spring in Kentucky suggests that these are preferred for production at more northern latitudes. Results from these states might not translate to all areas of the southeastern US. Consult with your local Extension office to find appropriate cultural information for your area.

Soil Fertility. Maintain a soil pH of 6.2 to 6.8. Fertilize according to soil test recommendations for garlic. In moderately fertile soils, apply about 75 pounds nitrogen (N) per acre, 150 pounds phosphate (P₂O₅) per acre and 150 pounds potash (K₂O) per acre and disk about 6 inches deep before planting. When plants are about 6 inches tall (about March 15), topdress with 25 pounds per acre nitrogen and repeat the top dressing about May 1. Apply all top dressings to dry plants at midday to reduce chance of fertilizer burn.

Because sulfur may be partially associated with the extent of pungency, you may wish to use ammonium sulfate for the last top dressing (May 1). If ammonium sulfate is used, make sure pH is 6.5 to 6.8.

Garlic is commonly grown on muck, sandy, or fine textured soils as long as they are loose and friable. Use of organic matter or cover cropping is important.

Planting. Garlic cloves should be planted during the fall because a chilling requirement must be met for good bulb development. Plant according to the times listed in the following table to ensure that good root systems are established prior to winter. Final bulb size is directly related to the size of the cloves that are planted. Avoid planting the long, slender cloves from the center of the bulb and cloves weighing less than 1 gram.
GARLIC PLANTING DATES (cont’d)

<table>
<thead>
<tr>
<th>Location</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC East</td>
<td>9/15–11/10</td>
</tr>
<tr>
<td>NC West</td>
<td>8/15–10/15</td>
</tr>
<tr>
<td>OK (spring)</td>
<td>3/1-3/15</td>
</tr>
<tr>
<td>OK (fall)</td>
<td>8/1-9/15</td>
</tr>
<tr>
<td>SC East</td>
<td>10/1–11/30</td>
</tr>
<tr>
<td>SC West</td>
<td>8/15–10/15</td>
</tr>
<tr>
<td>TN East</td>
<td>9/1-11/1</td>
</tr>
<tr>
<td>TN West</td>
<td>9/15-11/1</td>
</tr>
<tr>
<td>VA East (coastal)</td>
<td>9/15-11/15</td>
</tr>
<tr>
<td>VA West (mountains)</td>
<td>9/1-9/30</td>
</tr>
</tbody>
</table>

Spacing. Garlic should be planted 4 by 4 inches apart in triple rows or multiple beds 16 to 18 inches apart. Between-row spacing depends on the equipment available. Clove tops should be covered with 1 to 1.5 inches of soil. The cloves must not be so deep that the soil will interfere with the swelling of the bulbs, nor so shallow that rain, heaving from alternate freezing and thawing, and birds will dislodge them. Vertical placement of cloves by hand gives optimal results. Cloves dropped into furrows are likely to lie in all positions and may produce plants with crooked necks. Garlic has also been grown successfully in Kentucky using plastic mulch as this helps reduce weed pressure during the long growing season.

INSECT MANAGEMENT

Thrips: During hot, dry weather, the population of thrips increases following harvest of adjacent alfalfa or grain. Thrips could therefore present the most serious insect problem on garlic. (See “Onions” in the Insect Control section of this publication). Read and follow specific label directions for use on garlic; if not listed, do not use. Treat if thrips counts exceed an average of 5 thrips per plant.

HARVESTING AND STORAGE

Garlic is ready for harvest in mid-May to mid-June—it must be harvested when around 30% of foliage is starting to yellow or the bulbs will split and be more susceptible to disease. When a few tops fall over, push all of them down and pull a sample. There are only about 10 days to 2 weeks for optimal garlic harvest. Before then, the garlic is unsegmented; much after that period the cloves can separate so widely that the outer sheath often splits and exposes part of the naked clove. Picked at the proper time, each clove should be fully segmented and yet fully covered by a tight outer skin.

Run a cutter bar under the bulbs to cut the extensive root system and partially lift them. The bulbs are usually pulled and gathered into windrows. Tops are placed uppermost in the windrow to protect bulbs from the sun, and the garlic is left in the field for a week or more to dry or cure thoroughly. Curing can also be accomplished in a well-ventilated shed or barn. The bulbs must be thoroughly dried before being shipped or stored. Outdoor curing is not recommended where morning dew can keep it too damp. Bring in for drying immediately from field. Emphasize gentle handling. Cure for about 6 weeks.

After curing garlic, discard diseased and damaged bulbs. Clean the remaining bulbs to remove the outer loose portions of the sheath, and trim the roots close to the bulb. Do not tap or bang bulbs together to remove soil. Braid or bunch together by the tops of the bulbs, or cut off the tops and roots and bag the bulbs like dry onions.

When properly cured, garlic keeps well under a wide range of temperatures. Storage in open-mesh sacks in a dry, well-ventilated storage room at 60° to 90°F is satisfactory. However, garlic is best stored under temperature and humidity conditions required for onions [32° to 35°F and 65% relative humidity]. Garlic cloves sprout quickly after bulbs have been stored at temperatures near 40°F, so avoid prolonged storage at this temperature. Garlic stored at above 70% relative humidity at any temperature will mold and begins to develop roots.

Marketing. New growers should develop a local retail market (roadside stands, night markets, gourmet restaurants), wholesale shipper, or processing market before planting. The demand for garlic is increasing due to recent reports about the health and medical benefits of garlic. The main markets are New York, Philadelphia, Pittsburgh, Washington, D.C., Chicago, and St. Louis.

The markets of the northern and eastern United States will take the bulbs trimmed like dry onions and known as “loose garlic.” Frequently, 30 to 50 bulbs are tied in bunches. Bulbs should be graded into three sizes—large, medium, and small. Each string or bunch should contain bulbs of uniform size and of the same variety.

First-class garlic bulbs must be clean and have unbroken outer sheaths. Many of the larger vegetable markets, such as the large chain stores, could retail garlic in the form of clean, uniform cloves, two dozen to a mesh bag. Processors are not particular about having the cloves enclosed in a neat sheath and occasionally accept sprouted bulbs.

Garlic-growing can be very profitable when freshness is stressed and if the tops are braided, tied together, or placed into long, narrow, plastic mesh bags so they can be effectively displayed at roadside or night-market stands.
Seeding. Greens can be succession seeded throughout the indicated times listed in the table below. The next seeding date should be made when the previous crop is 50% emerged. Seeds emerge in 3-12 days: emergence is temperature dependent, with rapid emergence in warm weather (fall planting) and slower in cool temps (spring planting). Rows should be 12-24 inches apart and in-row spacing should be 1-2 inches.

Soils. Loamy soils will produce greatest yields, but many soil types are suitable. Sandy soils are preferred for cool season and overwintering production. Greens grown in sandy soils are easier to pull from the soil, and easier to clean off soil residue, than those grown in clay soils. Soil pH of 6.0 to 6.5 is desirable.

Fertilizers. Quality greens require quick, continuous growth. A continual supply of nitrogen is essential for good color and tenderness. Applications of nitrogen at planting followed by additional sidedress applications during the growing season, are essential to produce consistent, high quality greens.

Cultivation. In addition to adequate nutrition, consistent irrigation is necessary for good leaf formation. Overhead irrigation should be avoided as it causes favorable conditions for the development of several diseases.

MUSTARD AND TURNIP PLANTING DATES (cont’d)

<table>
<thead>
<tr>
<th></th>
<th>Spring</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC East</td>
<td>2/15–6/30</td>
<td>8/1–9/15</td>
</tr>
<tr>
<td>NC West</td>
<td>4/1–8/15</td>
<td>NR</td>
</tr>
<tr>
<td>OK</td>
<td>3/1–9/15</td>
<td>8/1–9/15</td>
</tr>
<tr>
<td>SC East</td>
<td>2/1–6/15</td>
<td>8/1–10/15</td>
</tr>
<tr>
<td>SC West</td>
<td>3/15–9/15</td>
<td>NR</td>
</tr>
<tr>
<td>TN East</td>
<td>4/1–5/30</td>
<td>7/1–7/30</td>
</tr>
<tr>
<td>TN West</td>
<td>2/15–4/15</td>
<td>8/1–8/31</td>
</tr>
</tbody>
</table>

NR = Not recommended

SPECIAL NOTES FOR PEST MANAGEMENT

INSECT MANAGEMENT

Aphids: These insects can be serious pests of greens crops. Frequent examinations of the crops are necessary to avoid undetected infestations. Broad-spectrum insecticides used for caterpillar management can lead to aphid infestations.

Caterpillars: Many of the same caterpillars that feed on the large cole crops (cabbage, collard, etc.) will feed on greens. Action thresholds for greens crops are currently lacking, but low levels of caterpillars can be tolerated during the early stages of growth. The use of BTs and other soft materials are encouraged to maintain natural enemy populations in the crops.

Flea Beetles: These small insects can be serious pests of greens crops. They are often associated with heavier soils and weedy areas. BTs are ineffective against beetle pests. These materials are generally ineffective against these insects although the new neonicotinoid insecticides work well with little effect on natural enemies. Treatment should begin when the infestation is first noticed. Frequent use of broad-spectrum insecticides for flea beetle management often leads to resurgence of other pests. Reflective mulches have been found to be effective in repelling flea beetles.

HARVESTING AND STORAGE

See Table 14 for postharvest information.
HERBS

BASIL (Ocimum basilicum)

<table>
<thead>
<tr>
<th>VARIETIES</th>
<th>AL</th>
<th>GA</th>
<th>KY</th>
<th>LA</th>
<th>MS</th>
<th>NC</th>
<th>SC</th>
<th>TN</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASIL:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sweet:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aroma II</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>S</td>
<td>T</td>
</tr>
<tr>
<td>Genovese</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>S</td>
<td>T</td>
</tr>
<tr>
<td>Italian Large Leaf</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>S</td>
<td>T</td>
</tr>
<tr>
<td>Mammoth</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nufar</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>S</td>
<td>T</td>
</tr>
<tr>
<td>Purple Ruffles</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>S</td>
<td>T</td>
</tr>
<tr>
<td>Rutgers Devotion DMR</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rutgers Obsession DMR</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rutgers Passion DMR</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rutgers Thunderstruck DMR</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specialty:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mrs. Burns’ Lemon</td>
<td>A</td>
<td>G</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>S</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>Sweet Thai (Horapha, Hun Que)</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>S</td>
<td>T</td>
</tr>
<tr>
<td>Cinnamon</td>
<td>A</td>
<td>G</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>S</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Abbreviations for state where recommended.
2 Fusarium tolerance/resistance.
3 Suitable for High Tunnel production
4 Downy mildew tolerance.
5 Suitable for microgreen production.
6 Suitable for processing.

Cultivation. Sow seed 1/8 inch deep. Basil is an easy to grow tender annual. Plant basil in late spring after all danger of frost is past. Grow in full sun in warm, well-drained soil, preferably in raised beds. A light sand to silt loam with a pH of 6.4 is best.

Basil may be grown in the field from seed or transplants. Trim transplants to encourage branching and plant in the field when about six inches tall (4 to 6 weeks old).

Double-row plantings on 2 to 4 foot wide beds increase yields per acre and helps to shade out weeds. Planting dates may be staggered to provide a continuous supply of fresh leaves throughout the growing season. For fresh-cut basil production, use high plant populations, shallow cultivation, and/or mulch.

Fertilization. Do not over fertilize basil. It is generally suggested that 100 pounds each of N, P, and K per acre be broadcast and incorporated at time of planting or follow guidelines for fertilization of salad greens. If more than one harvest is made, sidedress with 15 to 30 pounds N per acre shortly after the first or second cutting.

BASIL PLANTING DATES

<table>
<thead>
<tr>
<th>BASIL PLANTING DATES (cont’d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
</tr>
<tr>
<td>NC East</td>
</tr>
<tr>
<td>NC West</td>
</tr>
<tr>
<td>TN East</td>
</tr>
<tr>
<td>TN West</td>
</tr>
<tr>
<td>VA East (coastal)</td>
</tr>
<tr>
<td>VA West (mountain)</td>
</tr>
</tbody>
</table>

*Using 6 to 8 wk-old transplants.
NR = Not recommended

Pest Control. There are few agricultural chemicals registered for use on basil. To keep weed pressure down, use high plant populations, shallow cultivation, and/or mulch. BT products can be used to control various worms and caterpillars. Genovese, Italian Large Leaf, and lettuce leaf varieties are susceptible to Japanese beetles. Japanese beetle traps set about 20 feet away from the basil will help prevent damage. Reflective mulches, beneficial insects, insecticidal soaps, traps, and handpicking may give some level of control of other insect pests. Keep foliage as dry as possible by watering early in the day, or by using drip irrigation to reduce fungal disease. Rotate herbs to different parts of the field each year and remove and destroy all plant debris to reduce soil borne disease.

Fusarium Wilt. Plants infected with this disease usually grow normally until they are 6 to 12 inches tall, then they become stunted and suddenly wilt. Fusarium wilt may persist in the soil for 8 to 12 years. Growers should use Fusarium wilt tested seed or resistant or tolerant varieties.

Basil Downy Mildew. Use clean seed and less susceptible varieties as they become available. Minimize leaf wetness as much as possible. Learn what the disease symptoms look like.

To ensure protection, consider applying fungicides proactively when your Extension agent or agricultural advisor
indicates that Cucurbit downy mildew is active in your area. Although these are distinctly diseases, active Cucurbit downy mildew indicates that conditions are favorable for Basil downy mildew development. You can also monitor conditions for Cucurbit downy mildew at http://cdm.ipmpipe.org/

Harvesting and Storage. Leaf yields range from 1 to 3 tons per acre dried or 6 to 10 tons per acre fresh. Foliage may be harvested whenever four sets of true leaves can be left after cutting to initiate growth, but when harvesting for fresh or dried leaves, always cut prior to bloom. Presence of blossoms in the harvested foliage reduces quality. Frequent trimming helps keep plants bushy. For small-scale production of fresh-market basil, the terminal 2- to 3-inch long whorls of leaves may be cut or pinched off once or twice a week. This provides a high-quality product with little stem tissue present. Basil can also be cut and bunched like fresh parsley. A sickle bar type mower with adjustable cutting height is commonly used for harvesting large plantings for fresh and dried production. The optimum storage temperature for fresh basil is 40° to 45° F with a high relative humidity.

PARSLEY (Petroselinum crispum) AND CILANTRO (Coriandrum sativum)

<table>
<thead>
<tr>
<th>VARIETIES</th>
<th>AL</th>
<th>GA</th>
<th>KY</th>
<th>LA</th>
<th>MS</th>
<th>NC</th>
<th>SC</th>
<th>TN</th>
<th>VA</th>
</tr>
</thead>
<tbody>
<tr>
<td>PARSLEY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curly Leaf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banquet</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>S</td>
<td>T</td>
<td>V</td>
</tr>
<tr>
<td>Forest Green</td>
<td>A</td>
<td>L</td>
<td>N</td>
<td>S</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moss Curled</td>
<td>A</td>
<td>N</td>
<td>S</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flat Leaf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dark Green Italian</td>
<td>A</td>
<td>L</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Giant of Italy</td>
<td>A</td>
<td>L</td>
<td>N</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plain Italian Green</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>S</td>
<td>T</td>
<td>V</td>
</tr>
<tr>
<td>CILANTRO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calypso 2 3</td>
<td>A</td>
<td>K</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jantar Long Standing 3</td>
<td>A</td>
<td>G</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>S</td>
<td>T</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Marino</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turbo II 4</td>
<td>A</td>
<td>K</td>
<td>L</td>
<td>N</td>
<td>S</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Santo 3</td>
<td>A</td>
<td>K</td>
<td>L</td>
<td>N</td>
<td>S</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Abbreviations for state where recommended. 2 Fusarium tolerance/resistance. 3 Suitable for High Tunnel production. 4 Downy mildew tolerance. 5 Suitable for microgreen production. 6 Suitable for processing.

Parsley is a biennial grown as an annual. There are two varietal types of parsley: flat-leaf and curled leaf. Flat leaf parsley tends to be more aromatic than the curled leaf and is used for flavoring in cooking. Curled leaf parsley is more attractive and is primarily used as a garnish. Cilantro is a fast growing annual that is cultivated for its fresh leaves. The seeds of the cilantro plant are referred to as the spice coriander. Parsley and cilantro are best cultivated as cool season crops in the southeast.

Seeding and Spacing. Neither parsley nor cilantro transplant well due to their taproots which are typical of plants in the Apiales. Direct seeding is recommended and is best achieved when using a precision seeder. Multiple plantings every 1-3 weeks are necessary for a season-long supply. Parsley seed is slow to germinate (12-25 days, temperature dependent). Seed is viable for 3-5 years but its percentage germination reduces quickly after 1 year.

Seed is sown 1/3 to ½ inches deep in a well-prepared seed bed. Seeding rates are from 16 to 24 pounds per acre (1/4 oz. per 100 row feet) for parsley and 15 to 50 pounds per acre (1-2 oz. per 100 row feet) for cilantro. Spacing between single rows is 15 to 18 inches. Parsley and cilantro can be precision seeded into raised beds with 3 to 4 rows per bed. Final in-row spacing should be 6 to 8 inches for parsley and 2 to 5 inches for cilantro. Research has shown that maximum yields can be achieved with more closely spaced plants.

Cultivation. Parsley and cilantro grow best in a well-drained, organic loam soil with soil pH between 6.5 and 7.5. Overhead irrigation is essential for stand establishment. Irrigation during the germination period and the 2-3 weeks following emergence are critical. Too little water at any point will result in diminished leaf yield. Long, warm periods with too little water results in bolting which is undesirable since the plants are grown for their

84 2022 Vegetable Crop Handbook for Southeastern United States
leaves. In addition, bolting reduces the amount, quality, and flavor of the leaves.

Cilantro cultivars are divided into “temperature sensitive” and “slow-bolt” groups. When high temperatures and daylight greater than twelve hours occur, temperature sensitive cultivars tend to set flowers in as little as three weeks following germination. Cilantro responds well to growth stimulators (gibberellic acid, folcyteine, extracts of marine algae) to maximize leaf production. Premature bloom can be delayed through the use of these foliar sprays.

Both parsley and cilantro are weak competitors with other plants. Weed control is critical throughout the season and will also make harvest more efficient.

SPECIAL NOTES FOR PEST MANAGEMENT

There are few agricultural chemicals cleared for use on parsley and cilantro. Weed control is important and can best be obtained by using black plastic mulch and cultivation. Parsley and cilantro are prone to leaf blights, leaf spots, and mildews. Any approved fungicides should be sprayed as soon as symptoms appear. Cultural controls include the use of drip irrigation, crop rotation, and limited movement through the fields during wet conditions.

Root and crown rot of parsley is best controlled by a two-year crop rotation with non-susceptible plants. Swallowtail caterpillars feed on parsley and are present in large numbers in late summer months. Row covers while swallowtail butterflies are present may reduce damage by blocking butterfly access to plants for egg laying.

Harvesting and Storage. Parsley and cilantro are usually harvested by hand and bunched with rubber bands or twist ties in the field. Cutting entire plants 1.25 to 3 inches above the crown may result in secondary growth sufficient to allow for another harvest. Average yield for both parsley and cilantro is 30-40 pounds per 100 row feet of row. Maximum biomass usually occurs at 40-45 days after germination for cilantro and at 75-90 days for parsley. Multiple harvests are more likely with parsley than cilantro. Store parsley and cilantro at 32° F with high humidity. See Table 14 for further postharvest information.
HOPS (Humulus lupulus) are a new crop for the Southeastern U.S. Most hops in the United States are grown in the Pacific Northwest in Washington, Oregon, and Idaho. Hops are photoperiod sensitive plants (short-day plants). Commercial hops varieties produce the highest yields in the most northern states. In short-day areas (below the 35th latitude), flowering occurs too soon when the required number of nodes for a particular variety are produced. As a result, yields are not maximized. In longer day areas (above 35th latitude), vegetative growth is maximized prior to the point where day length begins to shorten in mid- to late summer. Yields noticeably decrease the further south the plants are grown, particularly below the 35th latitude. Breeding efforts are underway to produce varieties specifically for the Southern U.S. In the meantime, there are cultural practices that can be used to increase yields in Southern hop yards. Most of the information currently available for hops production pertains to large-scale production in the Pacific Northwest or from the emerging industries in the Great Lakes and the Northeast. That information can be helpful, but the differences in photoperiod, disease incidence, lack of infrastructure for processing, and scale of production require adapting it to suit conditions in the Southeast. Hops are herbaceous perennials with long-lived underground crowns. Each year the plants send up multiple shoots (called bines) which bear papery cones (flowers) that are the plant parts that are harvested for making beer and herbal products. When mature, the cones contain bright yellow, sticky lupulin glands that contain the fragrance and bittering compounds that hops are valued for. For each year the bines can grow to be up to 25 feet long, so they need to be trellised. Hops have male and female plants, but only female plants are grown commercially so the cones do not contain seeds. Hops are an expensive crop to establish because of the need for a permanent, tall trellis system. Short hop varieties are being bred, but at this time the common varieties need to be grown on tall trellises. There are several trellis designs available that are suitable for production in the Southeast. Most trellises are 16 to 18 feet tall and composed of locust or cedar posts and wire. The bines are trained to strings (often coir twine that is replaced annually) suspended from the top wires of the trellis. Hops require a well-drained, fertile soil with a pH of 6.0 to 6.5. Hops are heavy feeders and soil tests should be taken annually to determine how to provide adequate nutrition. Hops also require irrigation which is usually supplied as drip-irrigation. Varieties. Cascade is the variety that has proven to be most reliable throughout the Southeast. It is an aroma hop and is used by most brewers. Growers are encouraged to talk to their customers to identify other varieties to experiment with. Growers in the Southeast have not been very successful growing the Noble varieties. Pruning. To encourage flowering at the proper time for increased yields, emerging hop shoots are often cut to the ground in the spring until late April. Then several shoots are selected to be trained to each string. The remaining emerging shoots are kept pruned away. The foliage from the lower four feet or so of the plant is mechanically or chemically removed to encourage good air movement around the plants. Harvesting. Cones are harvested in mid to late summer. Small-scale growers often hand-pick cones multiple times during the season. As the hop yard expands, however, this becomes impractical and most growers move to a one-time harvest which involves cutting the bines, removing them from the yard, and running them through a mechanical harvester which separates the cones from the foliage, bines, and strings. Cones can be sold as fresh (wet), whole cones to brewers for making seasonal ales. More commonly, hops are dried in a dryer called an oast. A few brewers use whole dried cones, but most brewers require dried hop pellets. Hops quality is determined by chemical analysis which includes alpha and beta acids and essential oils. Most brewers will want these numbers before purchasing hops. How the hops are grown, when they are harvested, and how they are handled after harvesting and stored will greatly affect these values. SPECIAL NOTES FOR PEST MANAGEMENT Disease, insect, and weed control strategies for the Southeast are still being developed. Downy mildew is the primary disease that growers need to be prepared to manage and should be a major consideration when choosing varieties. There are many other diseases, including viruses and viroids, that affect hops and that a grower should be scouting for. The major insects are spider mites, Japanese beetles, leaffoppers, and comma butterflies. Weed control should be planned for in advance and may include use of herbicides, landscape fabric, and other mulches. A good air-blast sprayer will be needed to provide good spray coverage up to the top of the trellis.
LEEK PLANTING DATES

<table>
<thead>
<tr>
<th></th>
<th>Spring</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL North</td>
<td>3/15–4/30</td>
<td>9/15–10/31</td>
</tr>
<tr>
<td>AL South</td>
<td>2/1–3/31</td>
<td>NR</td>
</tr>
<tr>
<td>GA North</td>
<td>3/15–4/30</td>
<td>9/15–10/31</td>
</tr>
<tr>
<td>GA South</td>
<td>2/1–3/31</td>
<td>NR</td>
</tr>
<tr>
<td>KY East</td>
<td>4/1–6/15</td>
<td>NR</td>
</tr>
<tr>
<td>KY Central</td>
<td>3/25–7/1</td>
<td>NR</td>
</tr>
<tr>
<td>KY West</td>
<td>3/15–7/15</td>
<td>NR</td>
</tr>
<tr>
<td>MS</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>NC East</td>
<td>2/15–6/30</td>
<td>NR</td>
</tr>
<tr>
<td>NC West</td>
<td>4/1–8/15</td>
<td>NR</td>
</tr>
<tr>
<td>SC East</td>
<td>2/1–6/15</td>
<td>NR</td>
</tr>
<tr>
<td>SC West</td>
<td>3/15–6/30</td>
<td>NR</td>
</tr>
<tr>
<td>TN East</td>
<td>4/1–6/30</td>
<td>NR</td>
</tr>
<tr>
<td>TN West</td>
<td>3/15–8/1</td>
<td>NR</td>
</tr>
</tbody>
</table>

NR = Not recommended

Transplants. Transplants are used for early spring plantings. For summer planting, sow in seed beds as indicated in following table. About 2 pounds of seed are required to provide enough plants to set an acre. Seed should be planted 1/3 to 1/2 inch deep 8 to 12 weeks before field setting. Plants will be ready to set in early August. Plug cells have worked well.

Field Spacing. Rows: 20 to 30 inches apart; plants: 4 inches apart in the row. Set plants in trenches 3 to 4 inches deep.

Culture. Leeks grow slowly for the first 2 or 3 months. To develop a long white stem, start to gradually fill in trenches and then hill soil around stems to 3 or 4 inches.

HARVESTING AND STORAGE

Spring-transplanted leeks are ready for harvest in July. Fall-transplanted leeks are ready to harvest by July. Fall-planted leeks are ready by November and can be overwintered. See Table 14 for postharvest information.
Lettuce and endive are cool-season crops. Properly hardened lettuce transplants can tolerate temperatures as low as 20° to 25°F. Temperatures above 85°F for several days will cause seed stalk formation and bolting in lettuce. Temperatures below 70°F during the seedling stage promote premature stalk formation in endive and escarole.

Due to a number of factors such as length of time to harvest, the production of head lettuce is not recommended in the regions covered by this handbook.

Seeding and Transplanting. Spring crop. Lettuce transplants are started in frames or greenhouses. Seed for the lettuce crop is

Table: LETTUCE (Lactuca sativa), ENDIVE (Cichorium endivia), AND ESCAROLE (C. endivia)

<table>
<thead>
<tr>
<th>VARIETIES 1</th>
<th>AL</th>
<th>GA</th>
<th>KY</th>
<th>LA</th>
<th>MS</th>
<th>NC</th>
<th>OK</th>
<th>SC</th>
<th>TN</th>
</tr>
</thead>
<tbody>
<tr>
<td>LETTUCE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green Leaf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grand Rapids 3</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>N</td>
<td>S</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green Star 1, 4, 7</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nevada 3</td>
<td>A</td>
<td>L</td>
<td>N</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salad Bowl 1</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>Sierra 3 (green w/ red edges)</td>
<td>A</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slobolt 1</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Starfighter 3, 4, 7</td>
<td>A</td>
<td>K</td>
<td>L</td>
<td>N</td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tango</td>
<td>A</td>
<td>K</td>
<td>L</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tehama 3</td>
<td>A</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Two Star 3</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red Leaf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Red Fire 3, 4, 6</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>S</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>Pomegranate Crunch (cross between a Cos and Butterhead) 7</td>
<td>A</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red Express 4</td>
<td>A</td>
<td>K</td>
<td>L</td>
<td>N</td>
<td>O</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red Sails 4</td>
<td>A</td>
<td>K</td>
<td>L</td>
<td>N</td>
<td>O</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ruby 4</td>
<td>A</td>
<td>L</td>
<td>N</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cos / Romaine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coastal Star</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green Forest 3, 6</td>
<td>A</td>
<td>K</td>
<td>L</td>
<td>N</td>
<td>S</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green Towers</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>N</td>
<td>O</td>
<td>S</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>Parris Island Cos</td>
<td>A</td>
<td>K</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salvius 3, 7</td>
<td>A</td>
<td>K</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sangria 3, 6</td>
<td>A</td>
<td>G</td>
<td>L</td>
<td>N</td>
<td>S</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sunbelt 3, 6</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>N</td>
<td>S</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valley Heart 2</td>
<td>A</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Winter Destiny 3, 5</td>
<td>A</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Butterhead</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adriana 3, 4, 7</td>
<td>A</td>
<td>L</td>
<td>N</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buttercrunch 3</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>N</td>
<td>O</td>
<td>S</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>Caliente 4</td>
<td>A</td>
<td>K</td>
<td>L</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emosa</td>
<td>A</td>
<td>K</td>
<td>L</td>
<td>N</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Esmeralda 3</td>
<td>A</td>
<td>K</td>
<td>L</td>
<td>N</td>
<td>S</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harmony 3, 4, 7</td>
<td>A</td>
<td>K</td>
<td>L</td>
<td>N</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nancy</td>
<td>A</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENDIVE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galla Frisse</td>
<td>A</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salad King</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>N</td>
<td>S</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESCAROLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full Heart Batavian</td>
<td>A</td>
<td>K</td>
<td>L</td>
<td>N</td>
<td>S</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full Heart NR65 3, 6</td>
<td>A</td>
<td>G</td>
<td>L</td>
<td>N</td>
<td>S</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Abbreviations for state where recommended. 2 Recommended for fall production only (bolting susceptible). 3 Bolting tolerant/resistant. 4 Red. 5 Bibb-Romaine type. 6 Tip burn tolerant/resistant. 7 Down Mildew tolerant/resistant.
sown in heated greenhouses in November to February at the rate of 4 to 6 ounces of seed for 1 acre of plants.

Direct-seeded lettuce is sown in prepared beds as early in the spring as the ground can be worked. Seed should be sown shallow—some of the seed will actually be uncovered and visible. Pelleted seed should be watered at night during high-temperature periods (soil temperatures above 80°F) until germination occurs.

LETTUCE LEAF AND BUTTERHEAD PLANTING DATES

<table>
<thead>
<tr>
<th></th>
<th>Spring</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL North</td>
<td>4/15–5/30</td>
<td>8/1–9/30</td>
</tr>
<tr>
<td>AL South</td>
<td>2/1–4/15</td>
<td>8/1–10/15</td>
</tr>
<tr>
<td>GA North</td>
<td>4/15–5/30</td>
<td>8/1–8/30</td>
</tr>
<tr>
<td>GA South</td>
<td>2/1–4/15</td>
<td>8/1–10/15</td>
</tr>
<tr>
<td>KY East</td>
<td>4/1–4/30</td>
<td>NR</td>
</tr>
<tr>
<td>KY Central</td>
<td>3/25–4/15</td>
<td>NR</td>
</tr>
<tr>
<td>KY West</td>
<td>3/15–4/1</td>
<td>NR</td>
</tr>
<tr>
<td>LA South</td>
<td>1/15–3/15</td>
<td>9/15–10/30</td>
</tr>
<tr>
<td>MS North</td>
<td>3/15–4/30</td>
<td>8/1–9/30</td>
</tr>
<tr>
<td>MS South</td>
<td>2/1–4/15</td>
<td>8/1–10/15</td>
</tr>
<tr>
<td>NC East</td>
<td>2/1–4/20</td>
<td>8/25–10/1</td>
</tr>
<tr>
<td>NC West</td>
<td>3/1–8/25</td>
<td>NR</td>
</tr>
<tr>
<td>OK</td>
<td>3/15–4/1</td>
<td>8/15–9/15</td>
</tr>
<tr>
<td>SC East</td>
<td>2/1–4/15</td>
<td>9/15–11/1</td>
</tr>
<tr>
<td>SC West</td>
<td>3/1–5/15</td>
<td>NR</td>
</tr>
<tr>
<td>TN East</td>
<td>3/15–4/30</td>
<td>8/1–9/1</td>
</tr>
<tr>
<td>TN West</td>
<td>3/1–4/15</td>
<td>8/15–9/15</td>
</tr>
<tr>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

LETTUCE COS / ROMAINE PLANTING DATES

<table>
<thead>
<tr>
<th></th>
<th>Spring</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL North</td>
<td>4/15–5/30</td>
<td>8/1–9/15</td>
</tr>
<tr>
<td>AL South</td>
<td>2/1–3/31</td>
<td>8/1–9/30</td>
</tr>
<tr>
<td>GA North</td>
<td>4/15–5/30</td>
<td>8/1–9/30</td>
</tr>
<tr>
<td>GA South</td>
<td>2/1–3/31</td>
<td>8/1–9/30</td>
</tr>
<tr>
<td>KY East</td>
<td>4/1–4/30</td>
<td>NR</td>
</tr>
<tr>
<td>KY Central</td>
<td>3/25–4/15</td>
<td>NR</td>
</tr>
<tr>
<td>KY West</td>
<td>3/15–4/1</td>
<td>NR</td>
</tr>
<tr>
<td>LA South</td>
<td>1/15–3/15</td>
<td>9/15–10/30</td>
</tr>
<tr>
<td>MS</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>NC East</td>
<td>2/1–4/15</td>
<td>8/25–9/15</td>
</tr>
<tr>
<td>NC West</td>
<td>3/1–5/15</td>
<td>NR</td>
</tr>
<tr>
<td>OK</td>
<td>3/15–4/1</td>
<td>8/15–9/15</td>
</tr>
<tr>
<td>SC East</td>
<td>2/1–4/15</td>
<td>9/15–11/1</td>
</tr>
<tr>
<td>SC West</td>
<td>3/1–5/15</td>
<td>NR</td>
</tr>
<tr>
<td>TN East</td>
<td>3/15–4/30</td>
<td>8/1–9/1</td>
</tr>
<tr>
<td>TN West</td>
<td>3/1–4/15</td>
<td>8/15–9/15</td>
</tr>
<tr>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

ENDIVE/ESCAROLE PLANTING DATES

<table>
<thead>
<tr>
<th></th>
<th>Spring</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL North</td>
<td>4/15–5/30</td>
<td>8/1–9/15</td>
</tr>
<tr>
<td>AL South</td>
<td>2/1–3/31</td>
<td>8/1–9/30</td>
</tr>
<tr>
<td>GA North</td>
<td>4/15–5/30</td>
<td>8/1–9/30</td>
</tr>
<tr>
<td>GA South</td>
<td>2/1–3/31</td>
<td>8/1–9/30</td>
</tr>
<tr>
<td>KY East</td>
<td>4/1–4/30</td>
<td>NR</td>
</tr>
<tr>
<td>KY Central</td>
<td>3/15–4/15</td>
<td>NR</td>
</tr>
<tr>
<td>KY West</td>
<td>3/15–4/1</td>
<td>NR</td>
</tr>
<tr>
<td>LA South</td>
<td>1/15–3/15</td>
<td>9/15–10/30</td>
</tr>
<tr>
<td>MS</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>NC East</td>
<td>3/20–6/15</td>
<td>8/1–9/15</td>
</tr>
<tr>
<td>NC West</td>
<td>5/1–8/15</td>
<td>NR</td>
</tr>
<tr>
<td>OK</td>
<td>3/15–4/1</td>
<td>8/15–9/15</td>
</tr>
<tr>
<td>SC East</td>
<td>2/1–4/15</td>
<td>9/15–11/1</td>
</tr>
<tr>
<td>SC West</td>
<td>3/1–5/15</td>
<td>NR</td>
</tr>
<tr>
<td>TN East</td>
<td>3/15–4/30</td>
<td>8/1–9/1</td>
</tr>
<tr>
<td>TN West</td>
<td>3/1–4/15</td>
<td>8/15–9/15</td>
</tr>
<tr>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

Mulching. Using polyethylene mulch can be very beneficial for all types of lettuce and endive, in that the plastic reduces the amount of soil that gets inside the leaves. Use white plastic when air temperature exceeds 85°F. Most leaf lettuce varieties can be planted in 3 or 4 rows to the 30 inch bed top. In row spacing should be 9 to 12 inches and between row spacing should be 9 to 12 inches. Romaine types do best with 2 or 3 rows per bed and 12 to 15 inches in row spacing.

SPACING

Lettuce: Leaf and Butterhead type lettuce are planted 3 to 4 rows per bed with beds spaced 66 to 72 inches on centers. Space plants 9 to 12 inches apart in the row. Use black plastic in spring and white plastic when mean daily temperature at planting is >85°F.

Endive/Escarole: Plant three to four rows per bed and space beds 66 to 72 inches on centers. Space plants 9 to 15 inches apart in the row.

SPECIAL NOTES FOR PEST MANAGEMENT

INSECT MANAGEMENT

Keep lettuce fields isolated from endive and escarole for spray purposes.

Thrips: Scout for thrips and begin treatments when observed. Do not produce vegetable transplants with bedding plants in the same greenhouse.

Leafhopper: Control of leafhoppers will prevent spread of lettuce yellows. In the spring, spray when plants are one-half inch tall; repeat as needed. In the fall, spray seedlings 4-5 times at 5-day intervals.

Corn Earworm (CEW): Note. Head lettuce seedlings, in the 7 to 18 leaf stage, are vulnerable to CEW attack in August to September. Control must be achieved before center leaves start to form a head (15 to 18 leaf stage).

Tarnished Plant Bug: This insect can cause serious damage to the fall crop; it is usually numerous where weeds abound.

HARVESTING AND STORAGE

See Table 14 for postharvest information.
MELONS (Cucumis melo)

VARIETIES

<table>
<thead>
<tr>
<th>CANTALOUPES and MIXED MELONS</th>
<th>AL</th>
<th>GA</th>
<th>KY</th>
<th>LA</th>
<th>MS</th>
<th>NC</th>
<th>OK</th>
<th>SC</th>
<th>TN</th>
<th>VA</th>
</tr>
</thead>
</table>
Eastern

<table>
<thead>
<tr>
<th>Variety</th>
<th>Recommended States</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accolade</td>
<td>4, 5, 7, 8, 9, 11</td>
<td>N S T</td>
</tr>
<tr>
<td>Avatar</td>
<td>2, 4, 5, 7, 8, 9</td>
<td>A K S T</td>
</tr>
<tr>
<td>Ambrosia</td>
<td>2, 3</td>
<td>A L M N O S T</td>
</tr>
<tr>
<td>Aphrodite</td>
<td>4, 5, 7, 8, 9, 11</td>
<td>G K L M N T</td>
</tr>
<tr>
<td>Astound</td>
<td>4, 5, 7, 8, 9, 11</td>
<td>N S T</td>
</tr>
<tr>
<td>Atlantis</td>
<td>4, 5, 7, 8, 9</td>
<td>A K N S T</td>
</tr>
<tr>
<td>Athena</td>
<td>4, 5, 7, 8, 9, 11</td>
<td>A G K L M N S T V</td>
</tr>
<tr>
<td>Da Vinci</td>
<td>7, 8, 9, 14</td>
<td>A G N S</td>
</tr>
<tr>
<td>Sunny Dee</td>
<td>4, 5, 6, 9</td>
<td>K S</td>
</tr>
<tr>
<td>Timeless Gold</td>
<td>5, 7, 9, 12</td>
<td>K S</td>
</tr>
<tr>
<td>Tirena</td>
<td>4, 5, 7, 8, 14</td>
<td>A K</td>
</tr>
</tbody>
</table>

Long Shelf-life

<table>
<thead>
<tr>
<th>Variety</th>
<th>Recommended States</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anna’s Charentais</td>
<td>7, 8, 9, 12</td>
<td>A</td>
</tr>
<tr>
<td>Caribbean Gold</td>
<td>5, 7, 8, 9, 12</td>
<td>A G N S T</td>
</tr>
<tr>
<td>D’Artagnan</td>
<td>7, 8, 9</td>
<td>A</td>
</tr>
<tr>
<td>Fiji</td>
<td>4, 5, 7, 8, 12</td>
<td>A N S</td>
</tr>
<tr>
<td>GVS 9000</td>
<td>4, 5, 7, 8, 12</td>
<td>S</td>
</tr>
<tr>
<td>Infinite Gold</td>
<td>4, 5, 7, 8, 9, 12</td>
<td>A G N S</td>
</tr>
<tr>
<td>Savor</td>
<td>7, 8, 9, 17</td>
<td>A</td>
</tr>
</tbody>
</table>

Honeydew

<table>
<thead>
<tr>
<th>Variety</th>
<th>Recommended States</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>252 HQ</td>
<td>4, 5, 7, 9</td>
<td>A G N S</td>
</tr>
<tr>
<td>Dream Dew</td>
<td>4, 5, 8, 9</td>
<td>A S</td>
</tr>
<tr>
<td>Full Moon</td>
<td>5, 9</td>
<td>A</td>
</tr>
<tr>
<td>Honey Orange</td>
<td>13</td>
<td>A G N S T</td>
</tr>
<tr>
<td>Santa Fe</td>
<td></td>
<td>N S</td>
</tr>
<tr>
<td>Summer Dew</td>
<td>4, 5, 7, 9</td>
<td>A G K N S T</td>
</tr>
<tr>
<td>Temptation</td>
<td>7, 9, 13</td>
<td>K T</td>
</tr>
</tbody>
</table>

Galia

<table>
<thead>
<tr>
<th>Variety</th>
<th>Recommended States</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Galia</td>
<td>*</td>
<td>A G N S T</td>
</tr>
</tbody>
</table>

Juan/Juane Canary

<table>
<thead>
<tr>
<th>Variety</th>
<th>Recommended States</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brilliant</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Camino Europa</td>
<td>7, 8, 9</td>
<td>N</td>
</tr>
<tr>
<td>Camposol</td>
<td>*</td>
<td>N</td>
</tr>
<tr>
<td>Fozzy</td>
<td>4, 5</td>
<td>N</td>
</tr>
<tr>
<td>Gladial</td>
<td>4, 5, 7, 9</td>
<td>N S</td>
</tr>
<tr>
<td>Golden Beauty</td>
<td>4</td>
<td>A G K N T</td>
</tr>
<tr>
<td>Halo</td>
<td>*</td>
<td>N S</td>
</tr>
<tr>
<td>Natal</td>
<td>4, 5, 7, 9</td>
<td>A N S</td>
</tr>
<tr>
<td>Tikal</td>
<td>4, 5, 7, 8, 9</td>
<td>A N S T</td>
</tr>
<tr>
<td>Tweety</td>
<td>8, 9, 15, 16</td>
<td>N</td>
</tr>
</tbody>
</table>

Piel De Sapo/Santa Claus

<table>
<thead>
<tr>
<th>Variety</th>
<th>Recommended States</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lambkin</td>
<td>4, 5</td>
<td>A</td>
</tr>
</tbody>
</table>

1. Abbreviations for state where recommended.
2. Local markets only.
3. Downy Mildew tolerance/resistance.
4, 5. Powdery mildew race 1, 2, or 3 tolerance/resistance.
5. Fusarium Wilt race 0, 1, 2, or 5 tolerance/resistance.
6. Tolerant to sulphur.
7, 8, 9. Extended shelf-life type/LSL.
10. Orange-fleshed honeydew.
11. Tuscan/Italian netted type.
15. Powdery Mildew tolerance/resistance (non-race specific).
Melon Types. There are many categories of specialty melons, all members of the cucurbit (Cucurbitaceae) family. The scientific name for specialty melons which includes cantaloupes is *Cucumis melo. Cucumis melo* is subdivided into several botanical variants but only two variants, reticulatous and indorous have commercial importance in the Southeastern United States.

The most important reticulatous melon grown in the Southeastern United States is what is commonly called cantaloupe or muskmelon. Cantaloupes are typically separated into two categories; eastern and western. The eastern type cantaloupe varieties, with limited netting and deep sutures, have traditionally been grown for the local market as many have a short shelf-life and bruise easily during shipping. Improved eastern varieties such as ‘Athena’ have a longer shelf-life and can be shipped to distant markets. The western cantaloupe has a uniform netted rind but lacks sutures. Although the western type cantaloupe has traditionally been grown in western states, there are varieties suitable for commercial production in the Southeastern United States. While eastern type cantaloupe are typically harvested when the fruit stem pulls easily away from the fruit (full-slip), western type cantaloupe are harvested when the fruit stem partially pulls free (half-slip).

The Galia melon is another reticulatous variant grown in the Southeastern United States. When mature the Galia melon has a yellow to orange skin that is covered in light golden-tan netting. The aromatic flesh is pale green and has a distinct sweet flavor. Galia melons are unfortunately prone to rapid softening and consequently most varieties are more suited for local markets.

Within the indorous variant there are two notable melons grown in the Southeastern United States, Honeydew and Canary melons. Of these two the Honeydew melon is the most widely grown. Although the rind color of Honeydew can vary among varieties, typically the rind turns from green to whitish yellow as it matures. Unlike cantaloupe, the honeydew fruit does not slip from the vine when mature. The very sweet flesh of a mature honeydew is pale green with the deepest shade occurring immediately below the skin. Honeydew fruit are susceptible to cracking or splitting due to the uneven, high moisture conditions found in the Southeastern United States. Several new varieties have helped lessen this problem.

The Canary melon, also marketed as the Juan Canary, is an indorous variant. The Canary melon is oval-shaped, with a smooth bright yellow skin. The canary like the honeydew does not slip from the vine. When mature the canary will turn dark yellow and develop a slightly corrugated skin appearance. The flesh is a pale ivory in color and slightly firmer than honeydew. A distinct advantage of the Canary melons is that they have a very long shelf-life and can be shipped to distant markets.

Transplant Production. Plug flats which provide a cell depth of 1.5 inches are optimal for melon transplant production. Although plug flats with larger cells can be used a 200-Square plug flat provides ample room for root growth. Although varieties may vary in transplant production time, under ideal conditions 2 to 3 weeks is enough time for transplant production.

Planting and Spacing. Consult the following Melon Planting Dates table for suggested planting dates in your area. Early season annual temperatures can vary tremendously so be aware that temperatures below 45°F will slow or stunt plant growth.

Melon plant recommended row and in-row spacing can vary depending on the production method and equipment. The use of plastic mulch and drip irrigation allows for a closer row and in-row spacing compared to bare ground production. A typical planting scheme for plasticulture production will have rows spaced 5 to 6 feet with in-row spacing of 1.5 to 2 feet. For bare ground production, in-row spacing will need to be wider, 3 to 4 feet. An average of 10 to 12 ft² per plant for plasticulture production is typical while on bare ground 15 to 24 ft² per plant should be adequate.

Melon Planting Dates*

<table>
<thead>
<tr>
<th></th>
<th>Spring</th>
<th>Fall*</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL North</td>
<td>4/15–6/15</td>
<td>8/1–8/30</td>
</tr>
<tr>
<td>AL South</td>
<td>3/1–6/30</td>
<td>8/1–8/15</td>
</tr>
<tr>
<td>GA North</td>
<td>4/15–6/15</td>
<td>NR</td>
</tr>
<tr>
<td>GA South</td>
<td>3/1–4/30</td>
<td>8/1–9/15</td>
</tr>
<tr>
<td>KY East</td>
<td>5/15–6/15</td>
<td>NR</td>
</tr>
<tr>
<td>KY Central</td>
<td>5/10–7/1</td>
<td>NR</td>
</tr>
<tr>
<td>KY West</td>
<td>4/25–7/15</td>
<td>NR</td>
</tr>
<tr>
<td>LA North</td>
<td>4/1–6/30</td>
<td>7/1–7/31</td>
</tr>
<tr>
<td>LA South</td>
<td>3/15–6/30</td>
<td>7/1–8/15</td>
</tr>
<tr>
<td>MS North</td>
<td>4/1–4/10</td>
<td>NR</td>
</tr>
<tr>
<td>MS South</td>
<td>3/1–3/15</td>
<td>NR</td>
</tr>
<tr>
<td>NC East</td>
<td>4/15–5/15</td>
<td>7/1–7/15</td>
</tr>
<tr>
<td>NC West</td>
<td>5/15–7/31</td>
<td>NR</td>
</tr>
<tr>
<td>OK</td>
<td>4/15–5/30</td>
<td>7/1–7/15</td>
</tr>
<tr>
<td>SC East</td>
<td>3/15–5/15</td>
<td>7/1–7/30</td>
</tr>
<tr>
<td>SC West</td>
<td>4/15–6/5</td>
<td>NR</td>
</tr>
<tr>
<td>TN East</td>
<td>5/5–6/15</td>
<td>NR</td>
</tr>
<tr>
<td>TN West</td>
<td>4/15–6/1</td>
<td>NR</td>
</tr>
<tr>
<td>VA East (coastal)</td>
<td>3/30–7/20</td>
<td>NR</td>
</tr>
<tr>
<td>VA (mountain)</td>
<td>4/10–7/10</td>
<td>NR</td>
</tr>
</tbody>
</table>

*Use transplants for later season plantings.
NR = Not recommended

Nutrient Application.
A soil test to determine soil pH and nutrient availability is critical for commercial production of melons. Soil pH should be adjusted to 6.5. Pre-plant nutrient application should provide at least 25 pounds per acre of N and K₂O and all the P₂O₅ recommended by the soil test results. Applied nutrients should be thoroughly incorporated into the soil to reduce root damage to the melon transplants. Follow soil test results for minor nutrient application such as boron and sulfur.

Drip Fertigation.
Liquid nutrient application through the drip tape (fertigation) should begin at or shortly after transplanting or direct seeding melons. Suggested fertigation schedules, based on plant growth stage, are provided in the below tables. Continue fertigating until the last harvest.
SUGGESTED FERTIGATION SCHEDULE FOR MELON* (low potassium soil)

<table>
<thead>
<tr>
<th>Plant growth stage</th>
<th>Days after planting</th>
<th>Daily nitrogen</th>
<th>Daily potash</th>
<th>Cumulative Nitrogen</th>
<th>Cumulative Potash</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preplant</td>
<td></td>
<td></td>
<td></td>
<td>25.0</td>
<td>50.0</td>
</tr>
<tr>
<td>Planting to Vining</td>
<td>0-14</td>
<td>0.9</td>
<td>1.0</td>
<td>32.0</td>
<td>64.0</td>
</tr>
<tr>
<td>Vining to Flowering</td>
<td>14-28</td>
<td>1.0</td>
<td>2.0</td>
<td>46.0</td>
<td>92.0</td>
</tr>
<tr>
<td>Flowering to Fruit Set</td>
<td>29-49</td>
<td>1.5</td>
<td>3.0</td>
<td>76.0</td>
<td>152.0</td>
</tr>
<tr>
<td>Fruit Set to Ripening</td>
<td>50-77</td>
<td>2.0</td>
<td>4.0</td>
<td>130.0</td>
<td>260.0</td>
</tr>
<tr>
<td>Harvest</td>
<td>78-91</td>
<td>1.0</td>
<td>2.0</td>
<td>143.0</td>
<td>286.0</td>
</tr>
</tbody>
</table>

*Adjust based on tissue analysis.

Plastic Mulch. The use of plastic mulch is particularly beneficial for melon production. Black plastic mulch used in the spring increases soil temperature, reduces soil moisture loss and reduces weed competition except for nutgrass. The use of black plastic mulch in the fall can result in detrimentally high soil temperatures, consequently white plastic mulch is recommended for fall melon production. Both type mulches help reduce fruit rots and provide significant yield increases compared to bare ground crop production.

SPECIAL NOTES FOR PEST MANAGEMENT

DISEASE MANAGEMENT

Cucurbit Downy Mildew Forecasting System: Cucurbit downy mildew (CDM) is a devastating foliar cucurbit disease. While difficult, if not impossible to control, CDM can be prevented by using effective IPM practices. A useful tool for prevention of CDM is the CDM forecasting system. This program depends on the accurate reporting of CDM in the field as well as the monitoring of over 50 strategically placed sentinel plots. These plots are monitored by Plant Pathologists at multiple Land Grant Universities throughout the United States and Canada. Forecasts of the epidemic movement of the disease are generated 3 times a week. Risk maps are produced from these forecasts. For forecasts, maps, local contacts and other helpful information please visit our website, http://cdm.ipmpipe.org. If you think you have CDM, please contact your local Extension office.

INSECT MANAGEMENT

Seed Corn Maggot (SCM): Use insecticide treated seed or at-planting soil-insecticide treatments to avoid SCM in the early season. SCM problems subside with later plantings.

Cucumber Beetle: Cucumber beetles transmit bacterial wilt, and most cultivars of muskmelons are highly susceptible to this disease. Also adult beetles can cause direct feeding injury to young plants. Foliar insecticides should be used to control adult beetles before they feed extensively on the cotyledons and first true leaves. Begin spraying shortly after plant emergence and repeat applications at weekly intervals if new beetles continue to invade fields. Treatments may be required until vining, at which time plants are less susceptible to wilt infections.

Pickleworm, Melonworm: Make one treatment prior to fruit set, and then treat weekly.

Aphids: Aphids can delay plant maturity. Thorough spray coverage beneath leaves is important. For further information on aphid controls, see the preceding section on “Mulches and Row Covers.” Treat seedlings every 5 to 7 days or as needed.

Squash Bug: Begin treatments shortly after vining. Treat every 7 to 10 days or as needed.

Leafhoppers: High numbers of potato leafhoppers cause leaf yellowing (chlorosis) known as hopper burn, which will result in yield loss.

POLLINATION

Honeybees are important for pollination, high yields, and quality fruit. Populations of pollinating insects may be adversely affected by insecticides applied to flowers or weeds in bloom. Apply insecticides only in the evening hours or wait until blooms have closed before application. See section on “Pollination” in the General Production Recommendations.

HARVESTING AND STORAGE

Cantaloupes should be harvested at quarter-to half-slip for shipping. Healthy vines and leaves must be maintained until melons are mature to obtain high-quality melons. Harvest daily or twice daily in hot weather. See Table 14 for further postharvest information. Many other types of melons do not slip and judging maturity can be difficult. Many melons will change their water not color. It is critical to be familiar with the unique character of each melon.
Okra is a tropical annual which is widely adapted, however, it is very sensitive to frost and cold temperatures and should not be planted until soil has warmed in the spring.

Seeding and Spacing. Generally only one planting is made. For cooler areas, seed in the greenhouse in cells and transplant to the field through black plastic mulch. When direct seeding, okra seed require warm a soil temperature (70°F) for optimal germination and emergence.

For dwarf varieties, space the rows about 3.5 feet apart; for medium and tall varieties, 4 to 4.5 feet apart. Drill seeds 1 to 1.5 inch deep, with 3 or 4 seed per foot of row (5 to 7 pounds per acre). Thin plants when they are 5 inches high. Dwarf varieties should be spaced 12 to 15 inches apart in the row; plants of tall varieties should be spaced 18 to 24 inches apart.

OKRA PLANTING DATES

<table>
<thead>
<tr>
<th></th>
<th>AL</th>
<th>AR</th>
<th>GA</th>
<th>KY</th>
<th>LA</th>
<th>MS</th>
<th>NC</th>
<th>OK</th>
<th>SC</th>
<th>TN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>AL North</td>
<td>4/15–6/15</td>
<td>7/15–8/15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AL South</td>
<td>3/1–4/30</td>
<td>8/1–8/30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GA North</td>
<td>5/1–7/15</td>
<td>7/15–8/15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GA South</td>
<td>3/15–4/30</td>
<td>8/1–8/30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KY East</td>
<td>5/15–7/1</td>
<td>NR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KY Central</td>
<td>5/10–7/15</td>
<td>NR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KY West</td>
<td>4/20–8/1</td>
<td>NR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LA North</td>
<td>4/15–5/31</td>
<td>7/1–7/31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LA South</td>
<td>3/15–5/31</td>
<td>8/1–7/31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>4/15–6/1</td>
<td>8/1–9/1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC East</td>
<td>5/1–5/30</td>
<td>8/1–8/30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC West</td>
<td>5/25–7/31</td>
<td>NR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OK</td>
<td>5/15–6/1</td>
<td>NR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SC East</td>
<td>5/1–6/30</td>
<td>NR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SC West</td>
<td>5/15–7/15</td>
<td>NR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TN East</td>
<td>5/15–6/15</td>
<td>7/1–7/31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>AL North</td>
<td>6/1–7/15</td>
<td>8/1–8/15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AL South</td>
<td>6/1–7/15</td>
<td>8/1–8/15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GA North</td>
<td>6/1–7/15</td>
<td>8/1–8/15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GA South</td>
<td>6/1–7/15</td>
<td>8/1–8/15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KY East</td>
<td>6/1–7/15</td>
<td>8/1–8/15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KY Central</td>
<td>6/1–7/15</td>
<td>8/1–8/15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KY West</td>
<td>6/1–7/15</td>
<td>8/1–8/15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LA North</td>
<td>6/1–7/15</td>
<td>8/1–8/15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LA South</td>
<td>6/1–7/15</td>
<td>8/1–8/15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>6/1–7/15</td>
<td>8/1–8/15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC East</td>
<td>6/1–7/15</td>
<td>8/1–8/15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC West</td>
<td>6/1–7/15</td>
<td>8/1–8/15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OK</td>
<td>6/1–7/15</td>
<td>8/1–8/15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SC East</td>
<td>6/1–7/15</td>
<td>8/1–8/15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SC West</td>
<td>6/1–7/15</td>
<td>8/1–8/15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TN East</td>
<td>6/1–7/15</td>
<td>8/1–8/15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TN West</td>
<td>6/1–7/15</td>
<td>8/1–8/15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR = Not recommended</td>
<td></td>
</tr>
</tbody>
</table>

Ratooning Okra: Producing a Fall Crop from a Spring Planting. Market price for okra typically declines sharply as the summer progresses. After the market price drops, consider ratooning or cutting back your okra. Ratooning okra will allow the plants to rejuvenate and produce a crop in the fall, when okra prices are generally higher. Cut plants back using a mower, leaving 6 to 12 inches of each plant above the ground. Re-fertilize with 15-0-14, 8-0-24, or 13-0-44 to encourage re-growth and the development of side branches. Fall yields of cutback okra will often exceed that of spring crops or the yields of a crop that is not cut back.

Drip Fertilization. Before mulching, adjust soil pH to 6.5 and in the absence of a soil test apply fertilizer to supply 25 pounds per acre of N, P₂O₅ and K₂O, (some soils will require 50 pounds per acre of K₂O), then thoroughly incorporate into the soil. Apply 1 to 2 pound per acre of actual boron. After mulching and installing the drip irrigation system, the soluble fertilizer program should then be initiated according to that described in the tables below. The first soluble fertilizer application should be applied through the drip irrigation system within a week after field transplanting or direct seeding the okra. Continue fertigating until the last harvest.

SUGGESTED FERTIGATION SCHEDULE FOR OKRA* (low potassium soil)

<table>
<thead>
<tr>
<th>Days after planting</th>
<th>Daily nitrogen</th>
<th>Daily potash</th>
<th>Cumulative Nitrogen Potash</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planted</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preplant</td>
<td>25.0</td>
<td>50.0</td>
<td></td>
</tr>
<tr>
<td>0-14</td>
<td>0.9</td>
<td>1.8</td>
<td>50.2</td>
</tr>
<tr>
<td>15-28</td>
<td>1.3</td>
<td>2.6</td>
<td>77.5</td>
</tr>
<tr>
<td>29-84</td>
<td>1.5</td>
<td>3.0</td>
<td>119.5</td>
</tr>
<tr>
<td>85-91</td>
<td>0.7</td>
<td>1.4</td>
<td>129.3</td>
</tr>
</tbody>
</table>

NR = Not recommended

OKRA (Abelmoschus esculentus)

VARIETIES

<table>
<thead>
<tr>
<th>OKRA</th>
<th>AL</th>
<th>AR</th>
<th>GA</th>
<th>KY</th>
<th>LA</th>
<th>MS</th>
<th>NC</th>
<th>OK</th>
<th>SC</th>
<th>TN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annie Oakley II ²</td>
<td>A</td>
<td>R</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
<td>S</td>
<td>T</td>
</tr>
<tr>
<td>Bradford Family</td>
<td></td>
</tr>
<tr>
<td>Burgundy/Red Burgundy ³ ³</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carmine Splendor ³ ³ ⁴</td>
<td>A</td>
<td>L</td>
<td>N</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clemson Spineless 80</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
<td>S</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>Emerald</td>
<td>A</td>
<td>R</td>
<td>G</td>
<td>L</td>
<td>N</td>
<td>O</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jambalaya</td>
<td>A</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lee</td>
<td>A</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ Abbreviations for state where recommended. ³ Red pods. ² Dwarf cultivar. ⁴ Edible flowers.

2022 Vegetable Crop Handbook for Southeastern United States
SUGGESTED FERTIGATION SCHEDULE FOR OKRA*
(high potassium soil)

<table>
<thead>
<tr>
<th>Days after planting</th>
<th>Daily nitrogen</th>
<th>Daily potash</th>
<th>Cumulative Nitrogen</th>
<th>Cumulative Potash</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(lb / A)</td>
<td>(lb / A)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preplant</td>
<td></td>
<td></td>
<td>25.0</td>
<td>50.0</td>
</tr>
<tr>
<td>0-14</td>
<td>0.9</td>
<td>0.9</td>
<td>50.2</td>
<td>75.2</td>
</tr>
<tr>
<td>15-28</td>
<td>1.3</td>
<td>1.3</td>
<td>77.5</td>
<td>102.5</td>
</tr>
<tr>
<td>29-84</td>
<td>1.5</td>
<td>1.5</td>
<td>119.5</td>
<td>144.5</td>
</tr>
<tr>
<td>85-91</td>
<td>0.7</td>
<td>0.7</td>
<td>129.3</td>
<td>154.5</td>
</tr>
</tbody>
</table>

*Adjust based on tissue analysis.

Plastic Mulching. Polyethylene (black plastic) mulch can offer growers several advantages. Drip irrigation systems must be used with plastic mulch. On plastic mulch, transplant at the three-to four-leaf stage into staggered double rows spaced 15 to 18 inches apart between the double rows. Place plants 12 inches apart.

HARVESTING AND STORAGE
An okra pod usually reaches harvesting maturity 4 to 6 days after the flower opens. The pods are 3 to 3.5 inches long at this stage and are tender and free of fiber.

Pick pods at least every second day to avoid the development of large, undesirable pods. Okra should be kept at temperatures between 50° to 55°F and of 85% to 90% relative humidity. Okra pods are subject to chilling injury below 50°F.
ONIONS (*Allium cepa*) AND GREEN ONIONS (*A. cepa*)

<table>
<thead>
<tr>
<th>VARIETIES</th>
<th>AL</th>
<th>GA</th>
<th>KY</th>
<th>LA</th>
<th>MS</th>
<th>NC</th>
<th>OK</th>
<th>SC</th>
<th>TN</th>
<th>VA</th>
</tr>
</thead>
<tbody>
<tr>
<td>GREEN ONIONS</td>
<td></td>
</tr>
<tr>
<td>Beltsville Bunching</td>
<td>A</td>
<td>M</td>
<td>N</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evergreen Bunching</td>
<td>A</td>
<td>K</td>
<td>L</td>
<td>N</td>
<td>O</td>
<td>S</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ishikura Improved</td>
<td>A</td>
<td>K</td>
<td>M</td>
<td>N</td>
<td>S</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parade</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White Spear</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ONIONS (Short Day)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Alison</td>
<td>G**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Candy Joy</td>
<td>A</td>
<td>G**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cabernet</td>
<td>A</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Century</td>
<td>G**</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP Sweet 1407</td>
<td>A</td>
<td>G**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMY 52119</td>
<td>G**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMY 55375</td>
<td>G**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMY 55455</td>
<td>G**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expression</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fast Track</td>
<td>G**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Georgia Boy</td>
<td>G**</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goldeneye</td>
<td>A</td>
<td>G**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Granex Yellow PRR</td>
<td>A</td>
<td>G**</td>
<td>L</td>
<td>N</td>
<td>S</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macon</td>
<td>G**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mata Hari</td>
<td>A</td>
<td>G**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miss Megan</td>
<td>G**</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mr. Buck</td>
<td>G**</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pirate</td>
<td>G**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plethora</td>
<td>G**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red Burgundy</td>
<td>A</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red Hunter</td>
<td>A</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sapelo Sweet</td>
<td>G**</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Savannah Sweet</td>
<td>A</td>
<td>G**</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sierra Blanca</td>
<td>A</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sweet Agent</td>
<td>G**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sweet Caroline</td>
<td>A</td>
<td>G**</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sweet Harvest</td>
<td>A</td>
<td>G**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sweet Jasper</td>
<td>G**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sweet Magnolia</td>
<td>G**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas Early Grano 502</td>
<td>L</td>
<td>N</td>
<td>S</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas Grano 1015Y</td>
<td>A</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vidora</td>
<td>G**</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ONIONS (Intermediate Day)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Candy</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>O</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cimarron</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monastrell</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ovation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red Wing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Super Star (white)</td>
<td>K</td>
<td>L</td>
<td>N</td>
<td>O</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zoey</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Abbreviations for state where recommended.
2 Bulbing type.
3 Also designates a "type" of onion and performance may vary.
4 Red
** Georgia Growers note:** To be marketed as “Vidalia,” varieties must be on the Georgia Department of Agriculture’s “Recommended Vidalia Onion List” and grown in the Vidalia area. All of these varieties can be used for green onions.
Plants and Seeding Dates. Sets and seed for dry bulb onion production should be planted as soon as soil conditions are favorable. Typically, planting occurs late fall in the southern range of Southeast US, but can continue through the early spring in the northern range. Suggested direct seed and transplanting dates are indicated in the following tables.

Seed for bunching onions can be planted as soon as soil conditions are favorable in the spring and successive plantings can be made throughout the summer in the cooler parts of the Southeast.

On-farm transplant production can be performed in most conditions for dry bulb onion production. In the northern range of the Southeast it may be preferable to purchase transplants. Transplant production should begin by seeding plantbeds from late August to the end of September. A common method of producing transplants is to seed in high density plantings with 30-70 seed per linear foot. Four to five rows are planted 12-14 in. apart on beds prepared on six-foot centers.

For dry bulb onion production from transplants follow planting dates recommended in the following table. Onion production from sets has not worked as well because it is difficult to mechanically orient the sets with the growing point up. Hand planting sets, however, works well for smaller operations.

Direct seeding dry bulb onions can save money on labor and materials. See seeding dates in table below. It is recommended that coated or encrusted seed be used with a vacuum planter to insure good seed singulation. It is critical that the beds be properly prepared without any previous plant debris. Preplant fertilizer application of 1/5 to 1/4 of required amount with proper bed moisture is recommended. Care should be taken so that the seed is singulating properly, soil is not clogging the seeder, and planting depth is correct (~0.25 in.). Watering is required to insure germination and emergence. It may be necessary to apply water more than once a day during periods of hot, dry weather.

Seeding dates for green onions are listed in the table below. Green onions during winter production will require 12-14 weeks. Spring production may be shorter. Green onions can also be produced from transplants.

ONION DIRECT SEED PLANTING DATES

<table>
<thead>
<tr>
<th>Region</th>
<th>Green Onions</th>
<th>Onions (dry)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL North</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>AL South</td>
<td>8/15-10/15</td>
<td>10/5-10/25</td>
</tr>
<tr>
<td>GA North</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>GA South</td>
<td>8/15-10/15</td>
<td>10/5-10/25</td>
</tr>
<tr>
<td>LA North</td>
<td>9/15-10/31</td>
<td>9/15-10/31</td>
</tr>
<tr>
<td>LA South</td>
<td>10/1-10/31</td>
<td>10/1-10/31</td>
</tr>
<tr>
<td>MS North</td>
<td>2/15-3/30</td>
<td>9/15-10/15</td>
</tr>
<tr>
<td>MS South</td>
<td>10/15-2/15</td>
<td>9/15-10/30</td>
</tr>
<tr>
<td>NC East</td>
<td>8/1-6/15</td>
<td>9/15-10/31</td>
</tr>
<tr>
<td>NC West</td>
<td>4/1-8/15</td>
<td>9/1-9/30</td>
</tr>
<tr>
<td>OK</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>SC East</td>
<td>2/15-10/15</td>
<td>9/15-11/15</td>
</tr>
<tr>
<td>SC West</td>
<td>3/15-7/30</td>
<td>NR</td>
</tr>
<tr>
<td>TN East</td>
<td>9/1-9/30</td>
<td>NR</td>
</tr>
<tr>
<td>TN West</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

NR = Not recommended

Spacing. A typical planting arrangement for dry bulb onions is to plant four rows, 12-14 in. apart on raised beds (6 in high) prepared on six-foot centers. In-row spacing should be 4-6 inches. For direct seeded onions, set the planter to sow seed with a 3-4 in. in-row spacing.

For green onions, space rows 12 to 16 in. apart and space seed 0.75 to 1.5 inches apart (2-6 pounds per acre). A vacuum planter with a double row planter or a scatter shoe will work well. Seed depth should be 0.25-0.5 inches. Place transplants or sets 1.5 to 2.5 inches deep.

Cultivation. For bunching onions, hill with 1 to 2 inches of soil to ensure white base.

SPECIAL NOTES FOR PEST MANAGEMENT

INSECT MANAGEMENT

- Soilborne pests are often controlled with a preplant application of a soil insecticide.
- **Seedcorn Maggot**: An early season problem that is common following winter injury to plants or in fields where planting occurs soon after a cover crop has been plowed under.
- **Thrips**: Use a threshold of 5 thrips per plant.

HARVESTING AND STORAGE

See Table 14 for postharvest information.
PARSNIP (Pastinaca sativa)

<table>
<thead>
<tr>
<th>VARIETIES</th>
<th>AL</th>
<th>GA</th>
<th>KY</th>
<th>LA</th>
<th>MS</th>
<th>NC</th>
<th>SC</th>
<th>TN</th>
</tr>
</thead>
<tbody>
<tr>
<td>PARSNIP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All American</td>
<td>A</td>
<td>G</td>
<td>N</td>
<td>S</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harris Model</td>
<td>A</td>
<td>K</td>
<td>N</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Javelin</td>
<td></td>
<td>N</td>
<td>S</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Abbreviations for state where recommended.

Seeding and Spacing. Seed 3 to 5 pounds per acre at a depth of ¼ to 3/8 inch in rows 18 to 30 inches apart. Adjust seeder to sow 8 to 10 seeds per foot of row. Thin seedlings to 2-4 inches apart in the row. This will result in parsnips of similar shape and size to a plump carrot. To produce the huge roots popular in some areas, provide a much greater spacing of up to 12” between plants. Do not transplant parsnips.

Seeds germinate very slowly (taking up to 18 days). Seed more than one-year-old will not germinate. Parsnips need 120 to 180 days to mature and need to mature during cool weather.

Cultivation. Cultivate parsnips in a similar manner as to carrots. Do not let the roots dry out too much, as this will lead to cracked, unmarketable roots and bitter flavor.

Yield. Expected yield is 50-75 pounds per 100 row feet or 4 to 4.5 tons per acre.

Harvesting and Storage. Roots are ready for harvest when tops start to die back in autumn. Parsnips may be dug, topped, and then stored at 32°F at 90 to 95% relative humidity. Roots can be stored up to 6 months. Parsnips left in the ground over winter should be removed before growth starts in the spring. See Table 14 for further postharvest information.

Note: Many people develop a rash after contact with the juice that parsnip leaves exude when crushed or torn, especially when handling leaves in the sun. Consider wearing gloves during harvest and handling; do not display parsnips with leaves still attached as is common for fresh market carrots.

PARSNIP PLANTING DATES

<table>
<thead>
<tr>
<th></th>
<th>Spring</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL North</td>
<td>3/15–4/30</td>
<td>8/1–9/15</td>
</tr>
<tr>
<td>AL South</td>
<td>2/1–6/15</td>
<td>8/1–9/30</td>
</tr>
<tr>
<td>GA North</td>
<td>3/15–4/30</td>
<td>8/1–9/15</td>
</tr>
<tr>
<td>GA South</td>
<td>2/1–6/15</td>
<td>8/1–9/30</td>
</tr>
<tr>
<td>KY East</td>
<td>4/1–6/1</td>
<td>NR</td>
</tr>
<tr>
<td>KY Central</td>
<td>3/20–6/15</td>
<td>NR</td>
</tr>
<tr>
<td>KY West</td>
<td>3/10–7/1</td>
<td>NR</td>
</tr>
<tr>
<td>LA</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>MS</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>NC East</td>
<td>2/15–4/15</td>
<td>8/1–9/30</td>
</tr>
<tr>
<td>NC West</td>
<td>4/1–8/15</td>
<td>NR</td>
</tr>
<tr>
<td>SC East</td>
<td>2/1–3/31</td>
<td>8/15–10/15</td>
</tr>
<tr>
<td>SC West</td>
<td>3/15–4/30</td>
<td>7/15–9/30</td>
</tr>
<tr>
<td>TN East</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>TN West</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>NR = Not recommended</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Garden peas thrive in cool weather and are frost tolerant. Early plantings can be made as soon as soil can be tilled in the spring. Inoculation of seed can enhance early nodule formation and improve plant development.

Seed Treatment. Use seed already treated with an approved seed treatment, or treat seed with a slurry or dust that contains an approved fungicide. For a list of approved treatments, see SEED TREATMENTS in the disease management section of the handbook.

Seeding and Spacing. For Garden peas and processing peas, plant 3-4 seeds per foot in rows 6-8 inches apart, requiring seed 80-120 pounds per acre in 30 inch rows. Seed at a depth of no more than one inch unless soil is dry. Use press wheel drill or seeder to firm seed into soil.

Seedlings will emerge in 6 to 14 days, weather dependent. Harvesting usually begins 50-75 days after emergence. Average yield of Garden peas is approximately 20 pounds per 100 row feet.

Cultivation. Avoid overfertilization. Too much nitrogen will reduce yields. Garden peas need some type of support structure for best performance and speedier picking. Garden peas should not follow beans or another Legume crop.

Harvesting and Storage. Harvest often. Picking is labor intensive and may need to happen almost daily during peak production periods. Allowing Garden peas to get too large on the vines will greatly reduce production. Larger acreages of Garden peas require mechanical harvesting to be profitable. Leafless type Garden peas, with more tendrils than true leaves, are easier to harvest. Cool Garden peas as soon as possible after picking as their sugars convert to starch at higher temperatures. See Table 14 for further postharvest information.

PEAS (ENGLISH/GARDEN) (Pisum sativum)

<table>
<thead>
<tr>
<th>VARIETIES¹</th>
<th>AL</th>
<th>GA</th>
<th>KY</th>
<th>LA</th>
<th>MS</th>
<th>NC</th>
<th>OK</th>
<th>SC</th>
<th>TN</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGLISH/GARDEN PEAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green Arrow</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>N</td>
<td>S</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Knight</td>
<td>G</td>
<td>L</td>
<td>O</td>
<td>S</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oregon Sugar Pod II²,³</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
<td>S</td>
<td>T</td>
</tr>
<tr>
<td>Sugar Ann³</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>N</td>
<td></td>
<td>S</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sugar Bon²</td>
<td>A</td>
<td>L</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sugar Snap³</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>N</td>
<td>S</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tall Telephone/Alderman</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ Abbreviations for state where recommended. ² Flat podded - snow pea. ³ Edible pod type.

ENGLISH/GARDEN PEAS PLANTING DATES

AL North	3/15–4/30	8/1–8/31
AL South	2/1–3/31	8/1–9/30
GA North	3/15–4/30	8/1–8/31
GA South	2/1–3/31	8/1–9/30
KY East	3/15-4/15	NR
KY Central	3/1–4/1	NR
KY West	2/20-3/20	NR
LA North	11/15–2/1	NR
LA South	11/15–2/1	NR
MS North	2/10-4/25	NR
MS South	1/25–4/5	NR
NC East	2/15–4/15	8/1–9/30
NC West	4/1–6/15	NR
OK	2/15-3/10	8/15-9/1
SC East	2/1–3/15	8/15–11/30
SC West	3/1–4/15	8/15–10/30
TN East	3/15–4/30	NR
TN West	2/15-3/30	NR

NR = Not recommended
PEPPERS (Capsicum annuum and related species)

<table>
<thead>
<tr>
<th>VARIETIES</th>
<th>AL</th>
<th>GA</th>
<th>KY</th>
<th>LA</th>
<th>MS</th>
<th>NC</th>
<th>OK</th>
<th>SC</th>
<th>TN</th>
<th>VA</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEPPER (open pollinated)</td>
<td></td>
</tr>
<tr>
<td>Bell</td>
<td></td>
</tr>
<tr>
<td>Capistrano</td>
<td>A</td>
<td></td>
<td>L</td>
<td>M</td>
<td>N</td>
<td></td>
<td></td>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jupiter</td>
<td>A</td>
<td></td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
<td>S</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purple Beauty</td>
<td>A</td>
<td></td>
<td>M</td>
<td></td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frying type</td>
<td></td>
</tr>
<tr>
<td>Cubanelle</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td></td>
<td>N</td>
<td>S</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sweet Banana</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>N</td>
<td>O</td>
<td>S</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOT/PUNGENT TYPES (open pollinated)</td>
<td></td>
</tr>
<tr>
<td>New Mexican/Anaheim type</td>
<td></td>
</tr>
<tr>
<td>Anaheim</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>N</td>
<td>O</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cayenne type</td>
<td></td>
</tr>
<tr>
<td>Carolina Cayenne</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charleston Hot</td>
<td>11</td>
<td></td>
<td>L</td>
<td>M</td>
<td>N</td>
<td></td>
<td></td>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large Red Thick</td>
<td></td>
</tr>
<tr>
<td>Long Slim Cayenne</td>
<td>A</td>
<td>G</td>
<td></td>
<td>M</td>
<td>N</td>
<td></td>
<td></td>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Habaño / Scotch Bonnet type</td>
<td></td>
</tr>
<tr>
<td>Habaño</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>N</td>
<td>S</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wax type</td>
<td></td>
</tr>
<tr>
<td>Long Hungarian Wax</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>N</td>
<td>S</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jalapeño type</td>
<td></td>
</tr>
<tr>
<td>Jalapeño M</td>
<td>A</td>
<td>G</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
<td>S</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tula</td>
<td>A</td>
<td>G</td>
<td>L</td>
<td>N</td>
<td>S</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEPPER (Hybrid)</td>
<td></td>
</tr>
<tr>
<td>Bell</td>
<td></td>
</tr>
<tr>
<td>Alliance</td>
<td>4</td>
<td>B</td>
<td>b</td>
<td>f</td>
<td>11</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antebellum</td>
<td>3</td>
<td>B</td>
<td>a</td>
<td>k</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aristotle</td>
<td>4</td>
<td>3</td>
<td>B</td>
<td>d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Currier</td>
<td>2</td>
<td>4</td>
<td>B</td>
<td>a</td>
<td>d</td>
<td>11</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Camelot X3R</td>
<td>8</td>
<td>B</td>
<td>d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daciana (Ivory color maturing to red)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>Declaration</td>
<td>2</td>
<td>3</td>
<td>8</td>
<td>b</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excursion II</td>
<td>4</td>
<td>8</td>
<td>b</td>
<td>d</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flamingo</td>
<td>12</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flavoburst</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green Machine</td>
<td>3</td>
<td>8</td>
<td>a</td>
<td>k</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karisma</td>
<td>4</td>
<td>3</td>
<td>8</td>
<td>b</td>
<td>d</td>
<td>11</td>
<td>13</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>King Arthur</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>c</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mecate</td>
<td>4</td>
<td>7</td>
<td>8</td>
<td>b</td>
<td>d</td>
<td>13</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milena</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paladin</td>
<td>2</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polaris</td>
<td>8</td>
<td>b</td>
<td>d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prowler</td>
<td>3</td>
<td>B</td>
<td>a</td>
<td>k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS 09942815</td>
<td>3</td>
<td>8</td>
<td>B</td>
<td>a</td>
<td>k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS 09979325</td>
<td>3</td>
<td>8</td>
<td>b</td>
<td>a</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Abbreviations for state where recommended.
2 Phytophthora Root Rot tolerance/resistance.
3 Tomato Spotted Wilt Virus tolerance/resistance (TSWV).
4 Tomato mosaic virus tolerance/resistance (ToMV).
5 Tobacco Etch Virus tolerance/resistance (TEV).
6 Bacterial leaf spot resistance for races 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, respectively.
7 Mature Yellow fruit or Mature Orange fruit.
8 Nematode resistance (N).
9 Cucumber mosaic virus tolerance/resistance (CMV).
10 Tobacco mosaic virus tolerance/resistance.
11 Pepper yellow mosaic virus tolerance/resistance (PYMV).
12 Pepper mottle virus tolerance/resistance (PMV).
13 Tobacco mosaic virus tolerance/resistance (TMV).
Peppers are a warm-season crop that grow best at temperatures of 70° to 75°F. This crop is sensitive to temperature extremes. Poor fruit set and blossom drop can be expected when night temperatures drop below 60° or day temperatures rise above 85°F.

Seed Treatment. If seed is not treated in order to minimize the occurrence of bacterial leaf spot, dip seed in a solution containing 1 quart of household bleach and 4 quarts of water plus 1 teaspoon of surfactant for 15 minutes. Provide constant agitation. Use at the rate of 1 gallon of solution per pound of seed. Prepare a fresh solution for each batch of seed. Wash seed in running water for 5 minutes and dry seed thoroughly. Plant seed soon after treatment. Further information on seed treatments can be found under SEED TREATMENTS in the disease management section of the handbook.

Planting and Spacing. Space rows 4 to 5 feet apart. Set plants 12 to 18 inches apart in double rows. Select fields with good drainage. Plant on raised, dome-shaped beds to aid in disease control.

To minimize sunscald when growing pepper on sandy soils and on plastic mulch without drip irrigation, plant varieties that have excellent foliage. To optimize production, peppers should be staked.

<table>
<thead>
<tr>
<th>VARIETIES</th>
<th>AL</th>
<th>GA</th>
<th>KY</th>
<th>LA</th>
<th>MS</th>
<th>NC</th>
<th>OK</th>
<th>SC</th>
<th>TN</th>
<th>VA</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEPPER (Hybrid)</td>
<td></td>
</tr>
<tr>
<td>Bell (cont’d)</td>
<td></td>
</tr>
<tr>
<td>Revolution</td>
<td>A</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tequila</td>
<td>A</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tumpke</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vanguard</td>
<td>A</td>
<td>N</td>
<td>S</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frying type</td>
<td></td>
</tr>
<tr>
<td>Aruba</td>
<td>A</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banana Supreme</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>N</td>
<td>S</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biscayne</td>
<td>A</td>
<td>G</td>
<td>M</td>
<td>N</td>
<td>S</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gypsy</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key Largo</td>
<td>A</td>
<td>G</td>
<td>M</td>
<td>N</td>
<td>S</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ancho/Poblano</td>
<td></td>
</tr>
<tr>
<td>San Juan</td>
<td>A</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Martin</td>
<td>A</td>
<td>K</td>
<td>N</td>
<td>O</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tiburon</td>
<td>A</td>
<td>G</td>
<td>M</td>
<td>O</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOT/PUNGENT TYPES (Hybrid)</td>
<td></td>
</tr>
<tr>
<td>Cayenne type</td>
<td></td>
</tr>
<tr>
<td>Mesilla</td>
<td>A</td>
<td>N</td>
<td>S</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Super Cayenne</td>
<td>A</td>
<td>N</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jalapeño type</td>
<td></td>
</tr>
<tr>
<td>Cheetah</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compadre</td>
<td>A</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>El Rey</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
<td>T</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Inferno</td>
<td>A</td>
<td>G</td>
<td>L</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ixtapa X3R</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T</td>
</tr>
<tr>
<td>Jedi</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mitla</td>
<td>A</td>
<td>G</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
<td>S</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tormenta</td>
<td>A</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations for state where recommended.

Phytophthora Root Rot tolerance/resistance.

Tomato Spotted Wilt Virus tolerance/resistance (TSWV).

Potato Virus Y tolerance/resistance (PVY).

Tomato Mosaic Virus tolerance/resistance (ToMV).

Tobacco Etch Virus tolerance/resistance (TEV).

Bacterial Leaf Spot resistance for races 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, respectively.

Mature Yellow fruit or Mature Orange fruit.

Mature Purple fruit.

Nematode resistance (N).

Cucumber Mosaic Virus tolerance/resistance (CMV).

Fruit mature from White to Red.

7 Tobacco Mosaic Virus (TMV) tolerance/resistance.

8 Pepper Yellow mosaic virus tolerance/resistance (PYMV).

9 Pepper Mottle Virus tolerance/resistance (PMV).

10 Tobamovirus tolerance/resistance (TM).

11 Pepper Mottle Virus tolerance/resistance (PMV).

12 Tobacco Mosaic Virus (TMV) tolerance/resistance.

13 Tobacco Mosaic Virus (TMV) tolerance/resistance.

14 Tobacco Mosaic Virus (TMV) tolerance/resistance.

15 Tobacco Mosaic Virus (TMV) tolerance/resistance.

16 Tobacco Mosaic Virus (TMV) tolerance/resistance.
Drip Fertilization. Before mulching, adjust soil pH to 6.5, and in the absence of a soil test, apply enough fertilizer to supply 50 pounds per acre of N, P₂O₅, and K₂O, (some soils will require 100 pounds per acre of K₂O) then thoroughly incorporate into the soil. After transplanting the soluble fertilizer program should then be initiated following that described in the following table. On soils testing low-medium for boron, also include 0.5 pound per acre of actual boron. The first soluble fertilizer application should be applied through the drip irrigation system within a week after transplanting the peppers. Continue fertigating until the last harvest.

SUGGESTED FERTIGATION SCHEDULE FOR PEPPER

<table>
<thead>
<tr>
<th>Days after planting</th>
<th>Daily nitrogen (lb / A)</th>
<th>Daily potash (lb / A)</th>
<th>Cumulative Nitrogen (lb / A)</th>
<th>Cumulative Potash (lb / A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preplant</td>
<td>50.0</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–14</td>
<td>0.5</td>
<td>0.5</td>
<td>57.0</td>
<td>107.0</td>
</tr>
<tr>
<td>15–28</td>
<td>0.7</td>
<td>1.4</td>
<td>66.8</td>
<td>126.6</td>
</tr>
<tr>
<td>29–42</td>
<td>1.0</td>
<td>2.0</td>
<td>80.8</td>
<td>154.6</td>
</tr>
<tr>
<td>43–56</td>
<td>1.5</td>
<td>3.0</td>
<td>101.8</td>
<td>196.6</td>
</tr>
<tr>
<td>57–98</td>
<td>1.8</td>
<td>3.6</td>
<td>177.4</td>
<td>347.8</td>
</tr>
</tbody>
</table>

*Adjust based on tissue analysis.

SUGGESTED FERTIGATION SCHEDULE FOR PEPPER

<table>
<thead>
<tr>
<th>Days after planting</th>
<th>Daily nitrogen (lb / A)</th>
<th>Daily potash (lb / A)</th>
<th>Cumulative Nitrogen (lb / A)</th>
<th>Cumulative Potash (lb / A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preplant</td>
<td>50.0</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–14</td>
<td>0.5</td>
<td>0.5</td>
<td>57.0</td>
<td>107.0</td>
</tr>
<tr>
<td>15–28</td>
<td>0.7</td>
<td>1.4</td>
<td>66.8</td>
<td>126.6</td>
</tr>
<tr>
<td>29–42</td>
<td>1.0</td>
<td>2.0</td>
<td>80.8</td>
<td>154.6</td>
</tr>
<tr>
<td>43–56</td>
<td>1.5</td>
<td>3.0</td>
<td>101.8</td>
<td>196.6</td>
</tr>
<tr>
<td>57–98</td>
<td>1.8</td>
<td>3.6</td>
<td>177.4</td>
<td>347.8</td>
</tr>
</tbody>
</table>

SPECIAL NOTES FOR PEST MANAGEMENT

INSECT MANAGEMENT

Green Peach and Melon Aphid: For best green peach aphid control during periods of drought, apply insecticide 2 to 3 days after irrigation. Thorough spray coverage beneath leaves is critical.

Pepper Maggot: Pepper maggot flies are active from June 1 to mid-August.

Pepper Weevil (PW): PW is a pest occasionally imported on older transplants or transplants with flowers or fruit.

European Corn Borer (ECB): European Corn Borer (ECB). The use of pheromone insect traps is recommended, treat when more than ten moths per trap per week are found. Follow table in Insect Control section of this publication.

Nematode Management. Use nematicides listed in the “Nematode Control in Vegetate Crops” tables in the Disease Control section.

VIRUSES

Aphid-transmitted Viruses (TMV, PVX, CMV, TEV, PVY): Use tolerant or resistant varieties to control these viruses when available and provided that the fruit quality is consistent with market demands. Use these varieties in areas where these viruses have been prevalent or when high aphid pressure is expected. Generally, these viruses cannot be adequately controlled with insecticide applications, but symptom expression can be delayed through their use combined with the use of reflective mulches. Because aphids transmit these virus, growers may wish to use yellow trap pans containing water to determine when mass flights of winged aphids occur.

Thrips-transmitted Virus (Tomato Spotted Wilt Virus, TSWV): Use tolerant or resistant varieties. TSWV can be severe on peppers during both greenhouse production of transplants and during field production of the crop. The virus is spread to peppers by thrips. During transplant production, thrips transmit the virus from infected ornamental plants (flowers). Be sure not to grow any ornamental bedding plants in the same greenhouse as pepper transplants. Monitor greenhouses and scout fields for thrips. Begin an insecticide program BEFORE a problem is observed.

HARVESTING AND STORAGE

See Table 14 for postharvest information.
POTATOES (IRISH) (Solanum tuberosum)

VARIETIES

<table>
<thead>
<tr>
<th>POTATOES</th>
<th>AL</th>
<th>GA</th>
<th>KY</th>
<th>LA</th>
<th>MS</th>
<th>NC</th>
<th>OK</th>
<th>SC</th>
<th>TN</th>
<th>VA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlantic 4, 5, 9</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>S</td>
<td>T</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Dark Red Norland 4, 7</td>
<td>A</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>S</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Envolt</td>
<td>5</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>S</td>
<td>T</td>
<td>V</td>
</tr>
<tr>
<td>Harley Blackwell 4, 8</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>S</td>
<td>T</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Katahdin 5</td>
<td>5</td>
<td>S</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kennebec 4, 8</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
<td>S</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>La Rouge 4</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>S</td>
<td>T</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Mountain Rose 3</td>
<td>3</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purple Majesty 4</td>
<td>A</td>
<td>G</td>
<td>N</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red LaSoda 5</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
<td>S</td>
<td>T</td>
<td>V</td>
</tr>
<tr>
<td>Red Pontiac 5</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
<td>S</td>
<td>T</td>
<td>V</td>
</tr>
<tr>
<td>Superior 4, 8</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
<td>S</td>
<td>T</td>
<td>V</td>
</tr>
<tr>
<td>Yukon Gold 4, 7, 9</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>S</td>
<td>T</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

Fingerling Types

| French Fingerling | A | G | K |
| Russian Banana 4 | A | G | K |

1 Abbreviations for state where recommended. 4 Tolerant/resistant to scab.
2 Purple flesh when mature. 5 Susceptible to scab.
3 Red flesh when mature. 6 Late blight tolerance/resistance.

Planting and Spacing. The recommended planting dates for potatoes are in the following table.

POTATO PLANTING DATES

<table>
<thead>
<tr>
<th>Spring</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL North</td>
<td>2/15–4/30</td>
</tr>
<tr>
<td>AL South</td>
<td>1/15–3/31</td>
</tr>
<tr>
<td>GA North</td>
<td>3/15–4/30</td>
</tr>
<tr>
<td>GA South</td>
<td>2/1–3/31</td>
</tr>
<tr>
<td>KY East</td>
<td>3/20–6/15</td>
</tr>
<tr>
<td>KY Central</td>
<td>3/15–7/1</td>
</tr>
<tr>
<td>KY West</td>
<td>3/15–7/15</td>
</tr>
<tr>
<td>LA North</td>
<td>1/15–2/28</td>
</tr>
<tr>
<td>LA South</td>
<td>1/15–2/28</td>
</tr>
<tr>
<td>MS North</td>
<td>1/20–3/15</td>
</tr>
<tr>
<td>MS South</td>
<td>1/20–3/1</td>
</tr>
<tr>
<td>NC East</td>
<td>2/15–3/31</td>
</tr>
<tr>
<td>NC West</td>
<td>4/1–6/15</td>
</tr>
<tr>
<td>OK</td>
<td>3/15–4/10</td>
</tr>
<tr>
<td>SC East</td>
<td>2/1–3/31</td>
</tr>
<tr>
<td>SC West</td>
<td>3/15–4/30</td>
</tr>
<tr>
<td>TN East</td>
<td>3/20–4/30</td>
</tr>
<tr>
<td>TN West</td>
<td>2/15–3/31</td>
</tr>
<tr>
<td>VA East (coastal)</td>
<td>3/10–4/6</td>
</tr>
<tr>
<td>VA West (mountains)</td>
<td>4/1–6/15</td>
</tr>
<tr>
<td>NR = Not recommended</td>
<td></td>
</tr>
</tbody>
</table>

Space seed 7 to 12 inches apart in 34- or 36- inch rows. Use closer spacing for large, cut seed pieces and wider spacing for whole (B-size) seed. Use close spacing for potatoes being marketed in 5- and 10-pound consumer packs and for Katahdin and Kennebec, which tend to set few tubers and produce oversize tubers.

Seed-Piece Treatment. Use certified seed. Warm potato seed 65°F to 70°F for a period of 2 to 3 weeks before planting to encourage rapid emergence. Do not use seed pieces that weigh less than 1.5 oz each. Plant seed pieces immediately after cutting or store under conditions suitable for rapid healing of the cut surfaces (60° to 70°F plus high humidity). Dust seed pieces immediately after cutting with fungicide. Some fungicide seed-piece treatments are formulated with fir or alder bark. Bark formulations have been effective treatments to reduce seed piece decay.

SPECIAL NOTES FOR PEST MANAGEMENT

INSECT MANAGEMENT

Colorado Potato Beetle (CPB): Rotation to non-solanaceous crops (crops other than potato, tomato, eggplant, and pepper) is extremely important in reducing CPB problems.

The further fields can be planted from last year’s solanaceous crop, the more beneficial it will be in reducing CPB problems. Avoid the application of late-season sprays to prevent the buildup of insecticide-resistant beetles.

Beginning at plant emergence, sample fields weekly for CPB to determine the need to spray. Select at least 10 sites per field along a V- or W-shaped path throughout the field. At each site, select one stem from each of five adjacent plants and count and record all adults, large larvae (more than half-grown), and small larvae (less than half-grown). As a general guideline, if more than 25 adults or 75 large larvae or 200 small larvae are counted per 50 stems, a treatment is recommended. The amount of yield loss as a result of CPB feeding depends on the age of the potato plant. The Superior variety (short season) cannot compensate for early season defoliation by overwintered beetles, but, during the last 30 days of the season, Superior can withstand up to 50% defoliation without yield loss.
Note: Several insecticides may no longer be effective in certain areas due to CPB resistance. Alternate insecticide classes from one year to the next to avoid resistance. Check with the county Extension agent in your area for the most effective control.

Flea Beetles and Leafhoppers: Treatment is suggested if leafhopper counts exceed three adults per sweep or one nymph per 10 leaves.

European Corn Borer (ECB): Continued treatment for ECB may significantly increase CPB insecticide resistance. However, for proper timing of ECB sprays, consult your local county Extension office for further information.

Potato Tuberworm: Treat when foliage injury is first noted. Potato tuberworms are primarily a problem with late potatoes, in cull piles, or potatoes in storage. Sanitation is very important.

Cutworms: Cutworms are especially troublesome to tubers where soil cracking occurs. Variegated cutworms feed on lower leaves and petioles.

Wireworms: Wireworms are a generic term used for the larvae of several species of click beetles, which burrow into potato tubers. In the Southeast U.S., wireworms attacking potato are typically the corn wireworm, or one of five species in the genus Conoderus. Wireworm problems are most prevalent when potatoes follow corn, any cereal crop, sod, or pasture. Wireworms do not move quickly from one field to the next, but can remain as larvae in a field for 2-5 years, depending on the species. Since it is difficult and laborious to monitor for a pest that lives in the ground, field history is an important tool for determining the need to treat for wireworms. Treatment must begin at or before planting to be effective. Options include preplant broadcast or at-planting furrow application of an appropriate insecticide. There is no control for wireworms once they have infested potato tubers.

DISEASE MANAGEMENT

Early Blight

Fungicide applications can slow the spread of early blight, but cannot eliminate it, and will be effective only when application begins when airborne spores are first present. Spore formation is most prevalent during repeated wet/dry cycles, such as caused by overhead irrigation or frequent dew. Minimizing plant stress can reduce damage caused by early blight, especially in younger plants. Early blight spreads more rapidly in young plants than mature ones. If a field is infested with early blight, potatoes may still be harvested if adequate time between vine kill and harvest allows the skins to set and great care is taken not to bruise the tubers in the field. Tubers can be infected during the harvest process, and will decay more rapidly in storage than non-infected tubers. There are some potato cultivars resistant to early blight.

White Mold: High fertility and frequent rain or overhead irrigation are conditions conducive to white mold, caused by the fungus *Sclerotinia sclerotiorum*. This organism can survive in the soil for three or more years, and impacts other produce crops such as lettuce, beans, broccoli, peppers, and others. Fungicides should be applied as a protectant in fields with a history of white mold. In addition, eliminate canopy wetness by reducing overhead irrigation or aligning rows with prevailing winds to promote rapid evaporation of water in the canopy. Avoid fields with poor air movement or poor drainage. Rotate with a non-susceptible crop for three yields after a heavy infestation of white mold.

Common Scab: Common scab is characterized by brown lesions on tuber skin that may be slightly raised or sunken in relation to surrounding surface. The causal agent is a bacteria (*Streptomyces spp.*), which can be seedborne or soilborne. Scab occurs most commonly in warm dry soils with pH 5.5 to 7.5, and does not affect yield. If lesions are significant, marketability and quality are affected. Scab is difficult to manage. In addition to seed treatments at planting, management strategies include rotation out of the field for 3-4 years, maintaining low soil pH, using resistant varieties, and maintaining high soil moisture during tuber formation.

Late Blight: Caused by the fungal pathogen *Phytophthora infestans*, late blight is the disease responsible for the potato famine and continues to plague potato crops worldwide. Environmental conditions that favor late blight include frequent rainfall (or overhead irrigation), cool weather (50-75°F), and high humidity. Spread is usually quite rapid and complete defoliation can occur within 2-3 weeks of initial infestation. Infection can occur at any growth stage, and in any plant part including the tuber. Fungicides should be applied protectively; after infection, only systemic fungicides (those that penetrate plant tissue) can inhibit the spread of the disease. Additional management strategies include reducing periods of leaf wetness by decreasing overhead irrigation or increasing air movement. Use resistant cultivars when they are available. A critical strategy is reducing the initial amount of inoculum available in the field. Use certified disease-free tubers, and dispose of infected tubers and volunteer vines in a pit with at least 2 ft soil coverage to avoid sprouting. Consider fungicide treatment of seed pieces.

In recent years, forecasting and reporting for this disease have become available, particularly valuable since Phytophthora spores can travel long distances on air currents. One such model is http://www.usablight.org. Use late blight modeling to forecast when disease pressure is most likely to be present and time fungicide sprays accordingly for most efficient use of chemicals.

HARVESTING AND STORAGE

Harvest indicators: Tubers formation of potatoes ends when soil temperatures are consistently over 80°F, regardless of whether or not vine tops have died back. For most “new” potatoes, tubers will be well developed between 65-75 days. Flowering is not a reliable indicator of tuber formation, as some varieties may flower little or not at all. Check for readiness by hand harvesting a few tubers for evaluation.
Vine Kill: Also known as desiccation, many growers chemically (labeled herbicide application) or physically (rotobeating or chopping) defoliate potato vines once optimum marketable size of tubers has been achieved. This allows the tuber skin to set and mature and helps minimize skinning prior to digging. This technique provides benefits including efficiency in harvest, better control over harvest timing, skin set to reduce harvest injury, and reducing impact of diseases like late blight. Vine killing halts the translocation of nutrients and sugar accumulation from the leaves, triggering the conversion of tuber sugars to starch for storage. Vine killing also weakens the juncture of the tuber and stolon, making tubers fall from the plant more easily. If vine killing is used, harvest of tubers should occur at 2-3 weeks after vines are completely dead. Harvest before this and tuber skin may not have had adequate time to set, while harvesting later increases the chance for rotting organisms to attach the crop in the ground. Care should be taken to monitor this period and harvest at the optimum time to minimize mechanical damage and breakdown. See Table 14 for further postharvest information.
PUMPKINS AND WINTER SQUASH (*Cucurbita* spp.)

VARIETIES

<table>
<thead>
<tr>
<th>Variety</th>
<th>AL</th>
<th>AR</th>
<th>GA</th>
<th>KY</th>
<th>LA</th>
<th>MS</th>
<th>NC</th>
<th>OK</th>
<th>SC</th>
<th>TN</th>
<th>VA</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUMPKIN</td>
<td></td>
</tr>
<tr>
<td>Miniature <2 lbs</td>
<td></td>
</tr>
<tr>
<td>Apprentice</td>
<td>A</td>
<td>G</td>
<td>N</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baby Boo</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>N</td>
<td>O</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bumpkin</td>
<td>A</td>
<td>G</td>
<td>N</td>
<td>S</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caspenta</td>
<td>A</td>
<td>G</td>
<td>N</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crunchkin</td>
<td>A</td>
<td>G</td>
<td>N</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gold Dust</td>
<td>A</td>
<td>G</td>
<td>N</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gooligan</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>N</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jack-Be-Little</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>N</td>
<td>O</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jill-Be-Little</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>N</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Munchkin</td>
<td>A</td>
<td>G</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>S</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WeeeOne</td>
<td>A</td>
<td>G</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>S</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small 2-6 lbs</td>
<td></td>
</tr>
<tr>
<td>Baby Moon</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>N</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blanco</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>N</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cannon Ball</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>N</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chucky</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>N</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Darling</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>N</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Early Abundance</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>N</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field Trip</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>N</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron Man</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>N</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Little Giant</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>N</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prankster</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>N</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small Sugar</td>
<td>A</td>
<td>G</td>
<td>L</td>
<td>N</td>
<td>O</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sunlight</td>
<td>A</td>
<td>G</td>
<td>L</td>
<td>N</td>
<td>O</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Snowball</td>
<td>A</td>
<td>G</td>
<td>L</td>
<td>N</td>
<td>O</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tiffany</td>
<td>A</td>
<td>G</td>
<td>L</td>
<td>N</td>
<td>O</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warty Gnome</td>
<td>A</td>
<td>G</td>
<td>L</td>
<td>N</td>
<td>O</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medium 6-12 lbs</td>
<td></td>
</tr>
<tr>
<td>Autumn Gold</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>N</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cotton Candy</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>N</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goosebumps</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>N</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grey Ghost</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>N</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grizzly Bear</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>N</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gumdrop</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>N</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hijinks</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>N</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hybrid Pam</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>N</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jamboree</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>N</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jarrahdale</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>N</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long Island Cheese</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>N</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lumina</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>N</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mellow Yellow</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>N</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mystic Plus</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>N</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neon</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>N</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orange Bulldog</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>N</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rouge Vif D’Etampes</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>N</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skidoo Gold</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>N</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Abbreviations for state where recommended.

Growth habit:
- **B**: Bush growth habit.
- **V**: Vining growth habit.
- **SB**: Semi-bush growth habit.
- **SV**: Semi-vining growth habit.

Skin features:
- **BL**: Blue skin.
- **BU**: Buff skin.
- **G**: Green skin.
- **H**: Hardshell skin.
- **W**: White skin.
- **VAR**: Variegated skin.
- **Y**: Yellow skin.

Shape:
- **FL**: Flat (Cinderella, pancake).
- **O**: Oblong.
- **R**: Round.

Disease Tolerance/Resistance:
- **DM**: Downy mildew tolerance/resistance.
- **PH**: Phytophthora tolerance/resistance.
- **PY**: Precocious yellow.
- **PM**: Powdery mildew tolerance/resistance.
- **VT**: Virus tolerance (non-specific).
- **WMV**: Watermelon Mosaic Virus (Strain 2).
- **CMV**: Cucumber Mosaic Virus.
- **PRSV**: Papaya Ringspot Virus.
PUMPKIN (cont'd)

Large 12-20 lbs

<table>
<thead>
<tr>
<th>Variety</th>
<th>AL</th>
<th>AR</th>
<th>GA</th>
<th>KY</th>
<th>LA</th>
<th>MS</th>
<th>NC</th>
<th>OK</th>
<th>SC</th>
<th>TN</th>
<th>VA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appalachian</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspen</td>
<td>A</td>
<td>G</td>
<td>L</td>
<td>O</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blue Bayou</td>
<td>A</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blue Doll</td>
<td>A</td>
<td>N</td>
<td></td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cinderella</td>
<td>A</td>
<td>R</td>
<td>G</td>
<td>L</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eros</td>
<td>A</td>
<td>G</td>
<td>L</td>
<td></td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fairytale</td>
<td>A</td>
<td>G</td>
<td>N</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gold Medal</td>
<td>A</td>
<td>G</td>
<td>L</td>
<td></td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Knuckle Head</td>
<td>A</td>
<td>K</td>
<td>N</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magic Lantern</td>
<td>A</td>
<td>R</td>
<td>G</td>
<td>K</td>
<td>N</td>
<td>S</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magic Wand</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td></td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magician</td>
<td>A</td>
<td>R</td>
<td>G</td>
<td>K</td>
<td>N</td>
<td>O</td>
<td>S</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orange Rave</td>
<td>A</td>
<td>G</td>
<td>L</td>
<td></td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orange Sunrise</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Racer Plus</td>
<td>A</td>
<td>G</td>
<td>L</td>
<td></td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soroer</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specter</td>
<td>A</td>
<td>G</td>
<td>L</td>
<td></td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 Karat Gold</td>
<td>A</td>
<td>R</td>
<td></td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Extra Large 20-50 lbs

<table>
<thead>
<tr>
<th>Variety</th>
<th>AL</th>
<th>AR</th>
<th>GA</th>
<th>KY</th>
<th>LA</th>
<th>MS</th>
<th>NC</th>
<th>OK</th>
<th>SC</th>
<th>TN</th>
<th>VA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aladdin</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>N</td>
<td>S</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apollo</td>
<td>A</td>
<td>K</td>
<td>N</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Big Max</td>
<td>A</td>
<td>G</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Camaro</td>
<td>A</td>
<td>K</td>
<td>M</td>
<td>N</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cronus</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>M</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gladiator</td>
<td>A</td>
<td>K</td>
<td>N</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gold Medallion</td>
<td>A</td>
<td>G</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gold Rush</td>
<td>A</td>
<td>G</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Howden Biggie</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>M</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kratos</td>
<td>A</td>
<td>K</td>
<td>N</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mammoth Gold</td>
<td>A</td>
<td>K</td>
<td>N</td>
<td>O</td>
<td>S</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mustang</td>
<td>A</td>
<td>K</td>
<td>N</td>
<td>O</td>
<td>S</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phantom</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Rhea</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Super Herc</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warlock</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Giant >50 lbs

<table>
<thead>
<tr>
<th>Variety</th>
<th>AL</th>
<th>AR</th>
<th>GA</th>
<th>KY</th>
<th>LA</th>
<th>MS</th>
<th>NC</th>
<th>OK</th>
<th>SC</th>
<th>TN</th>
<th>VA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlantic Giant</td>
<td>A</td>
<td>K</td>
<td>L</td>
<td>N</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Big Moosag</td>
<td>A</td>
<td>K</td>
<td>N</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First Prize</td>
<td>A</td>
<td>G</td>
<td>N</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full Moon</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td></td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Moon</td>
<td>A</td>
<td>G</td>
<td>N</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prizewinner</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>N</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WINTER SQUASH

<table>
<thead>
<tr>
<th>Variety</th>
<th>AL</th>
<th>AR</th>
<th>GA</th>
<th>KY</th>
<th>LA</th>
<th>MS</th>
<th>NC</th>
<th>OK</th>
<th>SC</th>
<th>TN</th>
<th>VA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autumn Delight</td>
<td>A</td>
<td>N</td>
<td>O</td>
<td>S</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Celebration</td>
<td>A</td>
<td>N</td>
<td>S</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Table Ace</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>N</td>
<td>O</td>
<td>S</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Table Queen</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>S</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taybelle PM</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
<td>S</td>
<td>T</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

Buttercup

<table>
<thead>
<tr>
<th>Variety</th>
<th>AL</th>
<th>AR</th>
<th>GA</th>
<th>KY</th>
<th>LA</th>
<th>MS</th>
<th>NC</th>
<th>OK</th>
<th>SC</th>
<th>TN</th>
<th>VA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buttercup</td>
<td>A</td>
<td>G</td>
<td>N</td>
<td>S</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Abbreviations for state where recommended.

Growth habit:
- **SB**: Bush growth habit.
- **SS**: Semi-bush growth habit.
- **V**: Vining growth habit.

Skin features:
- **W**: White skin.
- **O**: Oblong.
- **R**: Round.
- **G**: Green skin.
- **FL**: Flat (Cinderella, pancake).
- **P**: Pie pumpkin - suitable for cooking.
- **PR**: Precocious yellow
- **CM**: Cucumber Mosaic Virus.

Disease Tolerance/Resistance:
- **DM**: Downy mildew tolerance/resistance.
- **CMV**: Cucumber Mosaic Virus.
- **F**: Fusarium tolerance/resistance.
- **PP**: Powdery mildew tolerance/resistance.
- **PY**: Papaya Ringspot Virus.
- **PM**: Powdery mildew tolerance/resistance.
- **ZYMV**: Zucchini Yellows Mosaic Virus.
- **PRSV**: Papaya Ringspot Virus.

Shape:
- **F**: Flat (Cinderella, pancake).
- **O**: Oblong.
- **R**: Round.
- **V**: Vining growth habit.
Seeding and Spacing. Research around the SE U.S. has demonstrated that fruit size can vary for each variety among locations due to a number of environmental factors. To best determine how well a variety performs in your area, trial it before planting out a large acreage. Seed in the field as indicated below:

Bush types: Rows–5 to 6 feet apart; plants–2 to 3 feet apart in row; seed–4 to 6 pounds per acre.

Semi-vine types: Rows–6 to 8 feet apart; plants–2 to 4 feet apart in row; seed–2 to 4 pounds per acre.

Vine types: Rows–8 to 10 feet apart; plants–4 to 5 feet apart in row; seed–2 to 4 pounds per acre.

PUMPKIN/WINTER SQUASH PLANTING DATES

<table>
<thead>
<tr>
<th>Variety</th>
<th>AL North</th>
<th>AR North</th>
<th>AR South</th>
<th>GA North</th>
<th>GA South</th>
<th>KY East</th>
<th>KY Central</th>
<th>AL South</th>
<th>MS North</th>
<th>NC East</th>
<th>NC West</th>
<th>OK</th>
<th>SC East</th>
<th>SC West</th>
<th>TN East</th>
<th>TN West</th>
<th>VA East (coastal)</th>
<th>VA West (mountain)</th>
<th>Winter Squash</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hubbard</td>
<td></td>
</tr>
<tr>
<td>Spaghetti</td>
<td></td>
</tr>
<tr>
<td>Kabocha</td>
<td></td>
</tr>
<tr>
<td>Calabaza</td>
<td></td>
</tr>
</tbody>
</table>

VARIEDSES

<table>
<thead>
<tr>
<th>Variety</th>
<th>AL North</th>
<th>AR North</th>
<th>AR South</th>
<th>GA North</th>
<th>GA South</th>
<th>KY East</th>
<th>KY Central</th>
<th>AL South</th>
<th>MS North</th>
<th>NC East</th>
<th>NC West</th>
<th>OK</th>
<th>SC East</th>
<th>SC West</th>
<th>TN East</th>
<th>TN West</th>
<th>VA East (coastal)</th>
<th>VA West (mountain)</th>
<th>Winter Squash</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hubbard</td>
<td></td>
</tr>
<tr>
<td>Spaghetti</td>
<td></td>
</tr>
<tr>
<td>Kabocha</td>
<td></td>
</tr>
<tr>
<td>Calabaza</td>
<td></td>
</tr>
</tbody>
</table>

PUMPKIN/WINTER SQUASH PLANTING DATES (cont’d)

<table>
<thead>
<tr>
<th>Variety</th>
<th>Halloween</th>
<th>Winter Squash</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spaghetti</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kabocha</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calabaza</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For Soil Strips between Rows of Plastic Mulch.

Use the following land preparation, treatment, planting sequences, and herbicides labeled for pumpkins or squash, or crop injury may result.

1. Complete soil preparation and lay plastic and drip irrigation (optional) before herbicide application. In some cases, overhead irrigation can be used if small holes are punched into the plastic.
2. Spray preemergence herbicides on the soil and the shoulders of the plastic strips in bands before weeds germinate. **DO NOT APPLY HERBICIDE TO THE SURFACE OF THE PLASTIC.** Herbicides may wash from a large area of plastic into the plant hole and result in crop injury.

3. Incorporate preemergence herbicide into the soil with 0.5 to 1 inch of rainfall or overhead irrigation within 48 hours of application and **BEFORE PLANTING OR TRANSPLANTING.**

4. Apply selective postemergence herbicides broadcast or in bands to the soil strips between mulch to control susceptible weeds.

Minimum Tillage. No-tillage is the most commonly used minimum tillage practice with pumpkins. No-till planters currently in use with row crop production will plant pumpkin seed but seed plates or feed cups need to match up with seed size. Improper seed plates or cups will break pumpkin seed. Type of winter cover crop residue can affect pumpkin seed depth. Inspect seed placement and adjust for correct depth. Early spring planting with no-tillage in pumpkin may delay growth and days to harvest. Planting after soils warm in the spring will improve vigor (pumpkins are normally planted after soil warms so this may not be a management problem). Use of small grain cover residue may require additional nitrogen fertilizer (20 to 30 lbs N/acre in addition to the normal recommendation) if cover crop is fairly mature when killed. Normal pumpkin nitrogen fertilizer recommendations can be used if a legume cover crop (hairy vetch, winter peas, or crimson clover) is used as residue.

SPECIAL NOTES FOR PEST MANAGEMENT

DISEASE MANAGEMENT

Cucurbit Downy Mildew Forecasting System: Cucurbit downy mildew (CDM) is a devastating foliar cucurbit disease. While difficult, if not impossible to control, CDM can be prevented by using effective IPM practices. A useful tool for prevention of CDM is the CDM forecasting system. This program depends on the accurate reporting of CDM in the field as well as the monitoring of over 50 strategically placed sentinel plots. These plots are monitored by Plant Pathologists at multiple Land Grant Universities throughout the United States and Canada. Forecasts of the epidemic movement of the disease are generated 3 times a week. Risk maps are produced from these forecasts. For forecasts, maps, local contacts and other helpful information please visit our website, http://cdm.ipmPIPE.org. If you think you have CDM, please contact your local Extension office.

INSECT MANAGEMENT

Cucumber Beetle: Cucumber beetles cause direct feeding damage to the foliage. Young plants need to be protected with insecticide as soon as they emerge or are transplanted. Cucumber beetles also cause direct damage to pumpkin and winter squash rinds. Fall treatments with foliar insecticides to prevent feeding damage may also reduce incidence of bacterial wilt. While Hubbard squash, butternut squash and processing pumpkins are susceptible to bacterial wilt, Jack-o-lantern pumpkins and most other varieties of squash are rarely susceptible to bacterial wilt.

Squash Vine Borer: Pheromone baited sticky traps can be used soon after planting to monitor the activity of the adult moths. Start inspecting plants closely for squash vine borer eggs (1mm [1/25 inch] diameter oval, flattened, dull-red to brownish) as soon as moths are caught in the traps. The first application of insecticide should occur when eggs begin to hatch or just prior to hatching. Applications should be made in afternoons or evenings after flowers close to reduce the spraying of valuable pollinators, especially bees. If pheromone traps are not used, a preventive treatment should be applied when vines begin to run. Re-apply insecticide every seven days for four weeks. Continue monitoring the pheromone traps into August to detect the emergence of the new moths. When moths are caught, inspect plants for second-generation eggs, and begin the insecticide applications when eggs first begin to hatch or just prior to hatching.

Aphids: Aphid feeding can delay plant maturity. Thorough spray coverage, especially on the underside of the leaves is important. Treat seedlings every five to seven days, or as needed. The transmission of plant viruses by aphids has the potential to be the most damaging to the crop. Unfortunately, insecticide use for aphids does not reduce the spread of virus. A better approach is the application of Stylet Oil to fill tiny grooves between the leaf cells. When the aphid probes the leaf surface, its stylet must pass through a layer of oil. This reduces the infectivity of the virus resulting in less disease in the squash plant. The application of Stylet Oil can delay virus infection, but requires application every other day, thorough coverage and high pressure sprays. Also, refer to the preceding “Mulches” section for information on metalized reflective mulch used to repel or disorient aphids that can spread viruses.

Squash Bug: Begin scouting shortly after plant emergence. Treat every 7 to 10 days when adults or nymphs appear. The control of squash bugs is particularly important where yellow vine disease occurs since squash bugs vector the pathogen responsible for this disease.

Spider Mites: Mite infestations generally begin around field margins and grassy areas. **CAUTION: DO NOT mow these areas after midsummer because this forces mites into the crop. Localized infestations can be spot-treated. Note: Continuous use of pyrethroid sprays may result in mite outbreaks.**

POLLINATION

Honey bees are important for pollination, high fruit yields, fruit size, and quality. Populations of pollinating insects may be adversely affected by insecticides applied to flowers or weeds in bloom. Use one hive per acre to get good pollination. Apply insecticides only in the evening hours or wait until blooms have closed before application. See section on “Pollination” in the General Production Recommendations.

HARVESTING AND STORAGE

Use clean storage bins and sanitize. Be sure to thoroughly clean and sanitize bins prior to usage and subsequent storage.

Harvest as soon as fruits are mature and prior to frost. Use care in handling fruit to prevent wounds. Cure after harvest at temperatures between 80° to 85°F with a relative humidity of 75% to 80% for 10 days.

Temperatures below 50°F cause chilling injury. The hard-shelled varieties, such as Butternut, Delicious, and the Hubbard strains, can be stored for several months. Store at 55°F and 55% relative humidity. See Table 14 for further postharvest information.
RADISHES (*Raphanus sativus*), RUTABAGAS (*Brassica napus*), AND TURNIPS (*Brassica rapa var. rapa*)

<table>
<thead>
<tr>
<th>VARIETIES 1</th>
<th>AL</th>
<th>AR</th>
<th>GA</th>
<th>KY</th>
<th>LA</th>
<th>MS</th>
<th>NC</th>
<th>OK</th>
<th>SC</th>
<th>TN</th>
</tr>
</thead>
<tbody>
<tr>
<td>RADISH: Salad, Daikon, and Icicle Types</td>
<td></td>
</tr>
<tr>
<td>Amethyst 2</td>
<td>R</td>
<td></td>
<td>L</td>
<td>N</td>
<td>S</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacchus 2</td>
<td>A</td>
<td></td>
<td>L</td>
<td>N</td>
<td>S</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cherriette 2</td>
<td>A</td>
<td>G</td>
<td></td>
<td>N</td>
<td>S</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cherry Belle 2</td>
<td>A</td>
<td></td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
<td>S</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>Champion 2</td>
<td>A</td>
<td>G</td>
<td></td>
<td>M</td>
<td>N</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cook’s Custom Blend 2 (mixture of 4 root colors & shapes)</td>
<td>A</td>
<td>K</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crunchy Royal 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>S</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>Easter Egg II 2 (mixture of 5 - 6 root colors)</td>
<td>A</td>
<td>R</td>
<td></td>
<td>L</td>
<td>N</td>
<td>O</td>
<td>S</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Early Scarlet Globe 2</td>
<td>A</td>
<td></td>
<td>M</td>
<td>N</td>
<td></td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fireball 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>O</td>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mardi Gras 2 (mixture of 3 root colors)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nero 1 (black exterior w/ white interior)</td>
<td>A</td>
<td>R</td>
<td></td>
<td>N</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ostergruss Rosa 2, 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ping Pong (white exterior & interior)</td>
<td>A</td>
<td></td>
<td>L</td>
<td>N</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pink Beauty 2</td>
<td>A</td>
<td>R</td>
<td></td>
<td>L</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red Head 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red Silk 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sora 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>S</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>Stargazer 2,10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sparkler 2 (half red, half white root)</td>
<td>A</td>
<td></td>
<td>K</td>
<td>M</td>
<td>N</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valentine 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White Icicle 4</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>M</td>
<td>N</td>
<td>O</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Watermelon 2,3</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RADISH: Storage Types</td>
<td></td>
</tr>
<tr>
<td>April Cross 3</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Everest 3</td>
<td>A</td>
<td></td>
<td>K</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Omny 3</td>
<td>A</td>
<td></td>
<td>M</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long Black Spanish 5</td>
<td>A</td>
<td></td>
<td>M</td>
<td>N</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Round Black Spanish 5</td>
<td>A</td>
<td></td>
<td>M</td>
<td>N</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RUTABAGAS</td>
<td></td>
</tr>
<tr>
<td>American Purple Top</td>
<td>A</td>
<td>G</td>
<td></td>
<td>N</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laurentian</td>
<td>A</td>
<td>G</td>
<td></td>
<td>N</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TURNIPS</td>
<td></td>
</tr>
<tr>
<td>Hakurei 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>K</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purple Top White Globe</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>S</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Royal Crown</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td>L</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scarlet Queen Red Stems 5</td>
<td>A</td>
<td></td>
<td>K</td>
<td>L</td>
<td></td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shogoin</td>
<td>A</td>
<td></td>
<td>M</td>
<td>N</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tokyo Cross</td>
<td>A</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>S</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White Egg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White Lady</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>M</td>
<td>S</td>
<td>T</td>
</tr>
</tbody>
</table>

1 Abbreviations for state where recommended.
2 Garden radish.
3 Daikon radish.
4 Icicle radish.
5 Spanish radish.
6 Small root type; best when harvested at 2” to 3” diameter.
7 Downy mildew tolerance/resistance.
8 Fusarium wilt tolerance/resistance.
9 White exterior with red interior.
10 Green and white exterior with red or pink interior.
Seed Treatment. Soak seed in hot water at 122°F. Soak rutabagas for 20 minutes and turnips for 25 minutes. Dry the seed, then dust with a labeled fungicide to prevent damping-off. Further information on seed treatments can be found under SEED TREATMENTS in the disease management section of the handbook.

SPACING AND SEEDING

Radishes: Salad or garden radish roots are normally red skinned, round, less than two inches in diameter and grow rapidly, generally taking less than one month from seeding to harvest. Icicle types are elongated root forms of garden radishes. Daikon radishes are Asian storage radishes that produce large, white cylindrical roots which can exceed twelve inches in length and can weigh over one pound. Spanish radishes have round or elongated storage roots with black skin. Storage radishes can take up to ninety days from seeding to harvest.

Radishes are a quick-growing, cool-season crop producing its best quality when grown at temperatures of 50° to 65°F. Many radish types are ready for harvest 23 to 28 days after sowing. Radishes must be grown with an adequate moisture supply; otherwise, when growth is checked radishes become hot, tough, and pithy. Warm temperature and longer day-lengths induce seed stalk formation.

Seed radish as early in the spring as soil can be worked, then in order to maintain a continual supply make additional plantings at 8- to 10-day intervals. Space rows 8 to 15 inches apart and sow 12 to 15 seed per foot within a row. This will require 10 to 15 pounds of seed per acre.

RADISH PLANTING DATES

<table>
<thead>
<tr>
<th></th>
<th>Spring</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL North</td>
<td>2/15–5/15</td>
<td>8/1–10/15</td>
</tr>
<tr>
<td>AL South</td>
<td>1/15–3/31</td>
<td>8/1–10/31</td>
</tr>
<tr>
<td>GA North</td>
<td>3/15–5/15</td>
<td>8/1–9/15</td>
</tr>
<tr>
<td>GA South</td>
<td>2/1–3/31</td>
<td>8/1–10/15</td>
</tr>
<tr>
<td>KY East</td>
<td>3/15–5/15</td>
<td>8/1–9/15</td>
</tr>
<tr>
<td>KY Central</td>
<td>3/10–5/10</td>
<td>8/1–10/15</td>
</tr>
<tr>
<td>KY West</td>
<td>3/10–4/1</td>
<td>8/1–10/15</td>
</tr>
<tr>
<td>LA North</td>
<td>2/1–3/31</td>
<td>8/1–10/15</td>
</tr>
<tr>
<td>LA South</td>
<td>1/15–3/15</td>
<td>8/1–10/30</td>
</tr>
<tr>
<td>MS North</td>
<td>3/5–4/30</td>
<td>8/1–9/15</td>
</tr>
<tr>
<td>MS South</td>
<td>2/1–3/31</td>
<td>8/1–9/30</td>
</tr>
<tr>
<td>NC East</td>
<td>2/15–6/30</td>
<td>8/1–9/15</td>
</tr>
<tr>
<td>NC West</td>
<td>4/1–8/15</td>
<td>NR</td>
</tr>
<tr>
<td>OK</td>
<td>03/1–3/31</td>
<td>7/15–9/30</td>
</tr>
<tr>
<td>SC East</td>
<td>2/1–6/15</td>
<td>8/1–9/30</td>
</tr>
<tr>
<td>SC West</td>
<td>3/15–6/30</td>
<td>8/1–9/15</td>
</tr>
<tr>
<td>TN East</td>
<td>4/1–5/30</td>
<td>8/1–9/15</td>
</tr>
<tr>
<td>TN West</td>
<td>3/1–5/1</td>
<td>8/1–9/30</td>
</tr>
</tbody>
</table>

NR = Not recommended

Rutabagas: A cool-season crop that develops best at temperatures of 60° to 65°F. Usually considered a fall crop, it can be grown in the spring. Seed at least 90 days before the early freeze date in the fall. Sow 1.5 to 2 pounds of seed per acre at a depth of 1 inch in rows 30 to 36 inches apart. Thin to 4 to 8 inches in the row when plants are 2 to 3 inches tall.

This is a long term root crop normally requiring up to 120 days or more to mature.

RUTABAGA PLANTING DATES

<table>
<thead>
<tr>
<th></th>
<th>Spring</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL North</td>
<td>2/15–5/15</td>
<td>8/1–9/15</td>
</tr>
<tr>
<td>AL South</td>
<td>1/15–3/31</td>
<td>8/1–10/15</td>
</tr>
<tr>
<td>GA North</td>
<td>3/15–5/15</td>
<td>8/1–9/15</td>
</tr>
<tr>
<td>GA South</td>
<td>2/1–3/31</td>
<td>8/1–10/15</td>
</tr>
<tr>
<td>KY East</td>
<td>3/15–5/15</td>
<td>NR</td>
</tr>
<tr>
<td>KY Central</td>
<td>3/10–5/10</td>
<td>NR</td>
</tr>
<tr>
<td>KY West</td>
<td>3/10–4/1</td>
<td>7/15–8/15</td>
</tr>
<tr>
<td>LA North</td>
<td>2/1–3/31</td>
<td>7/15–10/30</td>
</tr>
<tr>
<td>LA South</td>
<td>1/15–3/15</td>
<td>7/15–10/30</td>
</tr>
<tr>
<td>MS</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>NC East</td>
<td>2/15–4/15</td>
<td>8/1–9/30</td>
</tr>
<tr>
<td>NC West</td>
<td>4/1–8/15</td>
<td>NR</td>
</tr>
<tr>
<td>OK</td>
<td>3/1–3/31</td>
<td>7/15–8/15</td>
</tr>
<tr>
<td>SC East</td>
<td>2/1–3/31</td>
<td>8/15–10/15</td>
</tr>
<tr>
<td>SC West</td>
<td>3/15–4/30</td>
<td>7/15–9/30</td>
</tr>
<tr>
<td>TN East</td>
<td>3/15–6/15</td>
<td>NR</td>
</tr>
<tr>
<td>TN West</td>
<td>3/10–4/1</td>
<td>NR</td>
</tr>
</tbody>
</table>

NR = Not recommended

HARVESTING AND STORAGE

Rutabagas: Pull and trim tops in field. Bruised, damaged, or diseased rutabagas will not store well. Wash rutabagas in clean water, spray-rinse with clean water, then dry as rapidly as possible before waxing and shipping. Rutabagas can be stored 2 to 4 months at 32°F and at 90% to 95% relative humidity.

Turnips: The crop is dug mechanically and either bunched or topped. Turnips can be stored at 32° to 35°F and at 90% to 95% relative humidity.

For further postharvest information on radish, rutabaga, and turnip, see Table 14.

Turnips: Seed as early in the spring as soil can be worked or at least 70 days before the early freeze date in the fall. Seed in rows 1 to 2 pounds per acre, 0.25 to 0.5 inch deep, in rows 14 to 18 inches apart. Plants should be 2 to 3 inches apart in the row. Seed can also be broadcast at the rate of 2.5 pounds per acre.

TURNIP (ROOTS) PLANTING DATES

<table>
<thead>
<tr>
<th></th>
<th>Spring</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL North</td>
<td>2/15–5/15</td>
<td>8/1–10/15</td>
</tr>
<tr>
<td>AL South</td>
<td>1/15–3/31</td>
<td>8/1–10/30</td>
</tr>
<tr>
<td>GA North</td>
<td>3/15–5/15</td>
<td>8/1–9/15</td>
</tr>
<tr>
<td>GA South</td>
<td>2/1–3/31</td>
<td>8/1–10/15</td>
</tr>
<tr>
<td>KY East</td>
<td>3/15–4/15</td>
<td>7/1–7/15</td>
</tr>
<tr>
<td>KY Central</td>
<td>3/10–4/10</td>
<td>7/15–8/1</td>
</tr>
<tr>
<td>KY West</td>
<td>3/1–4/1</td>
<td>8/1–15</td>
</tr>
<tr>
<td>LA North</td>
<td>2/1–3/15</td>
<td>7/15–10/30</td>
</tr>
<tr>
<td>LA South</td>
<td>1/15–3/15</td>
<td>7/15–10/30</td>
</tr>
<tr>
<td>MS North</td>
<td>1/20–4/1</td>
<td>7/25–8/20</td>
</tr>
<tr>
<td>MS South</td>
<td>1/15–3/1</td>
<td>8/10–9/15</td>
</tr>
<tr>
<td>NC East</td>
<td>2/15–6/30</td>
<td>8/1–9/15</td>
</tr>
<tr>
<td>NC West</td>
<td>4/1–8/15</td>
<td>NR</td>
</tr>
<tr>
<td>OK</td>
<td>3/1–4/30</td>
<td>7/15–9/30</td>
</tr>
<tr>
<td>SC East</td>
<td>2/1–4/1</td>
<td>8/1–9/30</td>
</tr>
<tr>
<td>SC West</td>
<td>3/15–4/30</td>
<td>8/1–9/15</td>
</tr>
<tr>
<td>TN East</td>
<td>3/15–5/30</td>
<td>7/15–8/10</td>
</tr>
<tr>
<td>TN West</td>
<td>3/1–5/1</td>
<td>8/1–8/25</td>
</tr>
</tbody>
</table>

NR = Not recommended
Southernpeas originated in India in prehistoric times and moved to Africa, then to America. In India, southernpeas are known by 50 common names and in the United States are called “Field peas”, “Crowder peas”, “Cowpeas” and “black-eyes”, but southernpeas is the preferred name. Southernpeas require relatively warm soils for good germination.

Seeding and Spacing. Sow when soil temperature reaches 60°F and continue sowing until 80 days before fall frost. Seeding too early causes poor stands and you may need to replant. Bush types should be seeded 4 to 6 per foot or 30 to 50 pounds of seed per acre. Vining types should be seeded 1 to 2 per foot or 20 to 30 pounds of seed per acre. Plant seeds 3/4 to 1 1/4 inch deep in rows spaced 20 to 42 inches apart depending on cultivation requirements.

Seed require warm soil temperature (70°F) for optimal germination and emergence.

Fertility. Most soils will produce a good crop, but medium fertility with pH of 5.8 to 6.5 is desirable. High fertility produces excessive vine growth and poor yields. Inoculants of specific N fixing bacteria may increase yield especially in soils where southernpeas have not been grown. Crop rotation or fumigation is important for nematode control.
Insect Management. Cowpea Curculio: At first bloom, make three insecticides applications at five-day intervals for curculio control.

Harvesting and Storage. Depending on variety and weather, harvest will begin 65 to 80 days after seeding and continue for 3 to 5 weeks. Begin harvest when a few pods are beginning to change color and harvest only pods with well formed peas. This is the best stage for shelling and eating.

Southernpeas are sold in bushel hampers or mesh bags. Do not use burlap sacks because they are not properly ventilated. Southernpeas weigh 22 to 30 pounds per bushel. One person can harvest 12 to 20 bushels per day if yields are average. Average production is 60 to 200 bushels per acre. See Table 14 for further postharvest information.
Spinach may be divided by use into fresh and processed types. Spinach cultivars are either upright or spreading in habit and can be further subdivided by leaf type into savoy (wrinkled), crushed, crumpled, long-season, semi-savoy, and smooth varieties. The processing types are usually smooth leaved; the semi-savoy types can be used for both purposes; while the fresh market prefers the savoy types. In addition spinach cultivars can be classified as being fast bolters or slow bolters. Spinach usually matures in 30 to 50 days.

Geographic/Climate Requirements. Since spinach is a hardy, cool season plant growing best where temperatures are moderate. Spinach is frost tolerant and cold hardy to 20°F. Germination is maximized at 41°F (5°C) with emergence taking 23 days. Higher temperatures reduce germination. Spinach may be an early spring, late fall, or winter crop, where the conditions permit surviving winter killing temperatures. Longer day length triggers bolting.

SPINACH PLANTING DATES

<table>
<thead>
<tr>
<th></th>
<th>Spring</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL North</td>
<td>3/15–4/30</td>
<td>8/1–9/15</td>
</tr>
<tr>
<td>AL South</td>
<td>2/1–3/31</td>
<td>8/15–9/30</td>
</tr>
<tr>
<td>GA North</td>
<td>3/15–4/30</td>
<td>8/1–9/15</td>
</tr>
<tr>
<td>GA South</td>
<td>2/1–3/31</td>
<td>8/1–9/30</td>
</tr>
<tr>
<td>KY East</td>
<td>3/10–4/10</td>
<td>8/1–8/15</td>
</tr>
<tr>
<td>KY Central</td>
<td>3/1–4/1</td>
<td>8/15–9/1</td>
</tr>
<tr>
<td>KY West</td>
<td>2/15–3/15</td>
<td>9/1–9/15</td>
</tr>
<tr>
<td>LA North</td>
<td>2/1–3/15</td>
<td>9/1–11/15</td>
</tr>
<tr>
<td>LA South</td>
<td>2/1–3/15</td>
<td>9/15–11/15</td>
</tr>
<tr>
<td>MS</td>
<td>NR</td>
<td>8/15–9/30</td>
</tr>
<tr>
<td>NC East</td>
<td>2/15–6/30</td>
<td>8/1–9/15</td>
</tr>
<tr>
<td>NC West</td>
<td>4/1–8/15</td>
<td>NR</td>
</tr>
<tr>
<td>OK</td>
<td>2/15–4/15</td>
<td>9/1–12/30</td>
</tr>
<tr>
<td>SC East</td>
<td>2/1–4/1</td>
<td>8/15–10/15</td>
</tr>
<tr>
<td>SC West</td>
<td>3/15–4/15</td>
<td>8/1–9/30</td>
</tr>
<tr>
<td>TN East</td>
<td>2/1–3/31</td>
<td>8/15–10/15</td>
</tr>
<tr>
<td>TN West</td>
<td>2/1–3/31</td>
<td>8/15–10/15</td>
</tr>
<tr>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

1 Abbreviations for state where recommended. 2 Savoy leaf type. 3 Semi-savoy leaf type. 4 Downy mildew tolerance/resistance. 5 Bolting tolerant. 6 Cucumber Mosaic Virus tolerance/resistance. 7 White Rust tolerance/resistance. 8 Smooth leaf type.

Soil and Fertilizer Requirements. Spinach is sensitive to acidic soils, preferring a pH range of from 6.0 to 7.5. Warmer sandy soils are preferred for overwintering spinach. Fertilizer is more important during the slower growing winter periods. Before any fertilizer is worked into a spinach field, careful soil sampling and analysis should be obtained to determine the levels of P and K.

Cultural Practices. Spinach is usually direct seeded in rows using either precision methods and coated seed or regular drilled uncoated seed. In some areas spinach is simply broadcast on beds. The rate of germination fluctuates widely depending on methods of seeding but also upon the risk of damping-off. Despite the size of spinach seed, it is sown fairly shallowly, 0.8 to 1 inch (2 to 3 cm), in soil moisture conditions ranging from slightly above permanent wilting to field capacity.

Where spinach is pulled by hand for harvest, it is possible to select the larger, more vigorous plants, leaving space for the slower, crowded plants to grow. Seeding rates for non-clipped: 10 to 14 pounds/acre and for clipped: 18 to 25 pounds/acre. Spacing within rows is generally 12 inches. For smaller stands, sow 1 oz. of seed per 100 row feet. For smaller stands, average yields are 40 lb/100 row feet, 152 cwt/ acre.

Irrigation and Drainage. The spinach plant is shallow rooted and therefore may become water-stressed if irrigation is not available between rain showers. More often than not the first irrigation is necessary to germinate the spinach seed. Since spinach is sensitive to overwatering or waterlogging, provision for drainage either through seedbed preparation or tiling is essential. The large transpiring leaf surface of maturing spinach plants coupled with warm temperatures can readily deplete the available moisture reserves.

SPECIAL NOTES FOR PEST MANAGEMENT INSECT MANAGEMENT

Insect pests of spinach include: Aphids, Leaf miners, Cabbage loopers, mites, and Sweet corn maggots. Control methods in-
include crop rotation, destruction of crop residues, and the use of pesticides.

Seed Corn Maggot: To prevent maggot damage to spring-seeded plants, treat seed with an approved commercially available insecticide or use a broadcast application of a soil-incorporated insecticide.

DISEASE MANAGEMENT
Spinach is vulnerable to attacks by blight (CMV), downy mildew, leaf spot, damping-off, seed rot, nematodes, and root rot. Resistant or tolerant cultivars help to ward off diseases. Where possible the use of the right seed dressing will protect the germinating seed and developing roots. Fumigation may sometimes be necessary, coupled with good rotational practices.

WEED MANAGEMENT
Weed management is especially important in young spinach stands to reduce competition. Spinach competes poorly with many weeds, and the presence of weeds can significantly reduce yield. Growers should include both cultural and chemical controls for weed management, as no one practice consistently provides control.

Cultural controls include choosing a planting site that has low weed pressure, sanitation, and crop rotation. If field cultivation is necessary prior to planting, it should be shallow so as not to expose buried weed seeds to the sun. Consumer tolerance for weeds in bagged spinach is low; cultivation and hand-weeding are sometimes employed in addition to other controls. Hand-weeding is costly but is often the only option as the plants mature.

As with other leafy greens, herbicide options after seedlings have emerged are limited. In addition, spinach is sensitive to damage from certain herbicides, and should not be planted if residues may be present in the soil. Preplant application of an appropriate herbicide is recommended. Proper identification of the weeds present in the field is crucial to selection of the best herbicide for the location, as there are few options, and none that address all the weed types that may be present.

Some growers have been able to reduce weed pressure with pre-irrigation, saturation of the field before the spinach seed is planted. This causes a flush of weeds to emerge, which can be eliminated by burning or herbicide application. The spinach seed is planted after the weedy plants have been removed with the expectation of less competition.

HARVESTING AND STORAGE
See Table 14 For further postharvest information.
SUMMER SQUASH (Cucurbita pepo)

SUMMER SQUASH

Yellow Crook Neck

<table>
<thead>
<tr>
<th>Variety</th>
<th>AL</th>
<th>GA</th>
<th>KY</th>
<th>LA</th>
<th>MS</th>
<th>NC</th>
<th>OK</th>
<th>SC</th>
<th>TN</th>
<th>VA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destiny III</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>N</td>
<td>S</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dixie</td>
<td>A</td>
<td></td>
<td></td>
<td>L</td>
<td></td>
<td>N</td>
<td></td>
<td>O</td>
<td>S</td>
<td>T</td>
</tr>
<tr>
<td>Gentry</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>S</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gold Star</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prelude II</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td></td>
<td>N</td>
<td></td>
<td>O</td>
<td>S</td>
<td>T</td>
</tr>
</tbody>
</table>

Yellow Straight Neck

<table>
<thead>
<tr>
<th>Variety</th>
<th>AL</th>
<th>GA</th>
<th>KY</th>
<th>LA</th>
<th>MS</th>
<th>NC</th>
<th>OK</th>
<th>SC</th>
<th>TN</th>
<th>VA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conqueror III</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td></td>
<td>N</td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cougar</td>
<td>A</td>
<td>K</td>
<td>L</td>
<td>N</td>
<td></td>
<td>S</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enterprise</td>
<td>A</td>
<td>G</td>
<td></td>
<td>N</td>
<td></td>
<td>S</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grandprize</td>
<td>A</td>
<td>G</td>
<td></td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goldprize</td>
<td>A</td>
<td>G</td>
<td></td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fortune</td>
<td>K</td>
<td></td>
<td></td>
<td>N</td>
<td></td>
<td>O</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lioness</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>N</td>
<td></td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multipik</td>
<td>A</td>
<td>K</td>
<td>L</td>
<td>N</td>
<td></td>
<td>O</td>
<td>S</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solstice</td>
<td>A</td>
<td>G</td>
<td>L</td>
<td>N</td>
<td></td>
<td>S</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Superpik</td>
<td>A</td>
<td>L</td>
<td></td>
<td>N</td>
<td></td>
<td>O</td>
<td>S</td>
<td>T</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zucchini

<table>
<thead>
<tr>
<th>Variety</th>
<th>AL</th>
<th>GA</th>
<th>KY</th>
<th>LA</th>
<th>MS</th>
<th>NC</th>
<th>OK</th>
<th>SC</th>
<th>TN</th>
<th>VA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cashflow</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>Dunja</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>Elite</td>
<td>A</td>
<td>K</td>
<td>L</td>
<td></td>
<td>N</td>
<td></td>
<td>S</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goldy</td>
<td>A</td>
<td>G</td>
<td></td>
<td></td>
<td>O</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Justice III</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td></td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ladoga</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leopard</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paycheck</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td></td>
<td>N</td>
<td></td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Payroll</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>M</td>
<td>N</td>
<td></td>
<td>O</td>
<td>S</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>Payload</td>
<td>A</td>
<td>G</td>
<td>L</td>
<td></td>
<td>N</td>
<td></td>
<td>S</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sebring</td>
<td>A</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Senator</td>
<td>A</td>
<td>L</td>
<td>M</td>
<td></td>
<td>O</td>
<td>S</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spineless Beauty</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>M</td>
<td>N</td>
<td></td>
<td>S</td>
<td>T</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Spineless Perfection</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td></td>
<td>N</td>
<td></td>
<td>S</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tigress</td>
<td>A</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td></td>
<td>S</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zephyr (bi-color)</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td></td>
<td>S</td>
<td>T</td>
<td></td>
</tr>
</tbody>
</table>

Grey Zucchini

<table>
<thead>
<tr>
<th>Variety</th>
<th>AL</th>
<th>GA</th>
<th>KY</th>
<th>LA</th>
<th>MS</th>
<th>NC</th>
<th>OK</th>
<th>SC</th>
<th>TN</th>
<th>VA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ishhtar</td>
<td>A</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T</td>
</tr>
</tbody>
</table>

Scallop

<table>
<thead>
<tr>
<th>Variety</th>
<th>AL</th>
<th>GA</th>
<th>KY</th>
<th>LA</th>
<th>MS</th>
<th>NC</th>
<th>OK</th>
<th>SC</th>
<th>TN</th>
<th>VA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benning’s Green Tint</td>
<td>A</td>
<td></td>
<td>L</td>
<td></td>
<td></td>
<td>N</td>
<td></td>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peter Pan</td>
<td>A</td>
<td>K</td>
<td></td>
<td></td>
<td>N</td>
<td></td>
<td>O</td>
<td>S</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>Scalloppini</td>
<td>A</td>
<td>G</td>
<td>L</td>
<td></td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sunburst</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td></td>
<td>N</td>
<td></td>
<td>O</td>
<td>S</td>
<td>T</td>
</tr>
<tr>
<td>Total Eclipse</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T</td>
</tr>
</tbody>
</table>

1 Abbreviations for state where recommended.

2 Py - Precocious yellow gene; has a prominent yellow stem. The Py gene helps mask infection from CMV and WMV II.

3 Transgenic.

4 Zucchini Yellows Mosaic virus tolerance/resistance.

5 Watermelon Mosaic virus tolerance/resistance.

6 Cucumber Mosaic Virus tolerance/resistance.

7 Papaya Ringspot Virus tolerance/resistance.

8 Powdery mildew tolerance/resistance.

9 Yellow zucchini.
Seed Treatment. Check with seed supplier to determine if seed has been treated with an insecticide and/or fungicide. Information on seed treatments can be found under SEED TREATMENTS in the disease management section of the handbook.

Seeding, Transplanting, and Spacing. Use 4 to 6 pounds of seed per acre. Seed or container-grown transplants are planted when daily mean temperatures have reached 60°F. Containerized squash transplants are susceptible to stunting if they are held in the container for too long. Sowing seed will eliminate this concern. Seed as indicated in following table. Early plantings should be protected from winds with row covers, rye strips, or wind breaks. Space rows 3 to 6 feet apart with plants 1.5 to 2.5 feet apart in the row.

SUMMER SQUASH PLANTING DATES

<table>
<thead>
<tr>
<th></th>
<th>Spring</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL North</td>
<td>4/15–8/15</td>
<td>8/1–8/30</td>
</tr>
<tr>
<td>AL South</td>
<td>3/1–4/30</td>
<td>7/15–9/15</td>
</tr>
<tr>
<td>GA North</td>
<td>5/1–8/15</td>
<td>NR</td>
</tr>
<tr>
<td>GA South</td>
<td>3/1–4/30</td>
<td>7/15–9/15</td>
</tr>
<tr>
<td>KY East</td>
<td>5/15–7/15</td>
<td>NR</td>
</tr>
<tr>
<td>KY Central</td>
<td>5/10–8/11</td>
<td>NR</td>
</tr>
<tr>
<td>KY West</td>
<td>4/20–8/15</td>
<td>NR</td>
</tr>
<tr>
<td>LA South</td>
<td>3/1–5/15</td>
<td>8/1–9/15</td>
</tr>
<tr>
<td>MS North</td>
<td>4/15–6/15</td>
<td>7/25–8/14</td>
</tr>
<tr>
<td>MS South</td>
<td>2/15–5/1</td>
<td>8/14–9/14</td>
</tr>
<tr>
<td>NC East</td>
<td>4/1–5/30</td>
<td>7/15–8/15</td>
</tr>
<tr>
<td>NC West</td>
<td>5/15–7/31</td>
<td>NR</td>
</tr>
<tr>
<td>OK</td>
<td>4/15–6/15</td>
<td>7/15–9/1</td>
</tr>
<tr>
<td>SC East</td>
<td>3/15–7/30</td>
<td>8/1–8/30</td>
</tr>
<tr>
<td>SC West</td>
<td>4/15–7/30</td>
<td>7/30–8/15</td>
</tr>
<tr>
<td>TN East</td>
<td>5/10–8/1</td>
<td>NR</td>
</tr>
<tr>
<td>TN West</td>
<td>4/15–7/15</td>
<td>NR</td>
</tr>
<tr>
<td>VA East (coastal)</td>
<td>3/30–9/10</td>
<td>NR</td>
</tr>
<tr>
<td>VA West (mountain)</td>
<td>4/10–8/30</td>
<td>NR</td>
</tr>
</tbody>
</table>

Mulching. Plastic mulch laid before field planting conserves moisture, increases soil temperature, reduces mechanical damage to fruit, and increases early and total yield. Plastic should be applied on well-prepared planting beds. The soil must be moist when laying the plastic. Black plastic mulch can be used without a herbicide. In most situations, 50 percent of the nitrogen (N) should be in the nitrate (NO₃⁻) form.

Reflective, plastic mulches can be used to repel aphids that transmit viruses in fall-planted (after July 1) squash. Direct seeding through the mulch is recommended for maximum virus protection.

Growers should consider drip irrigation. See the section on “Irrigation” in this handbook.

Harvest. Summer squash is a fast growing crop and when temperatures are optimal (85 to 90°F during day and 65 to 70°F during at night), and water is readily available, fruit will be ready to harvest 35 to 40 days after seeding. When growing condition are optimal, yellow squash should be harvested every two to three days while zucchini should be harvested every one to two days.

SUGGESTED FERTIGATION SCHEDULE FOR SUMMER SQUASH

<table>
<thead>
<tr>
<th></th>
<th>Daily nitrogen</th>
<th>Daily potash</th>
<th>Cumulative Nitrogen</th>
<th>Cumulative Potash</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(lb / A)</td>
<td>(lb / A)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preplant</td>
<td>24.0</td>
<td>24.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–14</td>
<td>0.9</td>
<td>1.8</td>
<td>36.6</td>
<td>49.2</td>
</tr>
<tr>
<td>8–28</td>
<td>1.3</td>
<td>2.6</td>
<td>54.8</td>
<td>85.6</td>
</tr>
<tr>
<td>29–63</td>
<td>1.5</td>
<td>3.0</td>
<td>107.3</td>
<td>190.6</td>
</tr>
</tbody>
</table>

*Adjust based on tissue analysis.

INSECT MANAGEMENT

Cucumber Beetle: Cucumber beetles cause direct feeding damage to the foliage. Young plants need to be protected with insecticide as soon as they emerge or are transplanted.

Squash Vine Borer: Pheromone baited sticky traps can be used soon after planting to monitor the activity of the adult moths. Start inspecting plants closely for squash vine borer eggs (1 mm [1/25 inch] diameter oval, flattened, dull-red to brownish) as soon as moths are caught in the traps. The first application of insecticide should occur when eggs begin to hatch or just prior to hatching. Applications should be made in afternoons or evenings after flowers close to reduce the spraying of valuable pollinators, especially bees. If pheromone traps are not used, a preventive treatment should be applied when vines begin to run. Re-apply insecticide every seven days for four weeks. Continue monitoring the pheromone traps into August to detect the emergence of the new moths. When moths are caught, inspect plants for second-generation eggs, and begin the insecticide applications when eggs first begin to hatch or just prior to hatching.

Aphids: Aphid feeding can delay plant maturity. Thorough spray coverage, especially on the underside of the leaves, is important. Treat seedlings every five to seven days, or as needed. The transmission of plant viruses by aphids has the potential to be the most damaging to the crop. Unfortunately, insecticide use for aphids does not reduce the spread of virus. A better approach is the application of Stylet Oil to fill tiny grooves between the leaf cells. When the aphid probes the leaf surface, its stylet must pass through a layer of oil. This reduces the infectivity of the virus resulting in less disease in the squash plant. The application of Stylet Oil can delay virus infection, but requires application every other day, thorough coverage and high-pressure sprays. Squash varieties with virus resistance are recommended for
all season production when aphids and virus transmission are prevalent. Also, refer to the preceding “Mulches” section for information on metallized reflective mulch used to repel or disorient aphids that can spread viruses.

Squash Bug: Begin scouting shortly after plant emergence. Treat every 7 to 10 days when adults or nymphs appear. The control of squash bugs is particularly important where yellow vine disease occurs since squash bugs vector the pathogen responsible for this disease.

Spider Mites: Mite infestations generally begin around field margins and grassy areas. CAUTION: DO NOT mow these areas after midsummer because this forces mites into the crop. Localized infestations can be spot-treated. **Note:** Continuous use of pyrethroid sprays may result in mite outbreaks.

DISEASE MANGEMENT

Cucurbit Downy Mildew Forecasting System: Cucurbit downy mildew (CDM) is a devastating foliar cucurbit disease. While difficult, if not impossible to control, CDM can be prevented by using effective IPM practices. A useful tool for prevention of CDM is the CDM forecasting system. This program depends on the accurate reporting of CDM in the field as well as the monitoring of over 50 strategically placed sentinel plots. These plots are monitored by Plant Pathologists at multiple Land Grant Universities throughout the United States and Canada. Forecasts of the epidemic movement of the disease are generated 3 times a week. Risk maps are produced from these forecasts. For forecasts, maps, local contacts and other helpful information please visit our website, http://cdm.ipmpipe.org. If you think you have CDM, please contact your local Extension office.

Viruses (cucumber mosaic virus [CMV], watermelon mosaic virus [WMV], papaya ringspot mosaic virus [PRSV], zucchini yellow mosaic virus [ZYMV]): Use resistance varieties when possible. Even when using resistance varieties, they may not escape virus diseases. Most varieties do not have virus resistance to all four viruses. It is important to sample plants with virus symptoms in a given year so that the following year varieties are selected that at least have resistance to those viruses that may be more prone to occur in your production region.

WEED MANAGEMENT

See the previous “Mulching” section for further information on weed control under clear plastic mulch.

For Seeding into Soil without Plastic Mulch. Stale bed technique: Prepare beds 3 to 5 weeks before seeding. Allow weed seedlings to emerge and spray with paraquat a week prior to seeding. Then seed beds without further tillage.

For Soil Strips between Rows of Plastic Mulch. Use the following land preparation, treatment, planting sequences, and herbicides labeled for squash, or crop injury may result.

1. Complete soil preparation and lay plastic and drip irrigation before herbicide application.
2. Spray preemergence herbicides on the soil and the shoulders of the plastic strips in bands before weeds germinate. DO NOT APPLY HERBICIDE TO THE BED SURFACE OF THE PLASTIC. Herbicides may wash from a large area of plastic into the plant hole and result in crop injury.
3. Incorporate herbicide into the soil with1/2 to 1 inch of rainfall or overhead irrigation within 48 hours of application and BEFORE PLANTING OR TRANSPLANTING.
4. Apply selective postemergence herbicides broadcast or in bands to the soil strips between mulch to control susceptible weeds.

POLLINATION

Bees are important for producing high yields and quality fruit. Move honey bees or bumble bees into the field as flowers on squash plant open. Populations of pollinating insects may be adversely affected by insecticides applied to flowers or weeds in bloom. Apply insecticides only in the evening hours or wait until bloom is completed before application. See section on “Pollination” in the General Production Recommendations.

HARVESTING AND STORAGE

See Table 14 for postharvest information.
SWEET CORN (Zea mays)

Varieties

<table>
<thead>
<tr>
<th>VARIETIES</th>
<th>AL</th>
<th>AR</th>
<th>GA</th>
<th>KY</th>
<th>LA</th>
<th>MS</th>
<th>NC</th>
<th>OK</th>
<th>SC</th>
<th>TN</th>
<th>VA</th>
</tr>
</thead>
<tbody>
<tr>
<td>CORN, SWEET</td>
<td></td>
</tr>
<tr>
<td>White - Early</td>
<td></td>
</tr>
<tr>
<td>Sweet Ice (se)</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>N</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White - Mid-Season</td>
<td></td>
</tr>
<tr>
<td>Argent (se)</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>N</td>
<td>O</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avalon (se)</td>
<td>A</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Devotion (sh₄)</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Devotion II (sh₄)</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Milky Way (se)</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Munition (sh₄)</td>
<td>A</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xtra-Tender Brand 378A (sh₄)</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>White - Late season</td>
<td></td>
</tr>
<tr>
<td>Silver King (se)</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Silver Queen (su)</td>
<td>A</td>
<td>R</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
<td>S</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>Yellow - Early</td>
<td></td>
</tr>
<tr>
<td>Bodacious (se)</td>
<td></td>
</tr>
<tr>
<td>Yellow - Mid-Season</td>
<td></td>
</tr>
<tr>
<td>Aspire (se)</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Honey Select (se)</td>
<td>A</td>
<td>R</td>
<td>G</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incredible (se)</td>
<td></td>
</tr>
<tr>
<td>Jubilation (sh₄)</td>
<td></td>
</tr>
<tr>
<td>Merit (su)</td>
<td>A</td>
<td>R</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passion (sh₄)</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Passion II (sh₄)</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protector</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Vision MXR</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Bicolor - Early</td>
<td></td>
</tr>
<tr>
<td>Anthem XR II (sh₄)</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Precious Gem (se)</td>
<td></td>
</tr>
<tr>
<td>Temptation (se)</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Temptation II (se)</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Bicolor - Mid-Season</td>
<td></td>
</tr>
<tr>
<td>Affection (sh₄)</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Awesome XR (sh₄)</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>BSS 0982 (sh₂)</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>BSS1075 (sh₂)</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>BSS8021 (sh₂)</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Cameo (sh₂)</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Coastal (sh₂)</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Everglades (sh₂)</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Flagler (sh₂)</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Mirai 301BC (sh₂)</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Montauk (sh₂)</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Obsession (sh₂)</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Obsession II (sh₂)</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Patriarch (sh₂)</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Providence (sh₂)</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Pursuit (se)</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Remedy (se)</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Seminole Sweet XR (sh₂)</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Superb MXR (sh₂)</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Sweet Chorus (se)</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Sweet G90 (su)</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Sweet Rhythm (se)</td>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>

1 Abbreviations for state where recommended.
2 BT sweet corn (transgenic).
3 RoundUp Ready sweet corn (transgenic).
There are three primary genes contributing to sweetness in sweet corn. They are: normal sugary (su), sugary enhanced (se), and supersweet or shrunken-2 (sh_2).

Normal sugary sweet corn (su) has been enjoyed for many years. Su sweet corn is known for its creamy texture and mild sugars; however, sugars in these cultivars are rapidly converted into starch if not cooked the day of harvest. These cultivars are commonly sold in farmer’s markets and roadside stands.

The sugary enhanced (se) sweet corn gene, known under trade names such as Everlastling Heritage have varying degrees of increased sugar content with a creamier kernel texture as compared to su sweet corn types. This translates into increased sweetness with a smoother kernel texture. Another advantage is that se sweet corn types maintain their quality for a longer period of time than normal sugary sweet corn types (su).

Cultivars of “Supersweet” or “shrunken” sweet corn (sh_2) derive their name from the appearance of the dried kernel which is much smaller than kernels of su or se sweet corn types. Recently germination of sh_2 sweet corn cultivars has been improved and is now comparable with the su and se types. Seed of supersweet (sh_2) sweet corn cultivars should be handled very gently and the use of plateless planter is recommended to prevent damage to seed. Many older supersweet cultivars require warm soil (70°F or higher) to germinate since they are less vigorous than the se or su genotypes. Supersweet sweet corn (sh_2) cultivars have a crunchier kernel, are sweeter than su and se cultivars, and will delay the conversion of sugar to starch extending their shelf life.

Xtra-tender, Ultrasweet, and Triplesweet are names for the latest development in sweet corn cultivars. These new types of sweet corn combine the genetics of sh_2, se, and su genotypes. These cultivars are high in sugar levels, hold well in storage, and have a pericarp which is tender (this improves the eating quality of the sweet corn). Plant these cultivars using the same recommendations as those of the sh_2 types of sweet corn.

Isolation requirements for the sweet corn genotype are important in order to obtain the highest quality sweet corn. Supersweet (sh_2) sweet corn must be isolated by a distance of 300 feet or 12 days difference in silking date to avoid cross pollination from field corn, pop corn, normal sugary (su), and/or sugar enhanced (se) types. Failure to properly isolate the sh_2 genotype will result in it producing starchy, tough kernels. Isolation of sugary enhanced from normal sugary sweet corn types is recommended to maximize quality; however, quality is usually very minimally affected should cross pollination occur. It is recommended that augmented sweet corn types be isolated from all other sweet corn types for best quality.

Another important development in sweet corn cultivar development is the incorporation of the BT gene (called BT sweet corn). BT sweet corn has been genetically modified by incorporating a small amount of genetic material from another organism through modern molecular techniques. In sweet corn, the incorporated BT genes is particularly effective in providing protection against European corn borer and corn earworm. The protein produced by the BT gene is very selective, generally not harming insects in other orders (such as beetles, flies, bees, or wasps) but more importantly this protein is safe for consumption by humans, other mammals, fish, and birds. Syngenta Seeds has incorporated the BT gene into several sweet corn cultivars that are sold commercially under the trade name of Attribute followed by a series of numerals to identify the cultivar. Certain restrictions such as isolation, minimum acreage requirements, and destruction of the crop are part of the terms of contract when purchasing BT sweet corn seed.

In general, when selecting a cultivar, be sure to evaluate its acceptance in the market. Plant small acreages of new cultivars to test market their acceptance.

Seed Treatment. Check with seed supplier to ensure seed was treated with an insecticide and fungicide. Information on seed treatments can be found under SEED TREATMENTS in the disease management section of the handbook.

Seeding and Spacing. Seed is sown as early as February in more southern regions on light, sandy soils. Use a high vigor seed variety for early plantings. Seed is drilled in the field about 1 inch deep. Varieties are spaced 30 to 42 inches apart between rows depending on cultural practices, equipment, and seed size. In-row spacings range from 6 to 12 inches apart, with small-eared, early seasons varieties planted closest.

SWEET CORN PLANTING DATES

<table>
<thead>
<tr>
<th></th>
<th>Spring</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL North</td>
<td>4/15–5/30</td>
<td>NR</td>
</tr>
<tr>
<td>AL South</td>
<td>2/1–4/30</td>
<td>7/15–8/15</td>
</tr>
<tr>
<td>GA North</td>
<td>4/15–4/30</td>
<td>NR</td>
</tr>
<tr>
<td>GA South</td>
<td>2/1–3/31</td>
<td>7/15–8/15</td>
</tr>
<tr>
<td>KY East</td>
<td>5/1–6/15</td>
<td>NR</td>
</tr>
<tr>
<td>KY Central</td>
<td>4/20–7/10</td>
<td>NR</td>
</tr>
<tr>
<td>KY West</td>
<td>4/10–7/20</td>
<td>NR</td>
</tr>
<tr>
<td>LA North</td>
<td>3/1–5/15</td>
<td>NR</td>
</tr>
<tr>
<td>LA South</td>
<td>2/15–5/1</td>
<td>NR</td>
</tr>
<tr>
<td>MS North</td>
<td>3/20–4/10</td>
<td>NR</td>
</tr>
<tr>
<td>MS South</td>
<td>2/21–3/14</td>
<td>NR</td>
</tr>
<tr>
<td>NC East</td>
<td>3/15–4/30</td>
<td>NR</td>
</tr>
<tr>
<td>NC West</td>
<td>4/15–6/15</td>
<td>NR</td>
</tr>
<tr>
<td>OK</td>
<td>3/25–4/30</td>
<td>NR</td>
</tr>
<tr>
<td>SC East</td>
<td>3/1–4/15</td>
<td>NR</td>
</tr>
<tr>
<td>SC West</td>
<td>3/30–5/30</td>
<td>NR</td>
</tr>
<tr>
<td>TN East</td>
<td>4/15–6/30</td>
<td>NR</td>
</tr>
<tr>
<td>TN West</td>
<td>4/15–6/15</td>
<td>NR</td>
</tr>
<tr>
<td>VA East (coastal)</td>
<td>3/20–8/10</td>
<td>NR</td>
</tr>
<tr>
<td>VA West (mountain)</td>
<td>3/30–7/30</td>
<td>NR</td>
</tr>
<tr>
<td>NR = Not recommended</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mulching. The use of clear plastic mulch will improve stands, conserve moisture, and produce earlier maturity. Corn is seeded in the usual manner, except 10 to 20 days earlier in double rows 14 inches apart and on 5- to 6-foot centers. Apply herbicide and then cover with clear, 4-foot-wide plastic. Allow plastic to remain over plants for 30 days after emergence, then cut and remove plastic from field. Plants can then be cultured in the usual manner. A nematode assay is recommended before using this system. If nematodes are present in the soil, control measures are necessary before planting. Use a high vigor seed variety to avoid uneven and reduced stand.
Minimum Tillage. No-tillage is the most commonly used minimal tillage practice with sweet corn. No-till planters currently in use with row crop production will plant sweet corn seed with minimal modifications. Type of winter cover crop residue can affect sweet corn seed depth. Inspect seed placement and adjust for correct depth. Early spring planting with no-tillage in sweet corn may delay growth and days to harvest. Planting after soils warm in the spring will improve vigor. Use of small grain cover residue may require additional nitrogen (20 to 30 lbs N/acre in addition to the normal recommendation) if cover crop is fairly mature when killed. No additional nitrogen above recommendations is required if a legume cover crop (hairy vetch, winter peas, or crimson clover) is used as residue.

SPECIAL NOTES FOR PEST MANAGEMENT
(listed as “Corn, Sweet” in the Pest Management section)

INSECT MANAGEMENT
Corn Earworm (CEW): CEW initiates egg laying when the plants begin to silk and ends when the silks wilt. Eggs are laid singly on the fresh silks. Begin to control CEW when 10% of the ears are silked. Repeat sprays at three to five day intervals until 90% of the silks have wilted. Control is more difficult late in the season. Direct sprays toward the middle third of the plant. Corn hybrids having a long, tight-fitting shuck appear to suffer less damage than those with loose shucks.

Another management tactic for CEW and European corn borer (ECB) control is the use of BT sweet corn. These hybrids produce their own natural insecticide for control of these pests. However, under high pressure, supplemental sprays may be needed to achieve damage-free ears. Minimum acreage and resistance management practices are required with BTs sweet corn. Some markets may not accept these hybrids.

Corn Flea Beetle: Flea beetles transmit a bacterial wilt disease, known as Stewart’s Wilt, and these beetles are numerous after mild winters. Treat susceptible varieties at spike stage when 6 or more beetles per 100 plants can be found. Repeat every 3 to 5 days as needed. Note: Soil-applied insecticides may be ineffective during the first week of plant growth if soil temperatures are cool. Foliar applications of an insecticide may be necessary during this period.

European Corn Borer (ECB): Thorough spray coverage in whorls and on plants is essential. Many insecticides are highly toxic to bees. Granular formulations, if applied over the whorl, are generally more effective than liquid formulations for ECB control.

Sap Beetle (SB): Loose-husked varieties tend to be more susceptible to sap beetle attack. Ears damaged by other insects attract SB. Begin sampling at pollen shed and treat when 5% of the ears have adults and/or eggs. Note: Insecticides used for worm control at silk may not control SB infestations.

Fall Armyworm (FAW): Direct granules over the plants so that they fall into leaf whorls when FAW first appear and repeat application, if necessary. For foliar spray applications, high-spray gallonage (50 to 75 gallons per acre) is necessary for effective FAW control.

INSECT MANAGEMENT DECISION-MAKING
Whorl/Tassel Infestation: In general, insect larval feeding (ECB and FAW) during the whorl stage of sweet corn development has a greater impact on early planted, short-season varieties. For ECB on early plantings, apply first spray or granular application when 15% of the plants show fresh feeding signs. Additional applications may be necessary if infestation remains above 15%. An early tassel treatment is usually more effective than a whorl treatment because larvae are more exposed to the chemicals.

The impact of infestation on mid-and late-season plantings depends on the stage of the plants when the infestation occurs. Treat for FAW during the early whorl stage when more than 15% of the plants are infested. During mid- to late-whorl stages, treatment for both FAW and ECB may be necessary if more than 30% of the plants are infested. Treat fields in early tassel stage if more than 15% of the emerging tassels are infested with ECB, FAW, or young corn earworm (CEW) larvae.

Ear Infestation: Direct sampling for CEW, FAW, and ECB during silking is not practical because of the low thresholds for ear damage. Begin treatment when 10% of the ears show silk. If CEW populations are heavy, it may be necessary to begin treatments when the very first silks appear. Silk sprays should continue on a schedule based on area blacklight and pheromone trap counts, geographical location, and time of year. Early in the season, silk sprays may be required on a 3- to 6-day schedule. When CEW populations are heavy, it may be necessary to treat on a 1-to 3-day schedule. Applications during low populations can end up to 5 days before last harvest. During heavy populations and high temperatures, treatments will need to be made according to the legal “days to harvest” of the chemical.

For best control during heavy populations, maximize the gallonage of water per acre, use a wetting agent, and make applications with a high pressure sprayer (200+ psi) with drop nozzles directed at the silks.

HARVESTING AND STORAGE
See Table 14 for postharvest information.
SWEETPOTATO (Ipomoea batatas)

Varieties

<table>
<thead>
<tr>
<th>VARIETIES</th>
<th>AL</th>
<th>GA</th>
<th>KY</th>
<th>LA</th>
<th>MS</th>
<th>NC</th>
<th>OK</th>
<th>SC</th>
<th>TN</th>
<th>VA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beauregard</td>
<td>2, 3, 5, 6, 9, 11</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
<td>S</td>
<td>T</td>
</tr>
<tr>
<td>Bayou Belle</td>
<td>3, 4, 7, 8, 11</td>
<td>A</td>
<td>G</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bellevue</td>
<td>5, 6, 7, 8</td>
<td>A</td>
<td>G</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bonita</td>
<td>5, 7, 8, 9, 12</td>
<td>A</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
<td>S</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burgundy</td>
<td>2, 6, 7</td>
<td>A</td>
<td>S</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carolina Ruby</td>
<td>2, 6, 8</td>
<td>A</td>
<td>K</td>
<td>M</td>
<td>N</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Covington</td>
<td>2, 6, 7, 11</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>M</td>
<td>N</td>
<td>O</td>
<td>S</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Evangelining</td>
<td>2, 5, 6, 7, 11</td>
<td>A</td>
<td>G</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hernandez</td>
<td>2, 5, 6, 7, 8, 11</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>M</td>
<td>N</td>
<td>O</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jewel</td>
<td>2, 6, 8, 9, 10, 11</td>
<td>A</td>
<td>G</td>
<td>K</td>
<td>M</td>
<td>N</td>
<td>O</td>
<td>S</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Murasaki</td>
<td>2, 6, 7, 8, 9, 11</td>
<td>A</td>
<td>K</td>
<td>M</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O’Henry</td>
<td>2, 5, 6, 7, 8, 9, 11</td>
<td>A</td>
<td>K</td>
<td>M</td>
<td>N</td>
<td>O</td>
<td>S</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orleans</td>
<td>2, 6, 7, 8, 11</td>
<td>A</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
<td>S</td>
<td>T</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>White Hayman</td>
<td>2</td>
<td>A</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Abbreviations for state where recommended.
2 Red or copper skin, orange flesh.
3 Tan or cream, white flesh.
4 Purple skin, white flesh.
5 Sclerotial blight resistance.
6 Soil rot resistance.
7 Root knot resistance.
8 Fusarium wilt resistance.
9 Rhizopus resistance.
10 Bacterial soft rot resistance.
11 Fusarium root rot resistance.
12 Suitable choice for organic production.

Variety Selection. Selection of a variety depends on the intended market. Most varieties require 90 to 150 days to produce maximum yields. Sweetpotatoes are cold sensitive and should not be planted until all danger of frost is past. The optimum temperature to achieve the best growth of sweetpotatoes is between 70°F and 88°F, although they can tolerate temperatures as low as 55°F and as high as 105°F.

Soil. Well-drained sandy and sandy loam soils will produce the best-shaped sweetpotatoes. Heavy soils or compacted soils will induce misshapen roots, while soils with high levels of organic matter can promote scurf. Use long rotations to decrease the incidence of scurf, Fusarium wilt, black rot, certain nematode species and other diseases. Avoid fields that have produced a crop of sweetpotatoes in the past two years and fields that have high nematode populations and are seriously eroded or grassy. Select a soil that is well drained but not prone to drought. Warterlogged, poorly drained soils prevent roots from obtaining sufficient oxygen, which can cause “souring” of roots.

Fertilizer and Lime. Get a soil test. The amount of fertilizer needed will vary by variety and location and on available nutrients as indicated by a soil test. The optimum pH range is 5.8 to 6.2. If your soil needs lime, incorporate the appropriate amount several months before planting. This will allow sufficient time for the lime to increase your soil’s pH.

Broadcast or band half of the required nitrogen (N) before planting and then sidedress the remainder at layby when the vines begin to run. N is very mobile in the soil and special attention should be given to sandy soils and regions with frequent, heavy rainfall events during the season. An appropriate total seasonal rate of N range for sweetpotato is between 40 and 80 pounds per acre. Some varieties require less N fertilizer than others. For the variety Beauregard, 40 to 50 pounds per acre per growing season is sufficient while for the variety Covington, 80 pounds per acre in preferred. Follow the recommended rate of fertilizer because high fertilizer concentrations may result in salt burn and plant damage. Additionally, applying surplus fertilizer can cause excessive vine growth and be a waste of resources due to added costs that will not result in higher yields.

CROP ESTABLISHMENT

Propagating. Sweetpotatoes are propagated from sprouts or slips (vine cuttings). Only purchase certified, disease-free seed stock or slips. Select seed (the word seed refers to the roots used for slip production), that is free from insect and disease damage, that has a uniform flesh with variety appropriate skin color, and that is free from veins. Your profitability depends on starting with the highest quality seed stock available. Using quality roots for seed is essential for producing quality sweetpotatoes. Quality sweetpotatoes are not produced from poor-quality seed.

In most years, it is not possible to purchase sufficient certified seed stock to produce slips for your entire planned production. Thus, seed must be saved from each year’s crop. When possible, isolate your seed planting from that of your commercial planting to minimize viruses. Save seed from the highest quality roots that you produce. Carefully inspect roots for defects (no off-types), disease, insect damage, etc., as listed above. Each year purchase a portion of your required seed stock for slip production as certified seed, supplementing your total need with seed from the previous year’s crop. Certified slips are available from several growers in around the Southeastern US. Consult your local Extension office for information.

Additionally, sweetpotato is part of the National Clean Plant Network and several Clean Plant Centers are located in the Southeastern U.S. that support the production of virus-tested, certified planting material. The following Universities are par-
ticipating in the National Clean Plant Network for Sweet Potato: NC State University, LSU AgCenter, Mississippi State University, University of Arkansas at Pine Bluff, UC Davis, University of Hawaii. Please contact your local Extension office for more information.

Presprouting. Presprouting is a technique that produces two to three times more slips than seed stock that is not presprouted. Some refer to presprouting as “waking up” the sweetpotatoes after they have been in storage. Presprouting encourages more prolific sprouting in roots. This can decrease production costs by decreasing the amount of seed stock required. In addition to increasing the number of slips produced, presprouting produces slips faster. Conditions required for presprouting are similar to those required for curing sweetpotatoes. Presprouting involves placing seed stock in a controlled storage area, such as a curing room. You must be able to control temperature and relative humidity and be able to provide ventilation. Be sure that you are able to replace the air one to two times per day because the roots require a significant amount of oxygen to facilitate presprouting. A rule of thumb: if there is not enough oxygen for a match to stay lit, there is likely not enough oxygen for the sweetpotatoes. To presprout, place seed stock in a presprouting room for 21 to 35 days at 70 to 80°F with 90% relative humidity. Spraying the walls and floors with water two times per day can help maintain relative humidity. Mechanical humidifiers (automatic humidifiers, misting systems) can help establish and maintain the required relative humidity. Avoid humidity near 100 percent or wetting of the surface of the roots as this can lead to the development of rots.

Bedding. Provide 4 to 5 pounds of 8-8-8 or 10-10-10 type fertilizer per 100 square feet of bed area. Treat seed with appropriate fungicides to prevent bedding root decay. After presprouting, place roots into beds, being careful not to damage them. Be sure to cover roots completely with 2 to 3 inches of soil. Do not be concerned if a few sprouts are above the soil line. Keep beds moist but not wet. After planting roots, cover beds immediately with black or clear plastic to warm the soil. Punch holes in plastic for ventilation as needed. Slips are ready to harvest when they have 6 to 10 leaves (8 to 12 inches long) and adventitious roots are initiated (roots projected from the nodes or joints of the stem). Slips from presprouted roots are generally ready one week earlier.

Preparing Slips for Transplanting. To harvest, cut the slips about 1 inch above the bed surface. Cutting is preferred to pulling slips. Always pull the knife up and away from the soil to prevent contamination from the seedbeds from moving into the production field. Clean knives frequently by dipping them into a 1:1 (v/v) solution of bleach and water. This will also prevent the spread of diseases from the seedbed into the field. Set the slips in the field within three days after harvesting them from the plant beds. About 500 slips can be produced from one bushel of seed. One bushel of seed requires 20 to 30 square feet of bed area.

Transplanting. Avoid planting slips until all danger of frost is past because they are very frost sensitive. Beds should be 4 to 8 inches high and as wide as equipment will allow. Narrow beds tend to dry quickly and may reduce overall yields. High beds will aid in promoting drainage, thus preventing water damage to roots. The most economical method to set a large number of plants is with a mechanical transplanter. Space slips 6 to 16 inches apart within rows spaced 3½ to 4 feet apart on row centers. The number of slips needed per acre will depend on your desired spacings. Be sure to manage water carefully to avoid transplant shock. Slips set more widely apart in-row will facilitate root enlargement, while closer in-row spacing can result in increased competition and delay root sizing.

SWEETPOTATO PLANTING DATES

<table>
<thead>
<tr>
<th>Region</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL North</td>
<td>5/1–6/30</td>
</tr>
<tr>
<td>AL South</td>
<td>3/15–5/15</td>
</tr>
<tr>
<td>GA North</td>
<td>5/15–6/15</td>
</tr>
<tr>
<td>GA South</td>
<td>4/1–6/15</td>
</tr>
<tr>
<td>KY East</td>
<td>5/20–6/1</td>
</tr>
<tr>
<td>KY Central</td>
<td>5/10–6/10</td>
</tr>
<tr>
<td>KY West</td>
<td>5/1–7/15</td>
</tr>
<tr>
<td>LA North</td>
<td>5/1–6/30</td>
</tr>
<tr>
<td>LA South</td>
<td>4/15–6/30</td>
</tr>
<tr>
<td>MS</td>
<td>4/25–5/20</td>
</tr>
<tr>
<td>NC East</td>
<td>5/1–7/15</td>
</tr>
<tr>
<td>NC West</td>
<td>5/25–6/30</td>
</tr>
<tr>
<td>OK</td>
<td>5/1–6/10</td>
</tr>
<tr>
<td>SC East</td>
<td>4/15–6/15</td>
</tr>
<tr>
<td>SC West</td>
<td>5/1–6/15</td>
</tr>
<tr>
<td>TN East</td>
<td>5/15–6/30</td>
</tr>
<tr>
<td>TN West</td>
<td>5/1–6/30</td>
</tr>
<tr>
<td>VA East (coastal)</td>
<td>5/15–6/30</td>
</tr>
<tr>
<td>VA West (mountains)</td>
<td>6/1–6/20</td>
</tr>
</tbody>
</table>

SPECIAL NOTES FOR PEST MANAGEMENT

INSECT MANAGEMENT

Lepidoptera Larvae: Sweetpotato hornworm, corn earworm, southern armyworm, yellowstriped armyworm, beet armyworm, fall armyworm, and soybean looper all feed on foliage leaving small to large holes. In plant beds and newly set fields, damage may be serious. Mid to late season foliar feeding may reduce yields or delay sizing of roots when coupled with plant stress. After harvest, larvae may continue feeding on sweetpotatoes left in the field and in storage. Apply insecticide to plant beds and in fields as needed. Cuttings should be free of insects before planting. Where worms are abundant at harvest, spray fields 2 to 3 days before digging. Remove harvested sweetpotatoes from the field immediately.

Cucumber Beetles (rootworms): Adults and larvae of the banded cucumber beetle, *Diabrotica balteata,* and the spotted cucumber beetle, *Diabrotica undecimpunctata* feed on sweet potato. Both species are highly mobile and will also feed on several other host plants including, various vegetable plant species, soybeans, and corn. Adult beetles feed on sweet potato foliage, creating irregular holes in the leaves. Adult beetles lay eggs in the soil and larvae developing in the soil feed on developing sweet potato roots. Feeding on the roots can occur throughout the production season, but damage from these insects increases late season. Feeding injury results in unsightly blemishes on the roots at harvest. The larval stage lasts from 8-30 days depending on the temperature and food supply. Pupae are found just below the soil.
The stem. They also feed and notch leaves. They are most active in July and August and produce eggs in groups without mating. Avoid infested fields and rotate crops. Only grasses are not suitable as hosts. Monitor for adults or leaf notching. Limited control may be achieved by using tolerant varieties, foliar insecticides applied every two weeks and soil insecticides. Record whitefringed beetle sites and do not plant sweetpotatoes in these locations.

Wireworms: Tobacco wireworm, southern potato wireworm, corn wireworm leave small, irregular, shallow or deep holes in the surface of sweetpotato roots. Larvae are identified by differences in their last abdominal segment. Wireworm adults (click beetles) lay their eggs in grassy, undisturbed soil. Adults feed on weed seeds (pigweed) and corn pollen. Avoid land previously in sod or fallow. Wireworms may be detected prior to planting using corn, wheat, or oatmeal bait stations. If necessary, broadcast and incorporate a preplant insecticide, or use a granular material at root swell. Timed foliar sprays are of limited value, as adults do not feed on sweetpotato and are only controlled when sprays contact adults or larvae move into a treated area. Control weeds and do not allow them to mature to seed. Avoid planting in fields with corn wireworm. Avoid planting behind corn, grain, and grain sorghum. Tobacco wireworm adults can be monitored with yellow sticky cups. Wireworm adults are attracted to black-light insect traps.

White Grubs: These can cause large, shallow, irregular damage on the surface of sweetpotatoes. Species include Japanese beetle, spring rose beetle, and green June beetle. Adults lay eggs in grassy areas (also see section on wireworms). Pheromone traps are under evaluation. Japanese beetles are attracted to traps. White bucket traps attract spring rose beetles. Use a preplant insecticide and foliar sprays when adults are active.

Fruit Fly: Fruit flies may be a nuisance in storage houses when sweetpotatoes decay due to other causes such as souring, chilling, and Rhizopus soft rot. Fruit flies feed on decaying vegetables. Maggots may be seen in decaying roots. Fruit flies may become established in cull piles and spread to the storage house. They do not cause rots. Harvest, cure and store only sound sweetpotatoes. Dispose of culls, inspect the storage house and use traps. If necessary, spray with an appropriate insecticide.

HARVESTING AND STORAGE

A 3 to 4 month growing season is required for root development. After the roots are dug, they should be cured in the storage house at 80° to 85°F and 90% relative humidity for 6 to 8 days. Curing time can be adjusted for varieties that have a propensity to sprout quickly under curing conditions following harvest. After curing, temperature should be lowered to 55°F, but relative humidity should be maintained at 85%. Temperature should never go below 55°F or chilling injury may result, depending on length of exposure. Above 60°F, sprouting will occur and root weight decrease. See Table 14 for further postharvest information.
TOMATOES (Solanum lycopersicum)

VARIETIES 1

<table>
<thead>
<tr>
<th>TOMATOES</th>
<th>AL</th>
<th>AR</th>
<th>GA</th>
<th>KY</th>
<th>LA</th>
<th>MS</th>
<th>NC</th>
<th>OK</th>
<th>SC</th>
<th>TN</th>
<th>VA</th>
</tr>
</thead>
</table>

Fresh Market

<table>
<thead>
<tr>
<th>Variety</th>
<th>AL</th>
<th>AR</th>
<th>GA</th>
<th>KY</th>
<th>LA</th>
<th>MS</th>
<th>NC</th>
<th>OK</th>
<th>SC</th>
<th>TN</th>
<th>VA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amelia VR</td>
<td></td>
</tr>
<tr>
<td>Bella Rosa</td>
<td></td>
</tr>
<tr>
<td>BHN 589</td>
<td></td>
</tr>
<tr>
<td>BHN 602</td>
<td></td>
</tr>
<tr>
<td>BHN 640</td>
<td></td>
</tr>
<tr>
<td>Big Beef</td>
<td></td>
</tr>
<tr>
<td>Carolina Gold</td>
<td></td>
</tr>
<tr>
<td>Celebrity</td>
<td></td>
</tr>
<tr>
<td>Crista</td>
<td></td>
</tr>
<tr>
<td>Defiant PhR</td>
<td></td>
</tr>
<tr>
<td>Emmylou</td>
<td></td>
</tr>
<tr>
<td>Florida 47R</td>
<td></td>
</tr>
<tr>
<td>Florida 91</td>
<td></td>
</tr>
<tr>
<td>Grand Marshal</td>
<td></td>
</tr>
<tr>
<td>Jolene</td>
<td></td>
</tr>
<tr>
<td>Mountain Gem</td>
<td></td>
</tr>
<tr>
<td>Mountain Glory</td>
<td></td>
</tr>
<tr>
<td>Mountain Magic (Campan)</td>
<td></td>
</tr>
<tr>
<td>Mountain Majesty</td>
<td></td>
</tr>
<tr>
<td>Mountain Merit</td>
<td></td>
</tr>
<tr>
<td>Mountain Rouge</td>
<td></td>
</tr>
<tr>
<td>Mountain Spring</td>
<td></td>
</tr>
<tr>
<td>Phoenix</td>
<td></td>
</tr>
<tr>
<td>Primo Red</td>
<td></td>
</tr>
<tr>
<td>Red Bounty</td>
<td></td>
</tr>
<tr>
<td>Red Defender</td>
<td></td>
</tr>
<tr>
<td>Red Deuce</td>
<td></td>
</tr>
<tr>
<td>Red Morning</td>
<td></td>
</tr>
<tr>
<td>Red Mountain</td>
<td></td>
</tr>
<tr>
<td>Red Snapper</td>
<td></td>
</tr>
<tr>
<td>Rocky Top</td>
<td></td>
</tr>
<tr>
<td>Solar Fire</td>
<td></td>
</tr>
<tr>
<td>Tribute</td>
<td></td>
</tr>
</tbody>
</table>

Cherry Types

<table>
<thead>
<tr>
<th>Variety</th>
<th>AL</th>
<th>AR</th>
<th>GA</th>
<th>KY</th>
<th>LA</th>
<th>MS</th>
<th>NC</th>
<th>OK</th>
<th>SC</th>
<th>TN</th>
<th>VA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matt’s Wild Cherry</td>
<td></td>
</tr>
<tr>
<td>Mountain Belle</td>
<td></td>
</tr>
<tr>
<td>Sun Gold (yellow fruit)</td>
<td></td>
</tr>
<tr>
<td>Sun Sugar (yellow fruit)</td>
<td></td>
</tr>
</tbody>
</table>

Grape Types

<table>
<thead>
<tr>
<th>Variety</th>
<th>AL</th>
<th>AR</th>
<th>GA</th>
<th>KY</th>
<th>LA</th>
<th>MS</th>
<th>NC</th>
<th>OK</th>
<th>SC</th>
<th>TN</th>
<th>VA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brad’s Atomic Grape</td>
<td></td>
</tr>
<tr>
<td>Cupid</td>
<td></td>
</tr>
<tr>
<td>Elfin</td>
<td></td>
</tr>
<tr>
<td>Gold Sparks</td>
<td></td>
</tr>
<tr>
<td>Jolly Elf</td>
<td></td>
</tr>
<tr>
<td>Mountain Honey</td>
<td></td>
</tr>
<tr>
<td>Mountain Vineyard</td>
<td></td>
</tr>
<tr>
<td>Smarty</td>
<td></td>
</tr>
</tbody>
</table>

Roma Types

<table>
<thead>
<tr>
<th>Variety</th>
<th>AL</th>
<th>AR</th>
<th>GA</th>
<th>KY</th>
<th>LA</th>
<th>MS</th>
<th>NC</th>
<th>OK</th>
<th>SC</th>
<th>TN</th>
<th>VA</th>
</tr>
</thead>
<tbody>
<tr>
<td>BHN 410</td>
<td></td>
</tr>
<tr>
<td>Daytona</td>
<td></td>
</tr>
</tbody>
</table>

1 Abbreviations for state where recommended.
2 Tomato spotted wilt virus resistance (TSWV).
3 Heat set (heat tolerance).
4 Alternaria stem canker tolerance/resistance (ASC).
5 Fusarium Wilt race 0, 1, 2 tolerance/resistance (F).
6 Fusarium Crown root rot tolerance/resistance (FCRR).
7 Gray leaf spot resistance (SL, SBL, SS).
8 Tobacco mosaic virus resistance (TMV).
9 Ventricillium wilt resistance (V).
10 late blight tolerance/resistance.
11 Suitable for high tunnel production.
12 Tomato leaf mold race a, b, c, d, e tolerance/resistance.
13 Powdery mildew tolerance/resistance.
14 Bacterial speck tolerance/resistance (BSK-0).
Seed Treatment
To minimize the occurrence of bacterial canker, bacterial spot, and bacterial speck, seed should be treated with chlorine. If seed is not treated with chlorine by the seed company, then dip seed in a solution containing 1 quart of household bleach and 4 quarts of water plus one-half teaspoon of surfactant for 1 minute. Provide constant agitation. Use 1 gallon of solution per pound of seed. Prepare a fresh solution for each batch of seed. Wash seed in running water for 5 minutes and dry seed thoroughly. The final rinse should be done with acidified water (1 oz. vinegar per gallon of water). Further information on seed treatments can be found under SEED TREATMENTS in the disease management section of the handbook.

Hardening Transplants
It is usually desirable to harden tender tomato seedlings before planting them in the field. Recent research has shown that hardening tomato plants by exposure to cool temperatures (60°F to 65°F/day and 50°F to 60°F/night) for a week or more causes catfacing. Harden plants by withholding water. Allow plants to wilt slightly between light waterings. Do not harden transplants by withholding fertilizer.

Drip Fertilization
Fertilization should be based on a soil test, adjust soil pH to 6.5 and, in the absence of a soil test, apply enough fertilizer to supply 50 pounds per acre of N, P2O5, and K2O. After mulching and installing the drip irrigation system, the soluble fertilizer program should be initiated according to the following table. On soils testing low to low-medium boron, also include 0.5 pound per acre of actual boron.

The first soluble fertilizer application should be applied through the drip irrigation system within a week after field-transplanting the tomatoes. Continue fertigating until the last harvest.

TABLES

TOMATO PLANTING DATES*

<table>
<thead>
<tr>
<th>Variety</th>
<th>Spring</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL North</td>
<td>4/15-6/15</td>
<td>7/1-8/1</td>
</tr>
<tr>
<td>AL South</td>
<td>3/1-4/30</td>
<td>7/15-8/15</td>
</tr>
<tr>
<td>AR North</td>
<td>5/15-6/20</td>
<td>7/1-7/15</td>
</tr>
<tr>
<td>AR South</td>
<td>4/1-6/15</td>
<td>7/15-8/1</td>
</tr>
<tr>
<td>GA North</td>
<td>4/15-6/15</td>
<td>7/1-8/1</td>
</tr>
<tr>
<td>GA South</td>
<td>3/1-4/30</td>
<td>7/15-8/30</td>
</tr>
<tr>
<td>KY East</td>
<td>5/15-6/1</td>
<td>NR</td>
</tr>
<tr>
<td>KY Central</td>
<td>5/5-6/15</td>
<td>NR</td>
</tr>
<tr>
<td>KY West</td>
<td>4/20-7/1</td>
<td>NR</td>
</tr>
<tr>
<td>LA North</td>
<td>3/15-6/30</td>
<td>7/1-8/10</td>
</tr>
<tr>
<td>LA South</td>
<td>3/1-6/30</td>
<td>7/15-8/15</td>
</tr>
<tr>
<td>MS North</td>
<td>4/20-6/30</td>
<td>NR</td>
</tr>
<tr>
<td>MS South</td>
<td>3/1-3/15</td>
<td>NR</td>
</tr>
<tr>
<td>NC East</td>
<td>4/15-5/10</td>
<td>8/1-8/15</td>
</tr>
<tr>
<td>NC West</td>
<td>5/15-7/15</td>
<td>NR</td>
</tr>
<tr>
<td>OK</td>
<td>4/15-4/30</td>
<td>7/1-7/15</td>
</tr>
<tr>
<td>SC Coastal Island</td>
<td>3/1-4/30</td>
<td>7/1-7/15</td>
</tr>
<tr>
<td>SC East</td>
<td>3/15-4/30</td>
<td>7/1-7/15</td>
</tr>
<tr>
<td>SC West</td>
<td>5/1-6/30</td>
<td>NR</td>
</tr>
<tr>
<td>TN East</td>
<td>5/1-6/30</td>
<td>NR</td>
</tr>
<tr>
<td>TN West</td>
<td>4/20-6/20</td>
<td>NR</td>
</tr>
<tr>
<td>VA (coastal)</td>
<td>3/30-4/30</td>
<td>NR</td>
</tr>
<tr>
<td>VA (mountains)</td>
<td>4/10-7/30</td>
<td>NR</td>
</tr>
</tbody>
</table>

* Using transplants. Note: Planting dates in the spring could be earlier if low tunnels or other season extension measures are used in some locations.

NR = Not recommended

SUGGESTED FERTIGATION SCHEDULE FOR TOMATO

(low soil potassium)

<table>
<thead>
<tr>
<th>Days after planting</th>
<th>Daily nitrogen (lb / A)</th>
<th>Daily potash (lb / A)</th>
<th>Cumulative Nitrogen (lb / A)</th>
<th>Cumulative Potash (lb / A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preplant</td>
<td>50.0</td>
<td>125.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–14</td>
<td>0.5</td>
<td>0.5</td>
<td>57.0</td>
<td>132.0</td>
</tr>
<tr>
<td>15–28</td>
<td>0.7</td>
<td>1.4</td>
<td>66.8</td>
<td>151.6</td>
</tr>
<tr>
<td>29–42</td>
<td>1.0</td>
<td>2.0</td>
<td>80.8</td>
<td>179.6</td>
</tr>
<tr>
<td>43–56</td>
<td>1.5</td>
<td>3.0</td>
<td>101.8</td>
<td>221.5</td>
</tr>
<tr>
<td>57–77</td>
<td>2.2</td>
<td>4.4</td>
<td>148.0</td>
<td>313.9</td>
</tr>
<tr>
<td>78–98</td>
<td>2.5</td>
<td>5.0</td>
<td>200.5</td>
<td>418.9</td>
</tr>
</tbody>
</table>
Fresh Market
Yield, fruit size, and fruit quality of fresh market tomatoes are increased by the use of black plastic mulch in combination with drip irrigation. When air temperature exceed 85°F use white on black plastic mulch, or paint black plastic with a 5:1 (v/v) mixture of exterior, flat white latex paint and water. Form-raised, dome-shaped beds to aid in disease control. Lay black plastic mulch tightly over the beds.

Grafting and Diseases
In recent years, grafted tomato plants have emerged as a strategy to combat soilborne diseases, particularly in heirloom varieties. Grafting is used against diseases such as Bacterial wilt, Fusarium wilt, and Verticillium wilt. Grafted plants are more expensive per transplant. For more information, see the section Grafting in Vegetable Crops in this handbook.

Greenhouse Tomatoes
While there are thousands of tomato varieties on the market, only a few are suitable for growing in greenhouses. If you plan on growing tomatoes to maturity in the greenhouse, you need to select a greenhouse variety. This is because these varieties have been bred specifically for greenhouse conditions – lower light, higher humidity and temperature, etc., and have better disease resistance than field types. Nearly all greenhouse varieties are indeterminate hybrids so that they will yield over a long harvest season. While non-greenhouse types would grow in the greenhouse, the yield and quality would be reduced, and therefore they may not be profitable.

Variety selection is based on yield, fruit size, uniformity, disease resistance, and lack of physiological disorders, as well as the market demand for the type of tomato grown. For suggestions on varieties, see the variety table in this section above. Insect and disease control methods for greenhouse vegetables can be found in Tables 2-29 and 3-45 (Insect and Diseases Control sections), respectively. For further information on greenhouse tomato production, see http://extension.msstate.edu/crops/commercial-horticulture/greenhouse-tomatoes

Stake Culture
Staking tomatoes is a highly specialized production system. The following recommendations are for the short-stake cultural system using determinate cultivars that grow 3 to 4 feet in height or for indeterminate varieties that grow 6 to 7 feet in height. Use between row spacings of 5 to 6 feet with in-row spacings of 18 to 24 inches. See state specific guides for a full description of staking.

Pruning/Suckering: Pruning is practiced to establish a desired balance between vine growth and fruit growth. Little to no pruning results in a plant with a heavy load of smaller fruit. Moderate pruning results in fewer fruits that are larger and easier to harvest. Pruning can result in earlier maturity of the crown fruit and improves spray coverage and pest control.

Removing all suckers up to the one immediately below the first flower cluster is adequate for most determinate cultivars. Removing the sucker immediately below the first flower cluster or pruning above the first flower cluster can result in severe leaf curling and stunting of the plant and should be avoided.

Prune when the suckers are no more than 2 to 4 inches long. A second pruning may be required to remove suckers that are too small to be easily removed during the first pruning and to remove ground suckers that may develop. Pruning when suckers are too large requires more time and can damage the plants, delay maturity, and increase disease incidence. Do not prune plants when they are wet to avoid spread of diseases. Pruning should be done before the first stringing because the string can slow the pruning process. Pruning is variety-and-fertility-dependent.

Less-vigorous determinate cultivars generally require less pruning. Growers should experiment with several degrees of pruning on a small scale to determine pruning requirements for specific cultivars and cultural practices.

Staking: Staking improves fruit quality by keeping plants and fruit off the ground and providing better spray coverage. Staked tomatoes are easier to harvest than ground tomatoes.

Staking tomatoes consists of a series of wooden stakes with twine woven around the stakes to train the plants to grow vertically off the ground. Stakes 4 to 4.5-feet long by 1-inch square are driven about 12 inches into the soil between the plants.

Vigorous cultivars may require larger and longer stakes. A stake placed between every other plant is adequate to support most determinate varieties. Placing an additional stake at an angle and tied to the end stake of each section will strengthen the trellis system. Stakes can be driven by hand with a homemade driving tool or with a commercially available, power-driven stake driving tool. Drive stakes to a consistent depth so that spray booms can be operated in the field without damaging the trellis system.

Select “tomato twine” that is resistant to weathering and stretching and that binds well to the wooden stakes. Tomato twine is available in 3- to 4-pound boxes. Approximately 30 pounds of twine is required per acre. To make tying convenient, use a homemade stringing tool. This tool can be made from a length of metal conduit, schedule 40 PVC pipe, broom handle, or wooden dowel. With conduit and PVC pipe, the string is fed through the pipe. With a broom handle or wooden dowel, two small parallel holes, each about 1 inch from the end, must be drilled to feed the string through one hole along the length of the
tool and through the other hole. The tool serves as an extension of the worker’s arm (the length cut to the worker’s preference) and helps to keep the string tight.

Proper stringing consists of tying the twine to an end stake passing the string along one side of the plants, and then looping the twine around each stake until the end of a row or section (100-foot sections with alleys may be helpful for harvesting) is reached. The same process is continued on the other side of the row. The string tension must be tight enough to hold the plants upright. Note: If strings are too tight, they can make harvesting fruit difficult and can scar fruit.

The first stringing should be strung 8 to 10 inches above the ground when plants are 12 to 15 inches tall and before they fall over. Run the next string 6 to 8 inches above the preceding string before plants start to fall over. Three to four stringings are required for most determinate varieties. Stringing should be done when the foliage is dry to prevent the spread of diseases.

Heirloom Tomatoes. Heirloom tomatoes are varieties that have been available for 50 years or more, are open pollinated, and grow “true to type” from seed saved from fruit each year. They are generally indeterminate, requiring trellising and constant pruning. Most varieties have little disease resistance. The fruit are usually thin-skinned, soft, and tend to crack. Consumers are attracted to heirloom tomatoes because many varieties are very flavorful, colorful, come in many sizes and shapes, and have interesting names. For the growers, heirloom tomatoes are challenging to produce and difficult to ship, but can bring high prices on the local market.

There are hundreds of varieties of heirloom tomatoes available. Some of the most popular varieties include Brandywine, German Johnson, Mr. Stripey, Cherokee Carbon, Cherokee Purple, and Green Zebra.

Because most heirloom tomatoes are indeterminate, they must be grown on a tall, strong trellis. A trellis can be constructed of 3 inch diameter, or larger, posts set 10-15 feet apart within the row. Use 7-8 ft. long posts, leaving 6-7 ft. above ground. Run a stout wire (12 gauge) across the tops of the posts and secure to the posts. Pieces of twine, long enough to reach the ground, should be tied to the top wire above each plant. The twine can be anchored with a loop to each plant or to a bottom line of twine that is strung about 6 in. off the ground and secured to the posts. Some growers use the standard string and weave-staked culture system for heirloom tomatoes, as described for the determinate tomatoes, but they use 6-ft. long stakes instead of the normal 4-ft. long stakes.

In a trellis system, plants are usually spaced 8-10 in. apart within the row and pruned to a single stem system. A two stem system may also be used, in which the plants should be spaced 18-30 in. apart within the row. If using a standard staking system, plants should be spaced 18-24 in. apart. Once the plants are established, suckers must be removed several times a week. If the main growing point is broken off, a sucker can be trained to take its place.

Because most heirloom tomatoes have little disease resistance, it is important to maintain a good fungicide spray schedule. For organic production, it might be necessary to grow heirloom tomatoes under high tunnels, especially in areas with high disease pressure. Grafting heirloom varieties onto disease resistant rootstocks might also increase your success at growing organically.

TOMATO DISORDERS

Your local county Extension office has bulletins that describe fruit disorders in detail. Here are several common disorders of tomato and their causes: **catfacing** (cool day and/or night temperatures or very hot dry days), **internal browning, graywall and blotchy ripening**, **(tobacco mosaic virus, overcast cloudy environment, high N, low K or soil compaction)**, **yellow shoulder** (direct sun exposure, worse on green shouldered varieties), **sunburn and sunscald** (direct rapid exposure to the sun), **weathercheck** (fruit exposed to dew), **blossom end rot** (low soil calcium and/or soil moisture), **cracking** (variety, irregular water, growth, and/or nutrition). Check out the following link for images and discussions for several common problems in tomato production -- http://extension.msstate.edu/publications/publications/tomato-troubles-common-problems-tomatoes

SPECIAL NOTES ON PEST MANAGEMENT

INSECT MANAGEMENT

Colorado Potato Beetle (CPB), Flea Beetles (FB): While flea beetles are a common pest of tomato throughout the southeastern US, Colorado potato beetle are most common in areas where significant acreage of potatoes is also grown. Flea beetles are primarily a problem early in the season shortly after planting, and are usually controlled by insecticides applied for other insects. Adults feed on foliage, resulting in small round holes on leaves. In most situations this damage does not affect early season growth or subsequent yields, but control may be necessary when populations are high (20-30% defoliation).

Colorado potato beetle adults and larvae feed on tomato foliage and can cause extensive defoliation if not controlled. CPB feed only on solanaceous plants, and populations tend to be concentrated in areas where potato, eggplant and tomato have previously been grown. Consequently, rotation to non-solanaceous crops is very effective in helping to avoid infestations. Thoroughly scout fields and spray only when necessary. Treatment should be made if populations exceed 15 adults per 10 plants or a combination of 20 CPB larvae and/or adults per 10 plants. Insecticide sprays should be made after most egg masses have hatched, but before larvae become large. CPB have developed resistance to many different insecticides, so knowledge of the resistance status of populations is essential in choosing which insecticides to use.

Tomato Fruitworm: The tomato fruitworm, also known as the corn earworm and cotton bollworm, is potentially the most damaging pest of tomato. However, there are many insecticides that provide excellent control. The key to controlling this insect is to ensure that there is a toxic pesticide residue on the plant during egg laying periods so that larvae are killed shortly after hatching, because larvae feed on leaf tissue for only a short time before boring into fruit. Tomato fruitworm moth activity can be moni-
toared with pheromone traps and serves as a measure of the adult population within an area. Corn that is in the silking stage is a preferred host of fruitworm, but when corn silks begins to dry, moths will switch egg laying to other hosts, including tomato.

Armyworms: At least three species of armyworms are potential pests of tomato, including the beet armyworm, southern armyworm and yellowstriped armyworm. Infestations are usually sporadic in the more northern regions of the southeastern US, but are an annual problem in more southern areas. In contrast to tomato fruitworm, armyworms will also feed extensively on foliage as well as fruit, and the presence of feeding damage on leaves can help differentiate between fruitworm and armyworm damage. Beet armyworm is notorious for exhibiting resistance to a wide range of insecticides, but the recent registration of newer insecticides has greatly aided the management of this pest.

Tomato Pinworm: The tomato pinworm is more common in the southern compared with northern regions of the southeast, but late-season infestations are common in northern areas. Moths lay eggs on foliage, and larvae feed within leaves, creating blotchy mines. As larvae increase in age they bore into stems and/or fruit. The use of pheromone-based mating disruption is an effective control method. Initiate mating disruption at the first sign of mines on foliage. Numerous insecticides also control pinworm.

Stink Bugs: The green and brown stink bug can be important direct pests of tomato, but they are sporadic in occurrence. Stink bugs are most common in smaller fields (i.e., 5 acres or less) that are surrounded by weedy borders, or fields that are adjacent to soybeans. In fact, chemical control of stink bugs is often not necessary in fields that do not fit the previous description. Unfortunately, there is not a good sampling method to assess population densities before damage occurs, and preventive strategies are used. Depending on the surrounding habitat and abundance of stink bugs within an area, one to three applications of an insecticide are necessary to prevent damage.

Thrips: Thrips can cause direct damage to tomato fruit by their feeding or oviposition scars on small fruits, and are also indirect pests of tomato due to their ability to transmit tomato spotted wilt virus (TSWV). The tobacco thrips and western flower thrips are vectors of tomato spotted wilt virus. The majority of virus infections are the result of primary spread (thrips transmitting the virus from surrounding weeds directly to tomatoes), and insecticides do not kill thrips quickly enough to prevent inoculation. However, an aggressive early insecticide control program early in the season (3 to 4 weeks after transplanting) and the use of reflective mulches have helped to reduce the incidence of TSWV in tomatoes. Thrips can also cause direct damage to tomato fruit. This is the result of thrips feeding and/or laying eggs in small fruits before stamens are shed from flowers. This damage appears as small dimples in fruit. Sample thrips in tomato flowers by placing a white index card below flowers and tapping the flowers with a finger. An average of 1 thrips per flower has worked well as a treatment threshold level.

Whiteflies: The greenhouse whitefly and silverleaf whitefly can both infest tomatoes in the southeast. Generally, the silverleaf whitefly is more common in the southern region and the greenhouse whitefly is more common in the northern region of the southeast. Once whitefly populations of either species become established on a crop, they are very difficult to control. Therefore, preventive control is usually necessary for effective, season-long management. Preventive control can be achieved with soil-applied systemic insecticides or the application of other insecticides when populations are low.

Mites: Mites have become an increasingly important problem on tomatoes and other vegetables grown in the southeast. Twospotted spider mite is the most common mite pest, but the broad mite and carmine spider mite can also infest tomatoes. Mites overwinter on weeds and move into tomatoes in the spring as weeds die. Mites can also move from other crops (including other tomato fields) into tomatoes throughout the season. Localized infestations can be spot treated, but thorough coverage of foliage is important. Mites can be sampled by using a sample of 10 leaflets (terminal leaflet on a leaf from the upper one-third of the plant), from a minimum of 5 sample sites per field. When mites reach an average of 2 mites/leaflet, a miticide should be applied. Note that certain pesticides, such as pyrethroids and some neonicotinoids, aggravate mite populations and can lead to high mite densities.

DISEASE MANAGEMENT

Damping-Off: **Plantbed:** Use seed treatment and plant in a disease-free mix.

VIRUSES

Aphid-transmitted Viruses (TMV, PVX, CMV, TEV, PVY): Use tolerant or resistant varieties to control these viruses when available and provided that the fruit quality is consistent with market demands. Use these varieties in areas where these viruses have been prevalent or when high aphid pressure is expected. Generally, these viruses cannot be adequately controlled with insecticide applications, but symptom expression can be delayed through their use combined with the use of reflective mulches. Because aphids transmit these virus, growers may wish to use yellow trap pans containing water to determine when mass flights of winged aphids occur.

Thrips-transmitted Viruses (Tomato Spotted Wilt Virus, TSWV): Use tolerant or resistant varieties. TSWV can be severe on tomatoes during both greenhouse production of transplants and during field production of the crop. The virus is spread to tomatoes by thrips. During transplant production, thrips transmit the virus from infected ornamental plants (flowers). Be sure not to grow any ornamental bedding plants in the same greenhouse as tomato transplants. Monitor greenhouses and scout fields for thrips. Begin an insecticide program BEFORE a problem is observed.

Nematode Management. Use nematicides listed in the “Nematode Control in Vegetables” tables in the Disease Control section.

HARVESTING AND STORAGE

See Table 14 for postharvest information.
WATERMELON (Citrullus lanatus)

### VARIETIES\(^1\)	AL	AR	GA	KY	LA	MS	NC	OK	SC	TN	VA
WATERMELONS

Diploid, Open-pollinated
- AU Producer \(^A,^R\) | A | G | L | | | | | | | |
- Crimson Sweet \(^MS\) | A | R | G | L | M | N | O | S | T | |
- Jubilee II \(^R\) | A | R | G | L | M | N | O | S | T | |

Diploid, Hybrid
- Estrella \(^A,^R\) | A | G | N | S | T | | | | | |
- Jamboree \(^A,^R\) | G | L | N | O | S | T | | | | |
- Lemon Krush \(^A,^2,^R,^P^M\) | A | G | M | | | | | | | |
- Nunhems 800 \(^A,^R\) | A | N | S | T | | | | | | |
- Nunhems 860 \(^A,^R\) | A | N | S | | | | | | | |
- Sangria \(^A,^R\) | A | R | G | K | L | N | O | S | T | |
- Sentinel \(^R\) | N | | | | | | | | | |
- Starbrite \(^A,^S\) | A | R | G | K | L | M | N | O | S | T |
- Summer Gold \(^2,^4\) | A | L | N | | | | | | | |
- Top Gun \(^A,^R\) | A | G | N | S | | | | | | |

Icebox
- Mickey Lee \(^R\) | A | G | L | M | N | S | T | | | |
- Sugar Baby \(^S\) | R | K | L | | | | | | | |

Triploid/Seedless
- Affirmed | A | K | N | S | | | | | | |
- Bottle Rocket (7112) \(^R\) | A | G | N | O | S | | | | | |
- Buttercup \(^A,^S\) | A | N | S | T | V | | | | | |
- Captivation | A | G | N | S | T | | | | | |
- Crunchy Red \(^A,^S\) | A | R | G | K | N | S | T | | | |
- Exclamation \(^A,^R\) | A | G | K | N | S | T | | | | |
- Fascination \(^A,^R\) | A | G | K | N | O | S | T | | | |
- Liberty \(^S\) | A | L | N | S | T | | | | | |
- Joy Ride \(^R\) | A | R | G | N | S | | | | | |
- Melody \(^A\) | A | G | K | M | N | S | | | | |
- Orange Crisp \(^S\) | A | G | N | T | | | | | | |
- Road Trip \(^A,^R\) | A | G | N | S | | V | | | | |
- Superseedless 7167 \(^A\) | A | G | K | N | S | | | | | |
- Superseedless 6177 \(^R\) | A | G | N | S | | | | | | |
- Superseedless 7197HQ \(^A\) | A | G | K | N | S | | | | | |
- Sweet Dawn | A | G | N | S | | | | | | |
- Sweet Gem | A | G | K | | | | | | | |
- Traveler \(^A\) | A | R | G | N | T | | | | | |
- Treasure Chest \(^2,^4\) | A | K | L | | | | | | | |
- Tri-X 313 \(^A,^S\) | A | K | L | M | N | O | S | T | | |
- Troubadour \(^A\) | A | R | G | N | S | T | | | | |
- Warrior \(^R\) | G | | | | | | | | | |
- Valor \(^A,^R\) | N | | | | | | | | | |
- Wolverine | G | | | | | | | | | |

\(^1\)Abbreviations for state where recommended.
\(^2\)Yellow flesh fruit.
\(^3\)Orange flesh fruit.
\(^4\)Local markets only.
\(^A\)Anthracnose tolerance/resistance.
\(^MS\)Moderately susceptible to Fusarium wilt race 1.
\(^IR\)Intermediate resistance to Fusarium wilt race 1.
\(^S\)Susceptible to Fusarium wilt race 1.
\(^R\)Resistant to Fusarium wilt race 1.
\(^P^M\)Powdery mildew tolerance/resistance.
Seed Treatment. Check with seed supplier to determine if seed has been treated with an insecticide or fungicide. Be sure that seeds have been assayed for bacterial fruit blotch. Further information on seed treatments can be found under SEED TREATMENTS in the disease management section of the handbook.

Direct Seeding & Transplant Production.

Direct seeding for Diploids Only: Seed when the soil temperature at the 4-inch depth is 60-65 °F. The recommended spacing for watermelons, both direct seeded and transplant, is 6 - 12 feet between rows providing 24 - 30 square feet per plant. Typically, a wider row spacing will produce a larger-sized watermelon.

Transplant Production for Triploids: For seedless watermelons, transplants should be grown in containers that provide a space of at least 1.5 inches by 1.5 inches for each plant. Smaller pots or cells will restrict root growth and provide less protection to the newly set transplants. If the seed is of good quality with high germination, one seed per pot is sufficient. The seed coat of seedless watermelons tends to adhere to the seedling as it emerges, at times slowing growth, or reducing stand.

For maximum germination, seedless watermelon seed should be planted with the point of the seed facing up (root end). However, this is not possible for any large-scale operation. Growing media should be pre-watered and allowed to drain before seeding and no additional moisture applied for at least 48 hours. Place trays in a germination chamber at 85-90°F for 48 hours. Next, place the trays in a greenhouse with day temperatures 70-80 °F and night temperatures 65-70°F.

The required amount of seed for direct seeding and transplant production, the number of required seed can be estimated using Table 6.

Planting, Transplants: Ideally, transplant container-grown plants into plastic mulch after the last killing frost. This is difficult to predict and planting dates vary, so consult the following table for your area. Plantings should be protected from winds with row covers, rye strips, or windbreaks.

Grafting and Diseases. In recent years, grafted watermelon plants have emerged as a strategy to combat soilborne diseases. Grafting is used against Fusarium wilt. Grafted plants are more expensive per transplant. For more information, see the section Grafting in Vegetable Crops in this handbook.

VARIETIES

<table>
<thead>
<tr>
<th>Varieties</th>
<th>AL</th>
<th>AR</th>
<th>GA</th>
<th>KY</th>
<th>LA</th>
<th>MS</th>
<th>NC</th>
<th>OK</th>
<th>SC</th>
<th>TN</th>
<th>VA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triploid Mini/Seedless Mini</td>
<td></td>
</tr>
<tr>
<td>Extazy ^5</td>
<td>A</td>
<td>G</td>
<td></td>
<td></td>
<td>N</td>
<td>S</td>
<td>T</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leopard ^5</td>
<td>K</td>
<td>N</td>
<td></td>
<td></td>
<td>S</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mielheart ^6</td>
<td>A</td>
<td>G</td>
<td></td>
<td></td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>^2</td>
</tr>
<tr>
<td>Ocelot ^3</td>
<td></td>
</tr>
<tr>
<td>Paragon ^5</td>
<td>A</td>
<td>G</td>
<td></td>
<td></td>
<td>N</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sirus ^1^7</td>
<td></td>
</tr>
</tbody>
</table>

1 Abbreviations for state where recommended.

2 Yellow flesh fruit.

3 Orange flesh fruit.

4 Local markets only.

^4 Anthracnose tolerance/resistance.

^5 Moderately susceptible to Fusarium wilt race 1.

^6 Intermediate resistance to Fusarium wilt race 1.

^8 Susceptible to Fusarium wilt race 1.

^8 Resistant to Fusarium wilt race 1.

^7 Powdery mildew tolerance/resistance.

POLLINATION AND PLANTING ARRANGEMENT WITH TRIPLOIDS

Fruit set and enlargement in watermelon is dependent upon growth regulators from pollen grains and from embryos in the developing seeds within the fruit. Inadequate pollination results in triploid watermelon fruit that are triangular in shape and of inferior quality. Additionally, inadequate pollination increases the incidence of hollow heart. Triploid watermelon flowers do not produce viable pollen, which is required to induce fruit set and development. Therefore, pollen from a “normal” (i.e., diploid/seeded) or a special pollenizer watermelon variety must be present.

Several seed companies have developed new varieties for use solely as a pollenizer, non-edible special pollenizers. These pollenizer can be interplanted into a field totally devoted towards the production of triploid watermelons. Unique, compact growth habits prevent these pollenizer from competing for space with triploid plants.

Fields should be interplanted with pollenizer plants or diploid watermelon plants in order to provide sufficient, viable pollen for fruit set and development.

The arrangement for incorporating pollenizer plants in a field of seedless watermelons has changed over the years. Currently most growers plant the pollenizer plant between every third and fourth plant within each row without changing the plant spacing of the seedless/triploid watermelon. Due to the less competitive nature of the special pollenizer plants mentioned above, they often work best with this seedless/pollenizer arrangement. However, growers can use a normal diploid/seeded watermelon as a pollenizer. The diploid/seeded watermelon must be marketable and have a fruit rind pattern and/or shape easily distinguished from the seedless fruit. Not all diploid/seeded watermelons are suitable for use as pollenizer due to excessive plant vigor, reduced pollen production, and lack of disease resistance. (See recommendations below for Edible Diploids). It is also advisable that the grower reach an agreement with his harvesting crew as to how both type watermelons will be handled at harvest.

Many growers prefer special pollenizer because they do not have markets for seeded watermelons. In addition, using a special pollenizer makes harvesting easier for crews who can more easily distinguish between fruit produced from the seeded, spe-
special pollenizer and fruit from the seedless watermelon varieties. Most fruit of the special pollenizer is much smaller (< 10 lbs) than fruit produced by seedless. If mini-seedless watermelons are planted, the rind pattern of both mini-seedless fruit and special pollenizer fruit will need to be easy to distinguish. Pollenizers found to work well in the southeast include:

<table>
<thead>
<tr>
<th>Pollenizers for Triploid Watermelon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edible Diplolds</td>
</tr>
<tr>
<td>Mickey Lee MS</td>
</tr>
<tr>
<td>Nutnheims 800</td>
</tr>
<tr>
<td>Stargazer</td>
</tr>
<tr>
<td>Estrella</td>
</tr>
<tr>
<td>Crimson Sweet</td>
</tr>
<tr>
<td>Regency</td>
</tr>
<tr>
<td>Sangria A,IR</td>
</tr>
<tr>
<td>Special Pollenizer (Non-edible)</td>
</tr>
<tr>
<td>Accomplie</td>
</tr>
<tr>
<td>Ace S</td>
</tr>
<tr>
<td>Jenny</td>
</tr>
<tr>
<td>Minipol</td>
</tr>
<tr>
<td>SideKick</td>
</tr>
<tr>
<td>SP-8 A,IR</td>
</tr>
<tr>
<td>SP-7 A,IR, PM</td>
</tr>
<tr>
<td>Wild Card S</td>
</tr>
</tbody>
</table>

* Anthracnose tolerance/resistance.

MS Moderately susceptible to Fusarium wilt race 1.

IR Intermediate resistance to Fusarium wilt race 1.

S Susceptible to Fusarium wilt race 1.

PM Powdery mildew tolerance/resistance.

These varieties have performed well commercially or in University trials and are recommended for production in certain states. The varieties Extazy, Leopard, Mielheart, and Sweet Bite are readily available to watermelon producers and are recommended for production in certain states. These varieties have performed well commercially or in University trials.

Be sure to follow the seed suppliers’ instructions when using a special pollenizer. New, improved specialized pollenizer varieties are continually being developed with better germination, flowering habit, and/or disease resistances/tolerances. Do not plant your pollenizer variety and seedless (triploid) varieties in separate or adjacent blocks. Plant your pollenizer variety within 10 to 15 feet of triploid varieties to assure good pollination. Specialized pollenizer varieties should be placed within 10 feet of triploids as these varieties tend to have less aggressive vining than normal seeded pollenizers.

It is important that pollen from the diploid pollenizer variety be available when the female blossoms on the triploid plants are open and ready for pollination. As a rule, the pollenizer variety should be seeded on the same day that the triploid seed is seeded in the greenhouse. Some of the special pollenizer are slow to germinate; consequently, they might need to be planted earlier than the seedless. Check with your seed supplier for the grow out vigor of your special pollenizer.

Honeybees are important for high fruit yields and quality. Populations of pollinating insects may be adversely affected by insecticides applied to flowers or weeds in bloom. Apply insecticides only when bees are not foraging in the evening hours or wait until bloom is completed before application. See section on “Pollination” in the General Production Recommendations for further information.

WATERMELON PLANTING DATES

<table>
<thead>
<tr>
<th></th>
<th>AL North</th>
<th>GA</th>
<th>KY</th>
<th>LA</th>
<th>MS</th>
<th>NC</th>
<th>SC</th>
<th>TN</th>
<th>VA</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/15-6/15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Drip Fertilization and Mulching. Before mulching, adjust soil pH to 6.5, and in the absence of a soil test, apply enough fertilizer to supply 50 pounds per acre of N, P₂O₅, and K₂O (some soils will require 100 pounds per acre of K₂O) then thoroughly incorporate into the soil.

After mulching and installing the drip irrigation system, the soluble fertilizer program should then be initiated according to that described in the following table.

On soils testing low to low-medium boron, also include 0.5 pound per acre of actual boron. The first soluble fertilizer application should be applied through the drip irrigation system within a week after field transplanting or direct-seeding the watermelons. Continue fertigating until the last harvest.

SUGGESTED FERTIGATION SCHEDULE FOR WATERMELONS

<table>
<thead>
<tr>
<th>Growth Stage</th>
<th>Days after planting</th>
<th>Nitrogen (lb/A)</th>
<th>Potash (lb/A)</th>
<th>Cumulative Nitrogen (lb/A)</th>
<th>Cumulative Potash (lb/A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preplant</td>
<td></td>
<td></td>
<td></td>
<td>35.0</td>
<td>35.0</td>
</tr>
<tr>
<td>Planting to Vining</td>
<td>0 - 14</td>
<td>0.5</td>
<td>0.5</td>
<td>42.0</td>
<td>42.0</td>
</tr>
<tr>
<td>Vining to Flowering</td>
<td>15 - 28</td>
<td>1.0</td>
<td>1.0</td>
<td>56.0</td>
<td>56.0</td>
</tr>
<tr>
<td>Flowering to Fruit Set</td>
<td>29 - 49</td>
<td>1.5</td>
<td>1.5</td>
<td>86.0</td>
<td>86.0</td>
</tr>
<tr>
<td>Fruit Set to Initial Ripening</td>
<td>50 - 77</td>
<td>2.0</td>
<td>2.0</td>
<td>140.0</td>
<td>140.0</td>
</tr>
<tr>
<td>Harvest</td>
<td>78 - 91</td>
<td>1.0</td>
<td>1.0</td>
<td>153.0</td>
<td>153.0</td>
</tr>
</tbody>
</table>

* Adjust based on tissue analysis.

MINI SEEDLESS WATERMELON

The mini seedless watermelon was introduced in 2003 and the demand for this product is year around. These fruit generally range from 3 to 7 pounds and offer an attractive alternative for the consumer that has limited refrigerator space or a small family. Mini seedless watermelon fruit must be handled carefully to minimize bruising. Some varieties of mini seedless watermelons are grown under specific labels such as “PureHeart” but are only available under a contract basis. The varieties Extazy, Leopard, Mielheart, and Sweet Bite are readily available to watermelon producers and are recommended for production in certain states. These varieties have performed well commercially or in University trials.

2022 Vegetable Crop Handbook for Southeastern United States

131
Plant spacing requirements for mini seedless watermelon are considerably less than spacing requirements for normal seedless watermelon production. Some mini seedless varieties will need to be planted close in order to maintain an average size of 7 pounds or less. As little as 10 square feet per plant might be necessary. For example, if rows are spaced on 6 ft. centers, mini watermelon plants should be spaced 1 ½ to 2 ft. apart within the row.

SPECIAL NOTES FOR PEST MANAGEMENT

DISEASE MANAGEMENT

Cucurbit Downy Mildew Forecasting System: Cucurbit downy mildew (CDM) is a devastating foliar cucurbit disease. While difficult, if not impossible to control, CDM incidence can be reduced by using effective IPM practices and judicious use of appropriate crop protectants. A useful tool for evaluating the potential incidence of CDM is the CDM forecasting system. This program depends on the accurate reporting of CDM in the field as well as the monitoring of over 50 strategically placed sentinel plots. These plots are monitored by Plant Pathologists at multiple Land Grant Universities throughout the United States and Canada. Forecasts of the epidemic movement of the disease are generated 3 times a week. Risk maps are produced from these forecasts. For forecasts, maps, local contacts, and other helpful information please visit our website http://cdm.ipmpipe.org. If you think you have CDM, please contact your local Extension office.

Fusarium Wilt: Fusarium wilt of watermelon is widespread throughout the southeastern US. Most varieties of watermelon, other than many heirloom varieties, are resistant to race 0. Many seeded (hybrid diploid) and seedless (triploid) varieties are resistant to race 1. However, there are no watermelon varieties resistant to race 2. Currently grafting is the only cultural practice available to manage soils infected with race 2.

All commercial watermelon varieties are susceptible to race 2, which is present in parts of Florida, Georgia, and South Carolina. The superscripts “S” for susceptible, “MS” for moderately susceptible, “IR” for intermediate resistance, and “R” for resistant are listed next to each recommended variety. These superscripts indicate the reaction of commonly grown diploid and triploid varieties to race 1 of Fusarium wilt. Growers should choose resistant varieties whenever possible, including the pollenizers that they select for seedless watermelon production.

INSECT MANAGEMENT

Cucumber Beetle: Watermelons are resistant to bacterial wilt; however, control may be needed to prevent feeding damage to seedlings. Treat when an average of two beetles per plant is found.

Aphids: Aphid feeding can stunt young transplants and delay fruit maturation. Thorough spray coverage beneath leaves is important. Treat seedlings every 5 to 7 days or as needed.

Mites: Mite infestations generally begin around field margins and grassy areas. CAUTION: DO NOT mow or maintain these areas after midsummer because this forces mites into the crop. Localized infestations can be spot-treated. Note: Continuous use of pyrethroids may result in mite outbreaks.

HARVESTING AND STORAGE

See Table 14 for postharvest information.
Vegetable Growers News delivers information growers need to ensure a successful growing operation. Stay connected when and where you need it.

- **Vegetable Growers News** is the leading brand for the vegetable industry providing in-depth features and knowledge necessary to stay competitive in the marketplace.

- Subscribe to our e-newsletters to stay connected weekly to what’s happening in the industry.

- Attend webinars or watch on-demand videos to learn from leading experts and thought-leaders.

- Social media provides you with latest breaking news and updates.

- Our 40 Under 40 Awards is an industry-wide honor that annually recognizes 40 emerging leaders under the age of 40. The awards are held annually during the Great Lakes Fruit, Vegetable and Farm Market EXPO.

Visit vegetablegrowersnews.com daily — and subscribe today!
Calibrating Chemical Application Equipment

PURPOSE
To determine if the proper amount of chemical is being applied, the operator must measure the output of the application equipment. This technique is known as calibration. Calibration not only ensures accuracy, a critical factor with regard to many chemicals, but it can also save time and money and benefit the environment.

GETTING STARTED
Careful and accurate control of ground speed is important for any type of chemical application procedure. From large self-propelled sprayers and spreaders to small walk-behind or backpack units, precise ground speed is a key for success. Ground speed can be determined by one of two methods. The first method requires a test course and stopwatch. For this procedure, measure a suitable test course in the field and record the time it takes to cover the course with the equipment. The course should be between 100 and 300 feet long. Drive or walk the course at least twice, once in each direction and average the times for greater accuracy. Calculate the speed with Equation 1 below.

\[
\text{Equation 1. Ground Speed (MPH) = } \frac{\text{Distance} \times 60}{\text{Seconds} \times 88}
\]

The second method is to use a true ground speed indicator such as a tractor-mounted radar or similar system. Do not rely on transmission speed charts and engine tachometers. They are not accurate enough for calibration.

CALIBRATING A SPRAYER: PREPARING TO CALIBRATE
For calibration to be successful, several items need to be taken care of before going to the field. Calibration will not be worthwhile if the equipment is not properly prepared. Whenever possible, calibration should be performed using water only. If you must calibrate using spray mixture, calibrate the equipment on a site listed on the chemical label and with wind speeds less than 5 MPH. Follow the steps outlined below to prepare spraying equipment for calibration.

1. Inspect the sprayer. Be sure all components are in good working order and undamaged. On backpack sprayers, pay particular attention to the pump, control wand, strainers, and hoses. On boom sprayers, pay attention to the pump, control valves, strainers, and hoses. On airblast sprayers, be sure to inspect the fan and air tubes or deflectors as well. Be sure there are no obstructions or leaks in the sprayer.

2. Check the label of the product or products to be applied and record the following:
 - **Application Rate**, Gallons per Acre (GPA)
 - **Nozzle Type**, droplet size and shape of pattern
 - **Nozzle Pressure**, Pounds per Square Inch (PSI)
 - **Type of Application**, broadcast, band, or directed

3. Next, determine some information about the sprayer and how it is to be operated. This includes:
 - **Type of Sprayer**: backpack, boom, or airblast. The type of sprayer may suggest the type of calibration procedure to use.
 - **Nozzle Spacing (inches)**: for broadcast applications, nozzle spacing is the distance between nozzles.
 - **Nozzle Spray Width (inches)**: For broadcast applications, nozzle spray width is the same as nozzle spacing—the distance between nozzles. For band applications, use the width of the sprayed band if the treated area in the band is specified on the chemical label; use nozzle spacing if the total area is specified. For directed spray applications, use the row spacing divided by the number of nozzles per row. Some directed spray applications use more than one type or size of nozzle per row. In this case, the nozzles on each row are added together and treated as one. Spray width would be the row spacing.

 In most cases, a backpack sprayer uses a single nozzle. Some sprayers use mini-booms or multiple nozzles. The spray width is the effective width of the area sprayed, being sure to account for overlap. If you are using a sweeping motion from side to side, be sure to use the full width sprayed as you walk forward. If you are spraying on foliage in a row, use the row spacing. Dyes are available to blend with the spray to show what has been covered.

 - **Spray Swath (feet)**: The width covered by all the nozzles on the boom of a sprayer. For airblast or other boomless sprayers, it is the effective width covered in one pass through the field.

 - **Ground Speed, miles per hour (MPH)**. When using a backpack sprayer, walk a comfortable pace that is easy to maintain. Slow walking speeds will take longer to complete the task while high speeds may be tiresome. Choose a safe, comfortable speed that will enable you to finish the job in a timely manner. On tractor-mounted sprayers, select a ground speed appropriate for the crop and type of sprayer used. Slow speeds will take longer to complete the task, while high speeds may be difficult to control and unsafe. Choose a safe, controllable speed that will enable you to finish the job in a timely manner. Ground speed can be determined from Equation 1.
4. The discharge rate, gallons per minute (GPM), required for the nozzles must be calculated in order to choose the right nozzle size. Discharge rate depends on the application rate; ground speed; and nozzle spacing, spray width, or spray swath.

For applications using nozzle spacing or nozzle spray width (inches), use Equation 2:

\[
\text{Equation 2. Discharge Rate} = \frac{\text{Application Rate} \times \text{Ground Speed} \times \text{Nozzle Spray Width}}{5,940}
\]

For applications using the spray swath (feet):

\[
\text{Equation 3. Discharge Rate} = \frac{\text{Application Rate} \times \text{Ground Speed} \times \text{Spray Swath}}{495}
\]

5. Choose an appropriate nozzle or nozzles from the manufacturer’s charts and install them on the sprayer. Check each nozzle to be sure it is clean and that the proper strainer is installed with it.

6. Fill the tank half full of water and adjust the nozzle pressure to the recommended setting. Measure the discharge rate for the nozzle. This can be done by using a flow meter or by using a collection cup and stopwatch. The flow meter should read in gallons per minute (GPM). If you are using the collection cup and stopwatch method, the following equation is helpful to convert ounces collected and collection time, in seconds, into gallons per minute.

\[
\text{Equation 4. Discharge Rate} = \frac{\text{Ounces Collected} \times 60}{\text{Collection Time} \times 128}
\]

7. Whenever possible, calibrate with water instead of spray solution. Do not calibrate with spray solution unless required by the chemical label. Follow all recommendations on the label. If the spray solution has a density different than water, the rate can be corrected using the procedure shown in Calibration Variables.

8. On boom sprayers or sprayers with multiple nozzles, average the discharge rates of all the nozzles on the sprayer. Reject any nozzle that has a bad pattern or that has a discharge rate 10 percent more or less than the overall average. Install a new nozzle to replace the rejected one and measure its output. Calculate a new average and recheck the nozzles compared to the new average. Again, reject any nozzle that is 10 percent more or less than the average or has a bad pattern. When finished, select a nozzle that is closest to the average to use later as your “quick check” nozzle.

On backpack sprayers or sprayers with a single nozzle, compare the discharge rate of the nozzle on the sprayer to the manufacturer’s tables for that nozzle size. Reject any nozzle that has a bad pattern or that has a discharge rate 10 percent more or less than the advertised rate. Install a new nozzle to replace the rejected one and measure its output.

Once the sprayer has been properly prepared for calibration, select a calibration method. When calibrating a sprayer, changes are often necessary to achieve the application rates needed. The sprayer operator needs to understand the changes that can be made to the adjust rate and the limits of each adjustment. The adjustments and the recommended approach are:

- **Pressure**: if the error in application rate is less than 10 percent, adjust the pressure.
- **Ground speed**: if the error is greater than 10 percent but less than 25 percent, change the ground speed of the sprayer.
- **Nozzle size**: if the error is greater than 25 percent, change nozzle size. The goal is to have application rate errors less than 5 percent.

Calibration Methods

There are four methods commonly used to calibrate a sprayer:

The basic, nozzle, and 128th acre methods are “time-based methods” which require using a stopwatch or watch with a second hand to ensure accuracy. The area method is based on spraying a test course measured in the field. Each method offers certain advantages. Some are easier to use with certain types of sprayers. For example, the basic and area methods can be used with any type of sprayer. The 128th acre and nozzle methods work well for boom and backpack sprayers. Choose a method you are comfortable with and use it whenever calibration is required.

BASIC METHOD

1. Accurate ground speed is very important to good calibration with the basic method. For tractor-mounted sprayers, set the tractor for the desired ground speed and run the course at least twice. For backpack sprayers, walk the course and measure the time required. Walk across the course at least twice. Average the times required for the course distance and determine ground speed from Equation 1.

2. Calculate the application rate based on the average discharge rate measured for the nozzles, the ground speed over the test course, and the nozzle spacing, nozzle spray width, or spray swath on the sprayer.

When using nozzle spacing or nozzle spray width measured in inches, use the following equation:

\[
\text{Equation 5. Application Rate} = \frac{\text{5,940} \times \text{Discharge Rate}}{\text{Ground Speed} \times \text{Nozzle Spray Width}}
\]

For spray swath applications measured in feet:

\[
\text{Equation 6. Application Rate} = \frac{\text{495} \times \text{Discharge Rate}}{\text{Ground Speed} \times \text{Spray Swath}}
\]

3. Compare the application rate calculated to the rate required. If the rates are not the same, choose the appropriate adjustment and reset the sprayer.

4. Recheck the system if necessary. Once you have the accuracy you want, calibration is complete.
NOZZLE METHOD

1. Accurate ground speed is very important to good calibration with the nozzle method. For tractor-mounted sprayers, set the tractor for the desired ground speed and run the course at least twice. For backpack sprayers, walk the course and measure the time required. Walk across the course at least twice. Average the times required for the course distance and determine ground speed from Equation 1.

2. Calculate the nozzle discharge rate based on the application rate required the ground speed over the test course, and the nozzle spacing, spray width, or spray swath of the sprayer. For nozzle spacing or spray width measured in inches.

\[\text{Equation 7. Discharge Rate} = \frac{\text{Application Rate} \times \text{Speed} \times \text{Spray Width}}{5,940} \]

For spray swath measured in feet:

\[\text{Equation 8. Discharge Rate} = \frac{\text{Application Rate} \times \text{Speed} \times \text{Spray Swath}}{495} \]

Set the sprayer and determine the average nozzle rate.

3. Compare the rate calculated to the average rate from the nozzles. If the two don’t match, choose the appropriate adjustment and reset the system.

4. Recheck the system if necessary. Once you have the accuracy you want, calibration is complete.

128TH ACRE METHOD

1. The distance for one nozzle to cover 128th of an acre must be calculated. The nozzle spacing or spray width in inches is used to determine the spray distance. Spray distance is measured in feet. On backpack sprayers, be sure to measure the full width sprayed as you walk forward. Use Equation 9.

\[\text{Equation 9. Spray Distance} = \frac{4,084}{\text{Spray Width}} \]

2. Measure the spray distance on a test course in the field. Check the ground speed as you travel across the course. Be sure to maintain an accurate and consistent speed. Travel the course at least twice and average the time to cover the course.

3. For backpack sprayers, collect the output from the nozzle for the time measured in step 2. For tractor-mounted sprayers, park the sprayer, select the nozzle closest to the average, and collect the output for the time determined in step 4. Ounces collected will equal application rate in GPA.

4. Compare the application rate measured for the nozzle to the rate determined in step 3. If the rates are not the same, choose the appropriate adjustment and reset the system.

5. Recheck the system if necessary. Once you have the accuracy you want, calibration is complete.

AREA METHOD

1. Determine the distance that can be sprayed by one tank using the full spray swath measured in feet.

\[\text{Equation 10. Tank Spray Distance (ft)} = \frac{\text{Tank Volume (gal)} \times 43,560}{\text{Application Rate (GPA)} \times \text{Swath (ft)}} \]

2. Lay out a test course that is at least 10 percent of the tank spray distance from Step 1. Fill the sprayer tank with water only, mark the level in the tank, set the sprayer as recommended, and spray the water out on the course. Be sure to maintain an accurate and consistent speed.

3. After spraying the test course, carefully measure the volume of water required to refill the tank to the original level. Calculate the application rate as shown:

\[\text{Equation 11. Application Rate (GPA)} = \frac{\text{Volume Sprayed (gal)} \times 43,560}{\text{Test Course Distance (ft)} \times \text{Swath (ft)}} \]

4. Compare the application rate measured to the rate required. If the rates are not the same, choose the appropriate adjustment method and reset the sprayer.

5. Recheck the system. Once you have the accuracy you want, calibration is complete.

CALIBRATING A GRANULAR APPLICATOR:

PREPARING TO CALIBRATE

Granular application calibration is usually done with the chemical to be applied. It is difficult to find a blank material that matches the granular product. Extra care should be taken in handling this product. Minimize worker exposure and take precautions against spills during calibration.

To prepare for calibration, follow these steps:

1. Before calibrating, carefully inspected the equipment to ensure that all components are in proper working order. Check the hopper, the metering rotor, the orifice, and the drop tubes. Be sure there are no leaks or obstructions.

2. Determine the type of application required for the product:
 - Broadcast: treats the entire area (includes band applications based on broadcast rates).
 - Band: treats only the area under the band.
 - Row: treats along the length of the row.

3. Determine the application rate needed:
 - Broadcast: pounds per acre.
 - Band: pounds per acre of treated band width.
4. What type of drive system does the applicator use?
 • Independent: uses PTO, hydraulic, or electric motor drive.
 • Ground Drive: uses ground driven wheel.

5. Regardless of how the application rate is expressed or type of application, calibration is easier if the rate is expressed in terms of pounds per foot of row length. Use one of the following steps to determine the correct row rate in pounds per foot.

 For broadcast and row applications
 \[\text{Application Rate} = \frac{\text{Row Rate (lb/ft)}}{\text{Row Width (ft)}} \]
 43,560

 For banded applications
 \[\text{Application Rate} = \frac{\text{Row Rate (lb/ft)}}{\text{Band Width (ft)}} \]
 43,560

 For directed (row) applications
 \[\text{Application Rate} = \frac{\text{Row Rate (lb per 1,000 ft)}}{1,000} \]

 6. Choose a calibration distance to work with and measure a test course of this distance in the field you will be working in. Choose an area that is representative of field conditions. The calibration distance should be at least 50 feet but not more than 500 feet. Longer distances are generally more accurate.

 7. Calculate the weight of material that should be collected for the calibration distance chosen.

 Equation 15. Weight Collected (lb) =
 \[\text{Row Rate (lb/ft)} \times \text{Calibration Distance (ft)} \]

 8. Select a ground speed appropriate for the crop and type of equipment used. Slow speeds take longer to finish the task, while high speeds may be inefficient and unsafe. Consult your equipment manual for a recommended speed. Even ground-driven application equipment can be sensitive to changes in speed. Maintaining an accurate and consistent speed is very important. Choose a safe, controllable speed that will enable you to complete the job in a timely and efficient manner.

 9. Set your equipment according to recommendations from the equipment or chemical manufacturer. Most equipment manufacturers and chemical manufacturers provide rate charts to determine the correct orifice setting or rotor speed for each applicator. Fill the hopper at least half full to represent average capacity for calibration.

 10. Attach a suitable collection container to each outlet on the applicator. You should be able to collect all material discharged from the applicator. Locate a scale capable of weighing the samples collected in calibration. Some samples may be very small, so a low-capacity scale may be needed. An accurate scale is very important.

 Calibration Methods
 Two methods for calibrating granular applicators are commonly used. The first is the **distance method**. This method is preferred by many operators because it applies to any type of granular machine and is easy to perform. The second method is the **time method**. This method is similar to sprayer calibration and can be used for applicators driven by PTO, hydraulic, or electric motors.

 DISTANCE METHOD
 1. On the test course selected in the field, collect the output from the applicator in a container as you travel the course and weigh the material collected. Record the time required to travel the course also. Run the course twice, once in each direction, and average the results for both weight and time.

 2. Determine the weight of the product that should be collected for the calibration distance.

 Equation 16. Weight Collected (lb) =
 \[\text{Row Rate (lb/ft)} \times \text{Calibration Distance (ft)} \]

 3. Compare the weight of the product actually collected to the weight expected for the calibration distance. If the rates differ by more than 10 percent, adjust the orifice, rotor speed, or ground speed and repeat. Bear in mind, speed adjustments are not effective for ground-driven equipment.

 4. Repeat the procedure until the error is less than 10 percent.

 TIME METHOD
 1. On the test course selected in the field, record the time required to travel the course. Run the course twice, once in each direction, and average the results. Accurate ground speed is very important to good calibration with the time method.

 2. With the equipment parked, set the orifice control as recommended and run the applicator for the time measured to run the calibration distance. Collect and weigh the output of the applicator for this time measurement.

 3. Determine the weight of the product that should be collected for the calibration distance.

 Equation 17. Weight Collected (lb) =
 \[\text{Row Rate (lb/ft)} \times \text{Calibration Distance (ft)} \]
4. Compare the weight of the product actually collected during the time it took to cover the calibration distance to the weight expected for the calibration distance. If the rates differ by more than 10 percent, adjust the orifice, rotor speed, or ground speed and repeat. Bear in mind, speed adjustments are not effective for ground-driven equipment.

5. Repeat the procedure until the error is less than 10 percent.

CALIBRATING A BROADCAST SPREADER: PREPARING TO CALIBRATE

Broadcast spreaders include machines designed to apply materials broadcast across the surface of the field. They include drop, spinner, and pendulum spreading devices. Calibration of a broadcast spreader is usually done using the product to be applied. Blank material is available and can be used, but may be hard to find. Use extra care and preparation when calibrating with the chemical. To begin, follow these steps:

1. Carefully inspect all machine components. Repair or replace any elements that are not in good working order.
2. Determine the type of drive system that is being used: ground drive or independent PTO. This may help determine the method of calibration.
3. Determine the application rate and the bulk density of the product to be applied.
4. Determine the spreader pattern and swath of the spreader. Check the pattern to ensure uniformity. To check the pattern, place collection pans across the path of the spreader. For drop spreaders, be sure to place a pan under each outlet. For centrifugal and pendulum spreaders, space the pans uniformly with one in the center and an equal number on each side. The pattern should be the same on each side of the center and should taper smoothly as you go to the outer edge. The swath would be set as the width from side to side where a pan holds 50 percent of the maximum amount collected in the center pan.
5. Fill the hopper half full to simulate average conditions.
6. Set the ground speed of the spreader.
7. Set the spreader according to the manufacturer’s recommendations and begin calibration.

Calibration Methods

There are two common methods used to calibrate broadcast spreaders. The first method is the discharge method. To use this procedure, collect and measure the total discharge from the spreader as it runs across a test course. The second method, the pan method, is used on centrifugal and pendulum spreaders. The pattern test pans used to determine pattern shape and swath are used to determine the application rate.

DISCHARGE METHOD

1. Determine the test distance to use. Longer distances may give better accuracy but may be difficult to manage. A distance of 300 to 400 feet is usually adequate. Use shorter distances if necessary to avoid collecting more material than you can reasonably handle or weigh.
2. Set the ground speed. Be sure to maintain a constant ground speed at all times.
3. If using a ground drive spreader, attach a collection bin to the discharge chute or under the outlets and collect all the material discharged from the spreader as it runs across the test distance. If using an independent drive spreader, record the time required to run the test course. Park the spreader at a convenient location and measure the discharge from the spreader for the time measured on the test distance. The course should be run twice and the times averaged for better accuracy.
4. Calculate the application rate (pounds per acre):

 \[
 \text{Application Rate, lb/ac} = \frac{\text{Weight Collected (lb) x 43,560}}{\text{Distance (ft) x Swath (ft)}}
 \]

5. Compare the rate measured to the rate required. Adjust and repeat as necessary.

PAN METHOD

1. Place pans in the field across the swath to be spread. Pans should be uniformly spaced to cover the full swath. One pan should be at the center of the swath with equal numbers of pans on each side. Use enough pans, 11 or more, to get a good measurement.
2. Make three passes with the spreader using the driving pattern to be used in the field. One pass should be directly over the center pan and the other passes at the recommended distance, lane spacing, to the left and right of the center pass.
3. Combine the material collected in the pans and determine the weight or volume collected. Divide by the number of pans used to determine the average weight or volume per pan.
4. Calculate the application rate.

 If you are measuring the weight in the pans in grams:

 \[
 \text{Application Rate, lb/ac} = \frac{13,829 x \text{Weight (grams)}}{\text{Pan Area (inches}^2)}
 \]

 If you are measuring the volume in the pans in cubic centimeters (cc):

 \[
 \text{Application Rate, lb/ac} = \frac{13,829 x \text{Bulk Density (lb/ft}^3) x \text{Volume (cc)}}{\text{Pan Area (inches}^2) x 62.4}
 \]

5. Compare the rate measured to the rate required.
CALIBRATION VARIABLES

Several factors can affect proper calibration. The ground speed of any type of PTO-powered machine can make a difference. On the other hand, ground-driven machines are usually only slightly affected by changes in ground speed. If using dry or granular material, product density will affect the discharge rate and may change the pattern for broadcast spreaders. For liquids, calibration can be affected by pressure, nozzle size, density and viscosity of the liquid, and application type—band or broadcast. The following adjustments may help in adjusting these variables.

SPEED
For PTO-powered equipment or other equipment in which the discharge rate is independent of ground speed, Equation 10 is useful.

\[
\text{Equation 21. New Application Rate} = \frac{\text{Old Application Rate} \times (\text{Old Speed}/\text{New Speed})}{\text{New Speed}}
\]

For ground-driven equipment, there should be little or no change in application rate when speed is changed.

PRESSURE
For liquids in sprayers, the discharge rate changes in proportion to the square root of the ratio of the pressures.

\[
\text{Equation 22. New Discharge Rate} = \frac{\text{Old Discharge Rate} \times \sqrt{\text{New Pressure}/\text{Old Pressure}}}{\text{New Pressure}}
\]

DENSITY
For liquids in sprayers, the discharge rate changes if the specific gravity (S.G.) of the liquid changes. Use water for calibration and adjust as shown below. Calibrate with spray solution only if recommended by the supplier.

\[
\text{Equation 23. Water Discharge Rate} = \frac{\text{Spray Discharge Rate} \times \sqrt{\text{S.G. of Spray Solution}}}{\text{New S.G.}}
\]

BAND APPLICATION VERSUS BROADCAST APPLICATION

Some pesticide application recommendations are based on area of cropland covered. Other recommendations are based on area of land treated in the band covered. Check the label for the product you are using to see how it is listed.

Broadcast application is based on area of cropland covered. Nozzle spacing is the distance between nozzles. Band applications in which the area of covered cropland is used for calibration and those applications in which multiple nozzles per row are used are both treated like broadcast applications. Divide the row spacing by the number of nozzles used per row to get a nozzle spacing for calibration.

For band applications in which area of treated land—not cropland covered—is specified, use the width of the band at the ground as the spacing for calibration.

DETERMINING UPPER AND LOWER LIMITS

Upper and lower limits provide a range of acceptable error. To set these limits for a given sample size, use the equations below. First, however, you must decide upon the degree of accuracy you wish to achieve. Select a percent error: 2 percent, 5 percent, 10 percent, or any other level of accuracy.

\[
\text{Equation 24. Upper Limit} = \text{Target Rate} \times (1 + \text{Percent Error}/100\%)
\]

\[
\text{Equation 25. Lower Limit} = \text{Target Rate} \times (1 – \text{Percent Error}/100\%)
\]
Registered Fungicides, Insecticides, and Miticides for Vegetables

Recommendations of specific chemicals are based upon information on the manufacturer’s label and performance in a limited number of trials. Because environmental conditions and methods of application by growers may vary widely, performance of the chemical will not always conform to the safety and pest control standards indicated by experimental data.

Recommendations for the use of agricultural chemicals are included in this publication as a convenience to the reader. The use of brand names and any mention or listing of commercial products or services in this publication does not imply endorsement by Auburn University, Clemson University, Louisiana State University, Mississippi State University, North Carolina State University, Oklahoma State University, Texas A&M, University of Florida, University of Georgia, University of Kentucky, University of Tennessee, and Virginia Tech nor discrimination against similar products or services not mentioned. Individuals who use agricultural chemicals are responsible for ensuring that the intended use complies with current regulations and conforms to the product label. Be sure to obtain current information about usage regulations and examine a current product label before applying any chemical. For assistance, contact your local county Extension office.

BE SURE TO CHECK THE PRODUCT LABEL BEFORE USING ANY PESTICIDE.

RESISTANCE MANAGEMENT AND THE INSECTICIDE RESISTANCE ACTION COMMITTEE (IRAC) CODES FOR MODES OF ACTION OF INSECTICIDES

Many insecticides affect a particular chemical involved in the function of an insect’s nervous, digestive, respiratory, or other system. Some broad-spectrum insecticides affect chemicals that occur in many places within the insect and have a wide ranging effect on the insect. Usually, these are older insecticides that have been in use for many years. The chemicals that these insecticides affect are often found in other animals as well. This can result in the insecticide having undesirable effects on these other animals (non-target effects). Also, non-target effects and persistence in nature have contributed to concerns about these older insecticides.

Many new insecticides have been developed over the last decade, specifically to minimize non-target effects and reduce persistence in the environment compared to older insecticides. This limited persistence in the environment also reduces the potential for non-target effects. However, the primary means of reducing non-target effects has been to make these newer insecticides very specific for a particular chemical (usually an enzyme produced by a single gene) found only in certain insects or groups of insects; thus making the insecticide selective for a particular type of insect. Unfortunately, there is a negative aspect to this specificity. Because only one enzyme is affected, the natural process of mutation can result in genetic modifications that alter the enzyme so that it is unaffected by the insecticide.

Insects possessing the modified gene will not be affected by the particular insecticide. These insects will reproduce and, in time with continued exposure to the insecticide, will produce a population of insects that is resistant to the insecticide. Since most of the new insecticides have been developed to be very specific, resistance will develop much more quickly than with previous insecticides.

Different insecticides affect different enzymes, and insecticides are placed into classes based on which enzymes are affected. These classes are called **Modes of Action (MOA)**. Although insecticides may have different names, they can have the same mode of action and affect the same enzyme or system. It is the mode of action to which the insect will become resistant. Because of this, an insect management program **MUST** rotate the modes of action of the insecticides used during the cropping cycle. To prevent the development of resistance, it is important not to apply insecticides with the same mode of action to successive generations of the same insect. Insect development time can vary by species and environmental conditions, and generations often overlap in the field; proper scouting is necessary to determine when modes of action should be rotated. To make it easier to determine an insecticide’s mode of action, the **IRAC** has developed a numerical code with a different number corresponding to each mode of action. New packaging has been developed with a colored banner on the top of the package and label giving the **IRAC code**. For example, the insecticide, Movento®, has a new mode of action and the package says:

```
GROUP 23 INSECTICIDES
```

Growers can now easily identify the mode of action of a specific insecticide. This will help them to plan their rotation of materials to avoid rapid development of insecticide resistance and help prolong the life of these important new crop protection materials while providing adequate management of their pest problems. More information about insecticide resistance and a concise chart of all of the **IRAC codes** can be found at the website: www.irac-online.org.
GENERAL INFORMATION

LAWS AND REGULATIONS

Be sure to check current state and federal laws and regulations regarding the proper use, storage, and disposal of pesticides before applying any chemicals. For restricted-use pesticides, an applicator is required to be certified or to work under the direct supervision of a certified individual. Additional information on Worker Protection Standards (WPS) can be found at https://www.epa.gov/pesticide-worker-safety/agricultural-worker-protection-standard-wps.

CERTIFICATION–PESTICIDE APPLICATORS

The Federal Insecticide, Fungicide, and Rodenticide Act of 1972 (FIFRA) requires each state to certify individuals who use restricted use pesticides. Pesticide applicators are required to demonstrate competency by completing training and examinations certified by their state. Certified applicators are classified as private or commercial. The certification process is somewhat different for each group. The definitions of private and commercial applicators are as follows:

Private Applicator: Any person who uses, or supervises the use of a restricted-use pesticide for the purpose of raising some type of agricultural commodity. The application can be done on land owned or rented by the applicator or the applicator’s employer. However, any applications done on a “for-hire” basis are considered commercial applications. Examples of private applicators are dairy farmers, vegetable or fruit growers, greenhouse growers, and ranchers.

Commercial Applicator: Any person who uses, or supervises the use of, pesticides on a “for-hire” basis; any person who applies pesticides as a part of his or her job with any governmental agency (public operator). Examples of commercial applicators are: pest control operators, ornamental and turf operators, and anyone that has a “fee” based service.

For detailed information on certification of pesticide applicators, call your state’s Department of Agriculture or your local Extension office for information.

HANDLING PESTICIDES

Before opening a pesticide container, all applicators should carefully read the label, and accurately follow all directions and precautions specified on the labeling. In order to handle and apply pesticides safely, it is essential to use proper personal protective equipment (PPE). Always follow the label for the minimum PPE required.

Your physician should be advised of the types of pesticides used in your work. Before the start of the spray season, each applicator should have a baseline blood cholinesterase level determined if you will be applying any organophosphate or carbamate insecticides.

When applying pesticides, be sure to have a decontamination site as required by the EPA’s Worker Protection Standards (WPS) and a supply of clean water and liquid detergent available for drenching and washing in case of an accident. A single drop of certain pesticides in the eye is extremely hazardous. Be prepared to wash a contaminated eye with clean water for 15 minutes.

Only an experienced applicator wearing the protective clothing and safety equipment required by the manufacturer should handle highly toxic pesticides, such as Guthion, Lannate, and Temik.

APPLYING PESTICIDES

Before using a pesticide, read and obey all labeling instructions. Always have the most up-to-date label available when applying a pesticide.

Do not handle or apply pesticides if you have a headache or do not feel well. Never smoke, eat or drink while using pesticides. Avoid inhaling pesticide sprays, dusts, and vapors.

If hands, skin, or other body parts become contaminated or exposed, wash the area immediately with clean water and a liquid detergent. If clothing becomes contaminated, remove it immediately. Wash contaminated clothing separately. After each spraying or dusting, bathe and change clothing; always begin the day with clean clothing.

Always have someone present or in close contact when using highly toxic pesticides -those with the signal word DANGER plus the skull and crossbones symbol.

APPLY THE CORRECT DOSAGE

• To avoid excessive residues on crops for feed and food

• To achieve optimum pest control and minimum danger to desirable organisms

• To avoid chemical damage to the crops

• To obtain the most economical control of pests.

Use pesticides for only those crops specified on the label, and use only those that have state and federal registration. Avoid drift to nontarget areas. Dusts drift more than sprays; airblast sprays drift more than boom sprays. When cleaning or filling application equipment, do not contaminate streams, ponds, or other water supplies. Keep a record of all pesticides used.

TREATED AREAS

Be sure all treated areas are posted so as to keep out unauthorized personnel. This should be a regular procedure for greenhouse operators.

REENTRY PERIOD

Persons must not be allowed to enter the treated area until after sprays have dried or dusts have settled and until sufficient time has passed to ensure that there is no danger of excessive exposure. This time period is listed on the pesticide label as the Restricted Entry Interval (REI). In no case during the reentry period are farm workers allowed to enter the treated area to engage in activity requiring substantial contact with the treated crop. PPE is required for any early entry into the treated area and is only allowed for trained applicators.
FARM WORKER SAFETY

Federal pesticide legislation sets an interval during which unprotected persons may not reenter areas treated with certain pesticides to ensure that there is no danger to excessive exposure. These intervals (days to reentry) are listed on each pesticide’s label. Points for special attention are:

1. No pesticide shall be applied while any person not involved in the application is in the field being treated.
2. No owner shall permit any worker not wearing protective clothing (that is, PPE) to enter a field treated with pesticides until sprays have dried or dusts have settled, unless they are exempted from such. Protective clothing: hat or head covering; woven, long-sleeved shirt and long-legged pants; and shoes and socks. Additional safety equipment may be needed.
3. Pesticides classified in EPA Category I have a reentry time of at least 24 hours.
4. If the label states a longer reentry time or has more stringent requirements than indicated here, the label restrictions must be followed. Existing safety standards specified on the label remain in force.
5. When workers are expected to be working in the vicinity of a field treated or to be treated with a pesticide, a timely (written or oral) warning to such workers shall be given.
 a. For all pesticides, workers must be warned by posting a bulletin board at all point(s) where workers might assemble. This bulletin board should include a map of the farm which designates the different areas of the farm that might be treated and listing of the following information:
 i. Location and name of crop treated
 ii. Brand and common chemical name of pesticide applied.
 b. Date of application
 c. Date of safe reentry into treated area
 d. When a pesticide having a reentry time greater than 7 days is applied, warning signs must be posted for the duration of the reentry time. The signs must be clearly readable at a distance of 25 feet and printed in English and the language of the worker, if other than English.
 e. The sign must contain the words:
 Danger
 Name of the pesticide
 Treatment date
 Do not enter until _________
6. The sign must not be removed during the reentry time, but must be removed before workers are allowed to have contact with the treated plants.

For additional information on these and other state farm worker safety regulations, contact the Pesticide Control Program office or the Cooperative Extension pesticide office in your state.

STORAGE

Pesticides should always be stored in their original containers and kept tightly closed. For the protection of others, especially firefighters, the storage area should be posted as Pesticide Storage and kept securely locked.

Herbicides, especially hormone-like weedkillers such as 2,4-D, should not be stored with other pesticides—primarily insecticides and fungicides—to prevent the accidental substitution of the herbicide for these chemicals.

Store the pesticides in a cool, dry, well-ventilated area that is not accessible to children and others who do not know and understand the safe and proper use of pesticides. Pesticides should be stored under lock and key. Special precautions may be needed in case of a fire in these storage areas.

Any restricted use pesticide (RUP) or container contaminated by restricted pesticides must be stored in a secure, locked enclosure while unattended. This enclosure must bear a warning that pesticides are stored there. In many states, it is illegal to store any pesticide in any container other than its original container.

Keep an inventory of all pesticides held in storage and locate the inventory list in an accessible place away from the storage site so that it may be referred to in case of an emergency at the storage site.

Keep your local fire department informed of the location of all pesticide storages. Fighting a fire that includes smoke from burning pesticides can be extremely hazardous to firefighters. Firefighters should be cautioned to avoid breathing any smoke from such a fire. A fire with smoke from burning pesticides may endanger the people of the immediate area or community. The people of an area or community may have to be evacuated if the smoke from a pesticide fire-drifts in their direction. To obtain Prefire Planning Guides, contact the US National Response Team (NRT) at at http://www.nrt.org or at http://ipm.ncsu.edu (under “Information for Pesticide Applicators/Dealers”).

<table>
<thead>
<tr>
<th>Pesticide Formulation</th>
<th>General Signs of Deterioration</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC</td>
<td>Evidence of separation is such as a sludge or sediment Milky appearance does not occur when water is added.</td>
</tr>
<tr>
<td>Oils</td>
<td>Milky appearance does not occur when water is added.</td>
</tr>
<tr>
<td>WP, SP, WGD</td>
<td>Excessive lumping; powder does not suspend in water.</td>
</tr>
<tr>
<td>D, G, WDG</td>
<td>Excessive lumping or caking.</td>
</tr>
</tbody>
</table>

After freezing, place pesticides in warm storage [50°-80°F] and shake or roll container every few hours to mix product or eliminate layering. If layering persists or if all crystals do not completely dissolve, do not use the product. If in doubt, call the manufacturer.
PESTICIDE TRANSPORT
Containers must be well-secured to prevent breakage or spillage. An adequate supply of absorbent material, a shovel, and a fire extinguisher must be available. While under transport, pesticides must be stored in a separate compartment from the driver. All pesticide containers and equipment must be secured to the vehicle so as to prevent removal by unauthorized person(s) when the vehicle is unattended. The door or hatch of any service vehicle tank containing a pesticide must be equipped with a cover that will prevent spillage when the vehicle is in motion.

The above requirements do not apply if the pesticide is being transported within the application equipment tank.

For additional information on pesticide transport, contact your state Pesticide Control Program office, Department of Transportation, or your States Pesticide Safety Education Program.

DISPOSAL
Pesticides should not be disposed of in sanitary landfills or by incineration, unless these locations and equipment are especially designed and licensed for this purpose by the state.

The best method to dispose of a pesticide is to use it in accordance with current label registrations. The triple rinse-and-drain (see below) procedure or the pressure-rinse procedure (see below) is the recommended method to prepare pesticide containers for safe disposal. This method can save money as well as protect the environment.

Crush or puncture the container for disposal in a sanitary landfill or deposit in landfills that accept industrial waste, or deliver the intact container to a drum reconditioner or recycling plant. Check with the landfill operator prior to taking empty containers for disposal. For additional information on the disposal of pesticides themselves or unrinsed containers or rinsate, call the state agency responsible for hazardous wastes. See back cover for telephone numbers.

Triple Rinse–and–Drain Method. To empty a pesticide container for disposal, drain the container into the spray tank by holding the container in a vertical position for 30 seconds. Add water to the pesticide container. Agitate the container thoroughly, then drain the liquid (rinsate) into the spray tank by holding in a vertical position for 30 seconds. Repeat two more times. Puncture or otherwise create a hole in the bottom of the pesticide container to prevent its reuse.

Pressure Rinse Method. An optional method to rinse small pesticide containers is to use a special rinsing device on the end of a standard water hose. The rinsing device has a sharp probe to puncture the container and several orifices to provide multiple spray jets of water. After the container has been drained into the sprayer tank (container is upside down), jab the pointed pressure rinser through the bottom of the inverted container. Rinse for at least 30 seconds. The spray jets of water rinse the inside of the container and the pesticide residue is washed down into the sprayer tank for proper use. Thirty seconds of rinse time is equivalent to triple rinsing. An added benefit is that the container is rendered unusable.

PESTICIDE POISONING
• Do not burn pesticides. The smoke from burning pesticides is dangerous and can pollute air.
• Do not dump pesticides in sewage disposal or storm sewers because this will contaminate water.
• Avoid using excess quantities of pesticides. Calibrate sprayers to make sure of the output.
• Adjust equipment to keep spray on target. Chemicals off-target pollute and can do harm to fish, wildlife, honey bees, and other desirable organisms.

Keep pesticides out of ponds, streams, and water supplies, except those intended for such use. A small amount of drift can be hazardous to food crops and to wildlife. Empty and clean sprayers away from water areas (such as ponds, lakes, streams, etc.)

Protect bees and other beneficial insects by choosing the proper chemical and time of day for application. See additional precautions in section "Protecting Our Groundwater."

MINIMIZE SPRAY DRIFT
• Avoid spraying when there is strong wind.
• Use large orifice nozzles at relatively low pressure.
• Use nozzles that do not produce small droplets.
• Adjust boom height as low as practical.
• Do not spray at high travel speeds.
• Spray when soil is coolest and relative humidity is highest.
• Use nonvolatile pesticides.
• Use drift control additives when permitted by the pesticide label.
• Always take a copy of your pesticide label and SDS (Safety Data Sheet) when seeking medical assistance.

PESTICIDE TRANSPORT
• Do not use excess quantities of pesticides.
• Avoid using excessive amounts of pesticides.
• Use nonvolatile pesticides.
• Do not spray at high travel speeds.
• Use nozzles that do not produce small droplets.
• Adjust boom height as low as practical.
• Use large orifice nozzles at relatively low pressure.
• Avoid spraying when there is strong wind.
• Use nonvolatile pesticides.
• Use drift control additives when permitted by the pesticide label.
• Always take a copy of your pesticide label and SDS (Safety Data Sheet) when seeking medical assistance.

PROTECT OUR ENVIRONMENT
If any of the following symptoms are experienced during or shortly after using pesticides: headache, blurred vision, pinpoint pupils, weakness, nausea, cramps, diarrhea, and discomfort in the chest, seek medical assistance immediately. Be sure to take a copy of the pesticide label. For minor symptoms, call the appropriate Poison Control Center in your state. See back cover for emergency telephone numbers. Prompt action and treatment may save a life.

IN CASE OF AN ACCIDENT
Remove the person from exposure:
• Get away from the treated or contaminated area immediately
• Remove contaminated clothing.
• Wash with soap and clean water.
• Call a physician and the state Poison Control Center or Agency. See back cover for emergency telephone numbers.
• Be prepared to give the active ingredient name (common name)
PESTICIDE SPILLS

Keep a supply of absorbent on hand to scatter over liquid spills in the storage room. Sawdust or janitorial sweeping compound works well in absorbing the liquids in a cleanup. Use a respirator and rubber gloves to clean up spills; cover the contaminated surface with household lye, trisodium phosphate, or liquid detergent. Let it soak a couple of hours and reabsorb the solution from the floor. This procedure is recommended for cleaning truck beds that are contaminated. Specific information concerning pesticide cleanup can be obtained by calling the manufacturer directly. The phone numbers for emergencies are listed on every product label. Information can also be obtained by calling CHEMTREC at 800/424-9300. Report pesticide spills to the proper state agency. See back cover for telephone numbers.

RESPIRATORY PROTECTIVE DEVICES FOR PESTICIDES

For many toxic chemicals, inhalation is one of the quickest routes of entry into the circulatory system. From the blood capillaries of the lungs, these toxic substances are rapidly transported throughout the body.

Respiratory protective devices vary in design, use, and protective capability. In selecting a respirator, the user must first consider the degree of hazard associated with breathing the toxic substance, and then understand the specific uses and limitations of the available equipment. Select a respirator that is designed for the intended use, and always follow the manufacturer’s instructions concerning the use and maintenance of that particular respirator. Different respirators may be needed for application of different chemicals or groups of chemicals. Select only equipment approved by the National Institute of Occupational Safety and Health (NIOSH). The NIOSH approval numbers begin with the letters TC. NOTE: The label will specify which respirator is needed for that particular pesticide.

TYPES OF RESPIRATORS

Respiratory protective devices can be categorized into three classes: air-purifying, supplied-air, and self-contained. Because most pesticide contaminants can be removed from the atmosphere by air-purifying devices, we will look at these in greatest detail.

Air-purifying devices include chemical cartridge respirators, mechanical filters, gas masks (also referred to as canister filter respirators), and battery powered respirators. They can be used only in atmospheres containing sufficient oxygen to sustain life.

• Chemical cartridge respirators provide respiratory protection against certain gases and vapors in concentrations not greater than 0.1% by volume, provided that this concentration does not exceed an amount that is immediately dangerous to life and health. They are for use only when exposure to high continual concentrations of pesticide is unlikely, such as when mixing pesticides outdoors. They are available either as halfmasks, covering only the nose and mouth, or as full-facepiece respirators for both respiratory and eye protection.

• Mechanical filter respirators (dust masks) provide respiratory protection against particulate matter such as mists, metal fumes, and nonvolatile dusts. They are available either as disposable or reusable halfmasks that cover the nose and mouth, or as reusable full-facepieces. Dust masks should never be used when mixing or applying liquids because splashed or spilled liquids, or pesticide vapors can be absorbed by the mask.

• Many respiratory protective devices are combinations of chemical cartridge and mechanical filter (prefilter) respirators. These can provide respiratory protection against both gases and particulate matter.

• Full-face piece respirators provide respiratory protection against particulate matter, and/or against certain specific gases and vapors, provided that their concentration does not exceed an amount that is immediately dangerous to life and health. Gas masks, like full-facepieces, cover the eyes, nose, and mouth, but will last longer than cartridges when continuously exposed to some pesticides. A gas mask will not, however, provide protection when the air supply is low. A special respirator with a self-contained air supply should be worn in these situations.

• Battery powered air-purifying respirators equipped with pesticide filters/cartridges are also effective in filtering out pesticide particles and vapors. They are available as halfmasks, full-face masks, hoods, and protective helmets, and are connected by a breathing hose to a battery powered filtration system. This type of filtration system has the additional advantage of cooling the person wearing it. But, like other air purifying devices, this system does not supply oxygen and must be worn only when the oxygen supply is not limited.

Chemical cartridge respirators protect against light concentrations of certain organic vapors. However, no single type of cartridge is able to remove all kinds of chemical vapors. A different type of chemical cartridge (or canister) must be used for different contaminants. For example, cartridges and canisters that protect against certain organic vapors differ chemically from those that protect against ammonia gases. Be sure that the cartridge or canister is approved for the pesticide you intend to use. Cartridge respirators are not recommended for use against chemicals that possess poor warning properties. Thus, the user’s senses (smell, taste, irritation) must be able to detect the substance at a safe level if cartridge respirators are to be used correctly.

The effective life of a respirator cartridge or canister depends on the conditions associated with its use—such as the type and concentration of the contaminants, the user’s breathing rate, and the humidity. Cartridge longevity is dependent on its gas and vapor adsorption capacity. When the chemical cartridge becomes saturated, a contaminant can pass through the cartridge, usually allowing the user to smell it. At this point, the cartridge must be changed immediately. There are times when the mechanical prefilter also needs to be changed. A prefilter should be replaced whenever the respirator user feels that breathing is becoming difficult. Dispose of all spent cartridges to avoid their being used
inadvertently by another applicator who is unaware of their contaminated condition.

Chemical cartridge respirators cannot provide protection against extremely toxic gases such as hydrogen cyanide, methyl bromide, or other fumigants. Masks with a self-contained air supply are necessary for these purposes.

USE AND CARE OF RESPIRATORS

Respirators are worn as needed for protection when handling certain pesticides. The use of respirators is now regulated requiring a health screening prior to their use by a health professional. This is due in part to the Fumigant re-registration decisions by EPA. These prerequisites are outlined in the OSHA Respiratory Protection Act. Prior to using a respirator, read and understand the instructions on the cartridge or canister and all supplemental information about its proper use and care. Be sure the filter is approved for protection against the pesticide intended to be used. Respirators labeled only for protection against particulates must not be used for gases and vapors. Similarly, respirators labeled only for protection against gases and vapors should not be used for particulates. Remember, cartridges and filters do not supply oxygen. Do not use them where oxygen may be limited. All respirators must be inspected for wear and deterioration of their components before and after each use. Special attention should be given to rubber or plastic parts which can deteriorate. The facepiece, valves, connecting tubes or hoses, fittings, and filters must be maintained in good condition.

All valves, mechanical filters, and chemical filters (cartridges or canisters) should be properly positioned and sealed. Fit the respirator on the face to ensure a tight but comfortable seal. Facial hair will prevent a tight seal and consequently OSHA regulations prohibit the use of a respirator when the user has a beard or facial hair. Two tests can be done to check the fit of most chemical cartridge respirators. The first test requires that you place your hand tightly over the outside exhaust valve. If there is a good seal, exhalation should cause slight pressure inside the facepiece. If air escapes between the face and facepiece, readjust the headbands until a tight seal is obtained. Readjusting the headbands may at times not be sufficient to obtain a good seal. It may be necessary to reposition the facepiece to prevent air from escaping between the face and facepiece. The second test involves covering the inhalation valve(s) by placing a hand over the cartridge(s). If there is a good seal, inhalation should cause the facepiece to collapse. If air enters, adjust the headbands or reposition the facepiece until a good seal is obtained.

Get to fresh air immediately if any of the following danger signals are sensed:

- Contaminants are smelled or tasted
- Eyes, nose, or throat become irritated
- Breathing becomes difficult
- The air being breathed becomes uncomfortably warm
- Nauseous or dizzy sensations are experienced

Cartridges or filters may be used up or abnormal conditions may be creating contaminant concentrations which exceed the capacity of the respirator to remove the contamination.

After each use of the respirator, remove all mechanical and chemical filters. Wash the facepiece with soap and warm water, and then immerse it in a sanitizing solution such as household bleach (two tablespoons per gallon of water) for two minutes, followed by a thorough rinsing with clean water to remove all traces of soap and bleach. Wipe the facepiece with a clean cloth and allow to air dry.

Store the respirator facepiece, cartridges, canisters, and mechanical filters in a clean, dry place, preferably in a tightly sealed plastic bag. Do not store respirators with pesticides or other agricultural chemicals.

Handle respirators with the same care given to other protective equipment and clothing.

PROTECTING OUR GROUNDWATER

Groundwater is the water contained below the topsoil. This water is used by 90% of the rural population in the United States as their sole source of drinking water. Contamination of the water supply by pesticides and other pollutants is becoming a serious problem. One source of contamination is agricultural practices.Protection of our groundwater by the agricultural community is essential.

Groundwater collects under our soils in aquifers that are comprised of layers of sand, gravel, or fractured bedrock which, by their nature, hold water. This water comes from rainfall, snowfall, etc., that moves down through the soil layers to the aquifer. The depth of the aquifer below the surface depends on many factors. Where it is shallow, we see lakes, ponds and wetlands. In areas where it is deep, we find arid regions.

FACTORS THAT AFFECT MOVEMENT OF WATER AND CONTAMINANTS

The depth of aquifers, in conjunction with soil types, influences how much surface water reaches the aquifer. Their depth also affects how quickly water and contaminants reach an aquifer. Thus, shallow water tables tend to be more vulnerable to contamination than deeper ones.

This tendency, however, depends on the soil type. Soils with high clay or organic matter content may hold water longer and retard its movement to the aquifer. Conversely, sandy soils allow water to move downward at a fast rate. High levels of clay and/or organic content in soils also provide a large surface area for binding contaminants that can slow their movement into groundwater. Soil texture also influences downward water movement. Finer textured soils have fewer spaces between particles than coarser ones, thus decreasing movement of water and contaminants.

CHEMISTRY PLAYS A ROLE

The characteristics of an individual pesticide affect its ability to reach groundwater. The most important characteristics are solubility in water, adsorption to soils, and persistence in the environment.
Pesticides that are highly soluble in water have a higher potential for contaminating groundwater than those that are less soluble. The water solubility of a chemical indicates how much chemical will dissolve in water and is measured in parts per million (ppm). Those chemicals with a water solubility greater than 30 ppm may create problems. Be sure to read the Environmental Precautions on each pesticide label.

A chemical’s ability to adhere to soil particles plays an important role. Chemicals with a high affinity for soil adsorption are less likely to reach the aquifer. Adsorption is also affected by the amount of organic matter in the soil. Soils with high organic matter content are less vulnerable than those with low organic matter content.

Finally, how persistent a chemical is in the environment may affect its ability to reach groundwater. Those that persist for a long time may be more likely to cause contamination than materials that breakdown quickly. Persistence is measured by the time it takes half of a given pesticide to degrade. This is called the chemical’s half-life. Chemicals with an overall estimated half-life longer than 3 weeks pose a threat to groundwater.

HOW TO PREVENT CONTAMINATION OF GROUND WATER

Examine the chemical properties of the pesticides used. If using materials that persist for long periods of time, are very water soluble, or are not tightly held by the soil, then your groundwater may become contaminated. Another material may be selected that has a shorter persistence, lower water solubility, or higher potential for soil adsorption. The following chart assists with these decisions.

1. **Determine the local soil and geologic circumstances.** If in an area with a shallow water table or the soil is low in organic matter or sandy in nature, there is a greater risk of contaminating your groundwater. In these cases, choose a pesticide that has a low water solubility and is not persistent.

2. **Evaluate management practices.** These practices may be the most important factors in determining the risk of contaminating groundwater. If the same materials are used year after year, or many times a season, the potential for contamination can be increased due to the amount of pesticide in the soil. The timing of pesticide applications has an effect on groundwater contamination. If applications during periods of high rainfall or heavy irrigation are made, it is more likely that contamination may occur. Also, the water table in the spring may be higher than at other times. Early season applications, therefore, may pose a greater chance for groundwater contamination.

3. **The method of application may have an effect.** Direct injection, incorporation, and chemigation all increase the chance of contamination. If using these techniques, be sure to follow the procedures listed on the material’s label.

4. **The location of wells can be important.** If the sprayer loading area or pesticide storage building is too close to a well, the risk of contamination may be greater.

5. **Check the condition of any wells in the vicinity of sprayer loading areas, pesticide storage areas, or field applications.** If they have cracked casings trouble is being invited. Cracks in a well casing provide a direct point of entry for pesticide-contaminated water that is in the soil.

6. **Use some type of anti back-flow device in any system used for chemigation or to fill the sprayer with water.** In the event of a pump shutoff or other failure, if any back-flow into the water system occurs, these devices will prevent pesticides from entering the well. Many state laws require that anti back-flow devices be placed on all sprayer water intake systems prior to the water entering the tank. The use of an air gap only is no longer acceptable in some states.

7. **Care and maintenance of equipment is also an important consideration.** If the equipment does not function properly, over-delivery may occur, which increases the chance of groundwater contamination. Prior to the beginning of the season, inspect all of the working parts of the sprayer or chemigation system. Check the pump to ensure that it is working properly. For both sprayers and chemigation systems, check the water lines for clogs and leaks. For sprayers, check the nozzles for wear and clogs. Clogged, leaking, or worn lines and nozzles can cause pesticides to be delivered in too high an amount or into unwanted areas. Be sure to calibrate equipment. Uncalibrated equipment can cause over-delivery as well. Equipment should be calibrated at the beginning of the season, periodically during the remainder of the season, and any time changes or adjustments are made to the equipment.

8. **Apply materials only when needed.** The use of pesticides, when not needed, can increase the threat of contamination. Check irrigation practices as well. Do not irrigate immediately after a pesticide application, unless required by a pesticide’s label. The increased water content in the soil might speed up the downward movement of a pesticide.

9. **One of the best ways to reduce indirect or direct runoff would be to only purchase and use what is needed to completed a treatment. Runoff and poisoning can stem from not properly disposing of extra pesticides.**

REMEMBER, GROUNDWATER MUST BE PROTECTED.
TOXICITY OF CHEMICALS USED IN PEST CONTROL

The danger in handling pesticides does not depend exclusively on toxicity values. Hazard is a function of both toxicity and the amount and type of exposure. Some chemicals are very hazardous from dermal (skin) exposure as well as oral (ingestion). Although inhalation values are not given, this type of exposure is similar to ingestion. A compound may be highly toxic but present little hazard to the applicator if the precautions are followed carefully.

Toxicity values are expressed as acute oral LD$_{50}$ in terms of milligrams of the substance per kilogram (mg/kg) of test animal body weight required to kill 50 percent of the population. The acute dermal LD$_{50}$ is also expressed in mg/kg. These acute values are for a single exposure and not for repeated exposures such as may occur in the field. Rats are used to obtain the oral LD$_{50}$ and the test animals used to obtain the dermal values are usually rabbits.

CATEGORIES OF TOXICITY

<table>
<thead>
<tr>
<th>Categories</th>
<th>Signal Word</th>
<th>LD$_{50}$ Value (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Danger-Poison</td>
<td>0 – 50 Oral 0 – 200 Dermal</td>
</tr>
<tr>
<td>II</td>
<td>Warning</td>
<td>50-500 Oral 200-2,000 Dermal</td>
</tr>
<tr>
<td>III</td>
<td>Caution</td>
<td>500-5,000 Oral 2,000-20,000 Dermal</td>
</tr>
<tr>
<td>IV</td>
<td>None2</td>
<td>5,000 Oral 5,000 20,000 Dermal</td>
</tr>
</tbody>
</table>

1 EPA accepted categories.

2 No signal word required based on acute toxicity; however, products in this category usually display "Caution."

Read all labels and become familiar with the symptoms of pesticide poisoning. For help in a pesticide emergency, seek immediate medical attention and call the appropriate poison information number on the back cover of this book.

TOXICITY AND LD$_{50}$ CALCULATIONS WEIGHT CONVERSIONS

1 ounce (oz) = 28 grams (gr)
1 pound (lb) = 454 grams (gr)
1 gram (gr) = 1,000 milligrams (mg)
1,000 mg = 0.035 oz
1 mg = 0.000035 oz

CONVERSIONS: BODY WEIGHT IN POUNDS (LB) TO BODY WEIGHT IN KILOGRAMS (KG)

\[
\begin{align*}
25 & = 11.25 \\
50 & = 22.5 \\
75 & = 33.75 \\
100 & = 45
\end{align*}
\]

To determine an exact weight, multiply known body weight in pounds by 0.45. Example: 100 lb x 0.45 = 45 kg

Note: All the following calculations use a body weight of 100 pounds. To determine the LD$_{50}$, first convert body weight to kilograms; to do this multiply weight in lb by 0.45.

Example: 100 x 0.45 = 45 kg

Next, multiply given LD$_{50}$ by body weight in kg.

Note: LD$_{50}$ numbers are given by the manufacturer.

Example: LD$_{50}$ of 11 x 45 kg = 495 mg

Next, to convert milligrams (mg) to ounces (oz), multiply mg by 0.000035. Example: 495 mg x 0.000035 = 0.017 oz.

The following is a chart of LD$_{50}$ figures converted to ounces for three commonly used products in the agricultural industry.

<table>
<thead>
<tr>
<th>Body Weight in Pounds</th>
<th>LD$_{50}$ 30</th>
<th>LD$_{50}$ 60</th>
<th>LD$_{50}$ 100</th>
<th>LD$_{50}$ 150</th>
<th>LD$_{50}$ 200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insecticide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Furadan</td>
<td>11</td>
<td>0.005</td>
<td>0.010</td>
<td>0.017</td>
<td>0.026</td>
</tr>
<tr>
<td>Herbicide</td>
<td>1,800</td>
<td>0.9</td>
<td>1.7</td>
<td>2.8</td>
<td>4.3</td>
</tr>
<tr>
<td>Micro-Tech/Partner</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fungicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorothalonil</td>
<td>10,000</td>
<td>4.9</td>
<td>9.5</td>
<td>15.7</td>
<td>23.8</td>
</tr>
</tbody>
</table>

CONVERSION INFORMATION FOR USE OF PESTICIDES ON SMALL AREAS

LIQUID MATERIALS

<table>
<thead>
<tr>
<th>Recommended Rate per acre</th>
<th>Approximate Rate per 1,000 sq. ft.</th>
<th>Approximate Rate per 100 sq. ft.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 pint</td>
<td>½ tablespoons</td>
<td>½ teaspoon</td>
</tr>
<tr>
<td>1 quart</td>
<td>1½ tablespoons</td>
<td>½ teaspoon</td>
</tr>
<tr>
<td>2 quarts</td>
<td>3 tablespoons</td>
<td>1 teaspoon</td>
</tr>
<tr>
<td>1 gallon</td>
<td>6 tablespoons</td>
<td>2 teaspoons</td>
</tr>
<tr>
<td>25 gallons</td>
<td>4½ pints</td>
<td>1 cup</td>
</tr>
<tr>
<td>50 gallons</td>
<td>8 pints</td>
<td>1 pint</td>
</tr>
<tr>
<td>75 gallons</td>
<td>7 quarts</td>
<td>1½ pints</td>
</tr>
<tr>
<td>100 gallons</td>
<td>9 quarts</td>
<td>1 quart</td>
</tr>
</tbody>
</table>

For dry materials, such universal conversions are not possible because these materials vary widely in density. You can use volume measurements such as teaspoons, tablespoons, and cups, but you must first weigh a tablespoon of each product so that you will know what volume measurement to use to obtain the desired weight. Remember that there are 43,560 square feet in an acre. To convert a per-acre rate to 1,000 square feet, divide the per-acre rate by 43.56. To convert a per-acre rate to 100 square feet, divide the per-acre rate by 435.6.

Example: A rate of 2 pounds of Dithane DF per acre is desired for a planting of 1,000 square feet. Divide the per-acre rate of 907 grams (453.6 grams per pound) by 43.56 to get 20.8 grams. Since Dithane DF weighs about 10 grams per tablespoon, you would need two tablespoons. Knowing the weight per tablespoon for each product you work with, you can use a tablespoon for measuring, rather than weighing.
PESTICIDE DILUTION TABLES

The following tables provide quantity of either liquid or wettable powder concentrates to use per acre to give desired dosage of an active ingredient per acre.

HOW TO USE THESE TABLES

Example: Reading the product label, you determine that you need to apply 0.50 lbs of actual Guthion per acre to treat a specific problem. You have Guthion 2L liquid that contains 2 lb. of Active Ingredient per gallon of product. Referring to the “Liquid Concentrate” table find “2 lb” in the first column. Next locate the “0.50” column in the heading across the top of the table. These two columns intersect at “2.0 pints”. Thus, you need to add 2 pints of Guthion 2L in enough water to treat one acre. The other two tables work the same way.

TABLE OF MEASURES

<table>
<thead>
<tr>
<th>Measure Unit</th>
<th>Equivalent Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 teaspoons (tsp)</td>
<td>1 tablespoon</td>
</tr>
<tr>
<td>2 cups (c)</td>
<td>1 pint</td>
</tr>
<tr>
<td>2 tablespoons (tbl)</td>
<td>1 fluid once</td>
</tr>
<tr>
<td>2 pints (pt)</td>
<td>1 quart</td>
</tr>
<tr>
<td>8 fluid ounces (fl oz)</td>
<td>1 cup</td>
</tr>
</tbody>
</table>

LIQUID CONCENTRATE – AMOUNT TO USE IN PINTS PER ACRE

<table>
<thead>
<tr>
<th>Pounds A.I. (gallon)</th>
<th>0.125</th>
<th>0.25</th>
<th>0.50</th>
<th>0.75</th>
<th>1.0</th>
<th>2.0</th>
<th>3.0</th>
<th>4.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 lb.</td>
<td>1.0</td>
<td>2.0</td>
<td>4.0</td>
<td>6.0</td>
<td>8.0</td>
<td>16.0</td>
<td>24.0</td>
<td>32.0</td>
</tr>
<tr>
<td>1 ½ lb.</td>
<td>0.67</td>
<td>1.3</td>
<td>2.6</td>
<td>4.0</td>
<td>5.3</td>
<td>10.6</td>
<td>16.0</td>
<td>21.3</td>
</tr>
<tr>
<td>2 lb.</td>
<td>0.5</td>
<td>1.0</td>
<td>2.0</td>
<td>3.0</td>
<td>4.0</td>
<td>8.0</td>
<td>12.0</td>
<td>16.3</td>
</tr>
<tr>
<td>3 lb.</td>
<td>0.34</td>
<td>0.67</td>
<td>1.3</td>
<td>2.0</td>
<td>2.7</td>
<td>5.3</td>
<td>8.0</td>
<td>10.7</td>
</tr>
<tr>
<td>4 lb.</td>
<td>0.25</td>
<td>0.50</td>
<td>1.0</td>
<td>1.5</td>
<td>2.0</td>
<td>4.0</td>
<td>6.0</td>
<td>8.0</td>
</tr>
<tr>
<td>5 lb.</td>
<td>0.20</td>
<td>0.40</td>
<td>0.80</td>
<td>1.2</td>
<td>1.6</td>
<td>3.2</td>
<td>4.8</td>
<td>6.4</td>
</tr>
<tr>
<td>6 lb.</td>
<td>0.17</td>
<td>0.34</td>
<td>0.67</td>
<td>1.0</td>
<td>1.3</td>
<td>2.6</td>
<td>4.0</td>
<td>5.3</td>
</tr>
<tr>
<td>7 lb.</td>
<td>0.14</td>
<td>0.30</td>
<td>0.60</td>
<td>0.90</td>
<td>1.1</td>
<td>2.3</td>
<td>3.4</td>
<td>4.6</td>
</tr>
<tr>
<td>8 lb.</td>
<td>0.125</td>
<td>0.25</td>
<td>0.50</td>
<td>0.75</td>
<td>1.0</td>
<td>2.0</td>
<td>3.0</td>
<td>4.0</td>
</tr>
<tr>
<td>9 lb.</td>
<td>0.11</td>
<td>0.22</td>
<td>0.45</td>
<td>0.67</td>
<td>0.90</td>
<td>1.8</td>
<td>2.7</td>
<td>3.6</td>
</tr>
<tr>
<td>10 lb.</td>
<td>0.10</td>
<td>0.20</td>
<td>0.40</td>
<td>0.60</td>
<td>0.80</td>
<td>1.6</td>
<td>2.4</td>
<td>3.2</td>
</tr>
</tbody>
</table>

WETTABLE POWDER – AMOUNT TO USE IN POUNDS PER ACRE

<table>
<thead>
<tr>
<th>%A.I.</th>
<th>0.125</th>
<th>0.25</th>
<th>0.50</th>
<th>0.75</th>
<th>1.0</th>
<th>2.0</th>
<th>3.0</th>
<th>4.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>15%</td>
<td>13/16</td>
<td>1½</td>
<td>3/8</td>
<td>5</td>
<td>6½</td>
<td>13</td>
<td>20</td>
<td>26½</td>
</tr>
<tr>
<td>25%</td>
<td>⅞</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>8</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>40%</td>
<td>5/16</td>
<td>⅞</td>
<td>1⅛</td>
<td>1⅛</td>
<td>2⅛</td>
<td>5</td>
<td>7½</td>
<td>10</td>
</tr>
<tr>
<td>50%</td>
<td>⅞</td>
<td>¾</td>
<td>1⅛</td>
<td>1½</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>75%</td>
<td>⅜</td>
<td>⅔</td>
<td>11/16</td>
<td>⅓</td>
<td>1½</td>
<td>2½</td>
<td>4</td>
<td>5½</td>
</tr>
</tbody>
</table>

DUST OR GRANULES– AMOUNT TO USE IN POUNDS PER ACRE

<table>
<thead>
<tr>
<th>%A.I.</th>
<th>0.125</th>
<th>0.25</th>
<th>0.50</th>
<th>0.75</th>
<th>1.0</th>
<th>2.0</th>
<th>3.0</th>
<th>4.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>2½%</td>
<td>5</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>80</td>
<td>120</td>
<td>160</td>
</tr>
<tr>
<td>5%</td>
<td>2½</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>40</td>
<td>60</td>
<td>100</td>
</tr>
<tr>
<td>10%</td>
<td>1⅛</td>
<td>2⅛</td>
<td>5</td>
<td>7½</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>20%</td>
<td>⅞</td>
<td>½</td>
<td>⅔</td>
<td>⅔</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>25%</td>
<td>⅞</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>8</td>
<td>12</td>
<td>16</td>
</tr>
</tbody>
</table>
Exirel® insect control powered by Cyazypyr® active is a foliar-applied tool that delivers reliable performance with extended residual control to stop damage to fruiting vegetables caused by thrips, lepidopterans, aphids, leaf miners and other chewing and sucking pests. It rapidly protects the crop from feeding damage and reduces transmission of certain insect-vectored viruses.

Exirel insect control from FMC is also one of 40+ products eligible for the exclusive Agronomic Rewards and Product Financing with the FMC Freedom Pass program.

Visit your FMC retailer or AG.FMC.COM to learn more.
INSECT CONTROL

INSECT CONTROL

INSECT CONTROL

150

2022 Vegetable Crop Handbook for Southeastern United States

Read the pesticide label before application. High pressure (200 psi) and high volume (50 gallons per acre) aid in vegetable insect control. Ground sprays with airblast sprayers or sprayers with hollow cone drop nozzles are suggested. Incorporate several methods of control for best results. In recent years, the number of generic products has increased significantly. For brevity, these generic products typically are not listed within each section. The trade names listed are intended to aid in identification of products and are intended neither to promote use of specific trade names nor to discourage use of generic products. A list of active ingredients and generic brand names appears in a separate table at the end of this section.

Insecticides are placed into IRAC MOA classes based on their mode of action (insecticides in the same MOA class have the same mode of action). Effective insecticide resistance management involves the use of alternations, rotations, or sequences of different insecticide MOA classes. To prevent the development of resistance, it is important not to apply insecticides with the same MOA to successive generations of the same insect.

THE FOLLOWING ONLINE DATABASES PROVIDE CURRENT PRODUCT LABELS AND OTHER RELEVANT INFORMATION:

<table>
<thead>
<tr>
<th>Database</th>
<th>Web Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrian Label Database</td>
<td>https://home.agrian.com/</td>
</tr>
<tr>
<td>Crop Data Management Systems</td>
<td>http://www.cdms.net/Label-Database</td>
</tr>
<tr>
<td>Greenbook Data Solutions</td>
<td>https://www.greenbook.net/</td>
</tr>
<tr>
<td>Kelly Registration Systems</td>
<td>http://www.kellysolutions.com</td>
</tr>
</tbody>
</table>

1 Additional databases not included in this list may also be available. Please read the database terms of use when obtaining information from a particular website.

2 Available for AK, AL, AZ, CA, CO, CT, DE, FL, GA, IA, ID, IN, KS, MA, MD, MN, MO, MS, NC, ND, NE, NJ, NV, NY, OK, OH, OR, PA, SC, SD, VA, VT, WA, and WI. Kelly Registration Systems works with State Departments of Agriculture to provide registration and license information.
TABLE 2-1. INSECT CONTROL FOR ASPARAGUS

<table>
<thead>
<tr>
<th>Insecticide, Mode of Action Code, and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Restricted Entry Interval (REI)</th>
<th>Pre harvest Interval (PHI) (Days)</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aphid</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dimethoate 400, MOA 1B</td>
<td>1 pt</td>
<td>48 hrs</td>
<td>180</td>
<td>Do not exceed 2 pints per acre per year.</td>
</tr>
<tr>
<td>malathion, MOA 1B (various) 57 EC</td>
<td>1.5 to 2 pt</td>
<td>12 hrs</td>
<td>1</td>
<td>Aphid colonies appear by early September.</td>
</tr>
<tr>
<td>pymetrozine, MOA 9B (Fulfill) 50 WDG</td>
<td>2.75 oz</td>
<td>12 hrs</td>
<td>180</td>
<td>For aphid control on ferns after harvest.</td>
</tr>
<tr>
<td>acetamiprid, MOA 4A (Assail) 30 SG</td>
<td>2.5 to 3.0 oz</td>
<td>12 hrs</td>
<td>1</td>
<td>Do not make more than two applications per calendar year.</td>
</tr>
<tr>
<td>ASPARAGUS BEETLE, JAPANESE BEETLE, GRASSHOPPER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>carbaryl, MOA 1A (Sevin) 50 WP (Sevin) 80 S (Sevin) XLR Plus</td>
<td>2 to 4 lb 1.25 to 2.5 lb 1 to 2 qt</td>
<td>12 hrs</td>
<td>1</td>
<td>Low rate to be used on seedlings or spears. Do not apply more often than once every 3 days. With established beetle populations, three consecutive weekly sprays are required for beetles and grasshoppers in the fall.</td>
</tr>
<tr>
<td>acetamiprid, MOA 4A (Assail) 30 SG</td>
<td>2.5 to 3.0 oz</td>
<td>12 hrs</td>
<td>1</td>
<td>Use higher rate for Japanese beetle. Do not make more than two applications per calendar year.</td>
</tr>
<tr>
<td>dimethoate 400, MOA 1B</td>
<td>1 pt</td>
<td>48 hrs</td>
<td>180</td>
<td>Do not exceed 5 pints per acre per year.</td>
</tr>
<tr>
<td>malathion, MOA 1B (various) 57 EC</td>
<td>2 pt</td>
<td>12 hrs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>methomyl, MOA 1A (Lannate) 2.4 LV</td>
<td>1.5 pt</td>
<td>48 hrs</td>
<td>1</td>
<td>Let a row on edge of field near overwintering sites of asparagus beetles fern out. This will attract and hold beetles for that directed insecticide spray (trap and destroy).</td>
</tr>
<tr>
<td>pyrethroid, MOA 3A</td>
<td></td>
<td>12 hrs</td>
<td></td>
<td>See Table 2-25 A for a list of registered pyrethroids and pre- harvest intervals.</td>
</tr>
<tr>
<td>spinetoram, MOA 5 (Radiant) 1 SC</td>
<td>4 to 8 fl oz</td>
<td>4 hrs</td>
<td>60</td>
<td>For asparagus beetle only. This use is only for asparagus ferns; do not apply within 60 days of spear harvest.</td>
</tr>
<tr>
<td>BEET ARMYWORM, CUTWORM, YELLOWSTRIPED ARMYWORM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacillus thuringiensis, MOA 11A (Dipel) DF</td>
<td>0.5 to 1 lb</td>
<td>4 hrs</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>chlorantraniliprole, MOA 28 (Coragen) 1.67 SC</td>
<td>3.5 to 7.5 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>cyantraniliprole, MOA 28 (Exirel) 0.83 EC</td>
<td>7 to 13.5 fl oz</td>
<td>12 hr</td>
<td>1</td>
<td>Do not make applications within 25 ft of water sources.</td>
</tr>
<tr>
<td>methomyl, MOA 1A (Lannate) 2.4 LV (Lannate) 90 SP</td>
<td>1.5 to 3 pt 0.5 to 1 lb</td>
<td>48 hrs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>spinetoram, MOA 5 (Radiant) 1 SC</td>
<td>4 to 8 fl oz</td>
<td>4 hrs</td>
<td>60</td>
<td>This use is only for asparagus ferns; do not apply within 60 days of spear harvest.</td>
</tr>
<tr>
<td>Spinosad, MOA 5 (Entrust) 2 SC</td>
<td>4 to 6 fl oz</td>
<td>4 hrs</td>
<td>60</td>
<td>This use is only for asparagus ferns; do not apply within 60 days of spear harvest. OMRI listed.</td>
</tr>
</tbody>
</table>
TABLE 2-2. INSECT CONTROL FOR BEANS (SNAP, LIMA, POLE)

<table>
<thead>
<tr>
<th>Insecticide, Mode of Action Code, and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Restricted Entry Interval (REI)</th>
<th>Pre harvest Interval (PHI) (Days)</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>APHID</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>acetamiprid MOA 4A (Assail) 30 SG</td>
<td>2.5 to 5.3 oz</td>
<td>12 hrs</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>dimethoate 4 EC, MOA 1B</td>
<td>0.5 to 1 pt</td>
<td>48 hrs</td>
<td>0</td>
<td>On foliage as needed. Re-entry interval of 48 hours</td>
</tr>
<tr>
<td>imidacloprid, MOA 4A Soil treatment (Admire Pro) 4.6 F (various) 2F</td>
<td>7 to 10.5 fl oz, 16 to 24 fl oz</td>
<td>12 hrs</td>
<td>21</td>
<td>See label for soil application instructions. Also controls leafhoppers and thrips.</td>
</tr>
<tr>
<td>Foliar treatment (Admire Pro) 4.6 F (various) 1.6 F</td>
<td>1.2 fl oz, 3.5 fl oz</td>
<td>12 hrs</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>sulfoxaflor, MOA 4C (Transform) 50 WG</td>
<td>0.75 to 1.0 oz</td>
<td>24 hrs</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>flupyradifurone (Sivanto Prime)</td>
<td>7 to 14 fl</td>
<td>4 hrs</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>spirotetramat, MOA 23 (Movento) 2 SC</td>
<td>4 to 5 fl oz</td>
<td>24 hrs</td>
<td>1 (succulent), 7 (dried)</td>
<td></td>
</tr>
<tr>
<td>THRIPS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>acephate, MOA 1B (Orthene) 97 PE</td>
<td>0.5 to 1 lb</td>
<td>24 hrs</td>
<td>14</td>
<td>Lima beans may be treated and harvested the same day. Do not apply more than 2 pounds a.i. per acre per season.</td>
</tr>
<tr>
<td>acetamiprid MOA 4A (Assail) 30 SG</td>
<td>2.5 to 5.3 oz</td>
<td>12 hrs</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>pyrethroid, MOA 3A</td>
<td>12 hrs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>methomyl, MOA 1A (Lannate) 90 SP (Lannate) 2.4 LV</td>
<td>0.5 lb, 1.5 pt</td>
<td>48 hrs</td>
<td>1</td>
<td>Effective against immature thrips only.</td>
</tr>
<tr>
<td>novaluron MOA 15 (Rimon) 0.83 EC</td>
<td>12 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>spinetoram, MOA 5 (Radiant) 1 SC</td>
<td>5 to 6 fl oz</td>
<td>4 hrs</td>
<td>3 (succulent) 28 (dried)</td>
<td>Do not apply more than 28 fluid ounces per acre per season on succulent beans or more than 12 fluid ounces on dried beans.</td>
</tr>
<tr>
<td>spinosad, MOA 5 (Blackhawk)</td>
<td>4.5 to 6 fl oz</td>
<td>4 hrs</td>
<td>3 (succulent) 28 (dried)</td>
<td>Do not apply more than 20 ounces per acre per season on succulent beans or more than 8.3 ounces on dried beans.</td>
</tr>
<tr>
<td>CORN EARWORM, EUROPEAN CORN BORER, LESSER CORNSTALK BORER, ARMYWORM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chlorantraniliprole, MOA 28 (Coragen) 1.67 SC</td>
<td>3.5 to 7.5 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>cyantraniliprole, MOA 28 (Exirel) 0.83 SE</td>
<td>10 to 20.5 fl oz</td>
<td>12 hrs</td>
<td>1 (succulent), 7 (dried)</td>
<td></td>
</tr>
<tr>
<td>methoxyfenozide, MOA 18 (Intrepid) 2F</td>
<td>4 to 16 fl oz</td>
<td>4 hrs</td>
<td>7</td>
<td>Use lower rates for early season applications to young crops, and higher rates for mid- to late-season applications and heavier infestations. Do not apply more than 16 fl oz per acre per season.</td>
</tr>
<tr>
<td>spinetoram, MOA 5 (Radiant) 1 SC</td>
<td>4.5 to 6 fl oz</td>
<td>4 hrs</td>
<td>3 (succulent) 28 (dried)</td>
<td>Do not apply more than 28 fluid ounces per acre per season on succulent beans or more than 12 fluid ounces on dried beans.</td>
</tr>
<tr>
<td>spinosad, MOA 5 (Blackhawk)</td>
<td>2.5 to 3.3 oz</td>
<td>4 hrs</td>
<td>3 (succulent) 28 (dried)</td>
<td>Do not apply more than 20 ounces per acre per season on succulent beans or more than 8.3 ounces on dried beans.</td>
</tr>
<tr>
<td>pyrethroid, MOA 3A</td>
<td>12 hrs</td>
<td></td>
<td></td>
<td>See Table 2-25 A for a list of registered pyrethroids and pre-harvest intervals. Not effective against armyworm.</td>
</tr>
<tr>
<td>viruses</td>
<td>4 hrs</td>
<td></td>
<td></td>
<td>See Table 2-26 for virus-based insecticides effective against specific insects. ORMI listed.</td>
</tr>
<tr>
<td>COWPEA CURCULIO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pyrethroid, MOA 3A</td>
<td>12 hrs</td>
<td></td>
<td></td>
<td>See Table 2-25 A for a list of registered pyrethroids and pre-harvest intervals. Control may be poor in areas where resistant populations occur, primarily in the Gulf Coast areas. Addition of piperonyl butoxide synergist (Exponent) may improve control of pyrethroids.</td>
</tr>
<tr>
<td>Lambda-cyhalothrin, MOA 3A + chlorantraniliprole, MOA 28 (Besiege) ZC</td>
<td>6 to 10 fl oz</td>
<td>24 hrs</td>
<td>7 (succulent) 21 (dried)</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 2-2. INSECT CONTROL FOR BEANS (SNAP, LIMA, POLE) (cont’d)

<table>
<thead>
<tr>
<th>Insecticide, Mode of Action Code, and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Restricted Entry Interval (REI)</th>
<th>Pre harvest Interval (PHI) (Days)</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUCUMBER BEETLE, BEAN LEAF BEETLE, JAPANESE BEETLE, CUTWORM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>carbaryl, MOA 1A (Sevin) 50 WP 80 S XLR Plus</td>
<td>4 lb 2.5 lb 1 qt</td>
<td>12 hrs</td>
<td>3 (succulent) 21 (dried)</td>
<td></td>
</tr>
<tr>
<td>pyrethroid, MOA 3A</td>
<td>12 hrs</td>
<td></td>
<td></td>
<td>See Table 2-25 A for a list of registered pyrethroids and pre-harvest intervals.</td>
</tr>
<tr>
<td>GRASSHOPPER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pyrethroid, MOA 3A</td>
<td>12 hrs</td>
<td></td>
<td></td>
<td>See Table 2-25 A for a list of registered pyrethroids and pre-harvest intervals.</td>
</tr>
<tr>
<td>LEAFMINER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cyromazine, MOA 17 (Trigard) 75 WP</td>
<td>2.66 oz</td>
<td>12 hrs</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>spinetoram, MOA 5 (Radiant) 1 SC</td>
<td>4 to 8 fl oz</td>
<td>4 hrs</td>
<td>3 (succulent) 28 (dried)</td>
<td>Do not apply more than 28 fluid ounces per acre per season on succulent beans or more than 12 fluid ounces on dried beans.</td>
</tr>
<tr>
<td>spinosad, MOA 5 (Blackhawk)</td>
<td>2.5 to 3.3 oz</td>
<td>4 hrs</td>
<td>3 (succulent) 28 (dried)</td>
<td>Do not apply more than 20 ounces per acre per season on succulent beans or more than 8.3 ounces on dried beans.</td>
</tr>
<tr>
<td>LYGUS BUG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pyrethroid, MOA 3A</td>
<td>12 hrs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>acetamiprid, MOA 4A (Assail) 30 SG</td>
<td>2.5 to 5.3 oz</td>
<td>12 hrs</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>dimethoate, MOA 1B (Dimethoate) 4 EC</td>
<td>1 pt</td>
<td>48 hrs</td>
<td>7</td>
<td>Do not apply if bees are visiting area to be treated when crops or weeds are in bloom.</td>
</tr>
<tr>
<td>sulfoxaflor, MOA 4C (Transform) CA</td>
<td>1.5 to 2.25 oz</td>
<td>24 hrs</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>MEXICAN BEAN BEETLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>acetamiprid MOA 4A (Assail) 30 SG</td>
<td>2.5 to 5.3 oz</td>
<td>12 hrs</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>pyrethroid, MOA 3A</td>
<td>12 hrs</td>
<td></td>
<td></td>
<td>See Table 2-25 A for a list of registered pyrethroids and pre-harvest intervals.</td>
</tr>
<tr>
<td>novaluron, MOA 15 (Rimon) 0.83 EC</td>
<td>9 to 12 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td>Apply when population is at egg hatch to small larval stage.</td>
</tr>
<tr>
<td>POTATO LEAFHOPPER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>acetamiprid MOA 4A (Assail) 30 SG</td>
<td>2.5 to 5.3 oz</td>
<td>12 hrs</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>pyrethroid, MOA 3A</td>
<td>12 hrs</td>
<td></td>
<td></td>
<td>See Table 2-25 A for a list of registered pyrethroids and pre-harvest intervals.</td>
</tr>
<tr>
<td>SEEDCORN MAGGOT, WIREWORM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use seed pretreated with insecticide for seedcorn maggot control.</td>
<td></td>
<td></td>
<td></td>
<td>Seed can be purchased pretreated. Pretreated seed will not control wireworms.</td>
</tr>
<tr>
<td>bifenthrin MOA 3A (Empower) 1.15G</td>
<td>3.5 to 8.7 lb</td>
<td>9 days</td>
<td>9</td>
<td>Apply preplant broadcast incorporated in the top 1 to 3 inches of soil.</td>
</tr>
<tr>
<td>phorate, MOA 1B (Thimet) 20 G</td>
<td>4.5 to 7.0 oz/1,000 ft row</td>
<td>12 hrs</td>
<td>60</td>
<td>Drill granules to the side of seed at planting. Avoid contact with seed.</td>
</tr>
</tbody>
</table>

2022 Vegetable Crop Handbook for Southeastern United States 153
TABLE 2-2. INSECT CONTROL FOR BEANS (SNAP, LIMA, POLE) (cont’d)

<table>
<thead>
<tr>
<th>Insecticide, Mode of Action Code, and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Restricted Entry Interval (REI)</th>
<th>Pre harvest Interval (PHI) (Days)</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPIDER MITE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>abamectin, MOA 6 (Agri-Mek) 0.7SC</td>
<td>1.75 to 3.5 fl oz</td>
<td>12 hrs</td>
<td>7</td>
<td>Do not allow leaves to be used as livestock feed.</td>
</tr>
<tr>
<td>bifenazate MOA 20D (Acramite) 4 SC</td>
<td>16 to 24 fl oz</td>
<td>12 hrs</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>acequinocyl, MOA 20B (Kanemite) 15 SC</td>
<td>31 fl oz</td>
<td>12 hrs</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>fenpyroximate, MOA 21 (Portal) 0.4 EC</td>
<td>2 pt</td>
<td>12 hrs</td>
<td>1</td>
<td>For use on snap bean only. Effective against early instars.</td>
</tr>
<tr>
<td>fenazaquin, MOA 21A (Magister) 1.7</td>
<td>24 to 36 fl oz</td>
<td>12 hrs</td>
<td>3</td>
<td>Do not make more than one application per year.</td>
</tr>
<tr>
<td>STINK BUG, KUDZU BUG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pyrethroid, MOA 3A</td>
<td></td>
<td>12 hrs</td>
<td></td>
<td>See Table 2-25 A for a list of registered pyrethroids and pre-harvest intervals.</td>
</tr>
<tr>
<td>WHITEFLIES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>acetamiprid MOA 4A (Assail) 30 SG</td>
<td>4.0 to 5.3 oz</td>
<td>12 hrs</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>buprofezin, MOA 16 (Courier) 40 SC</td>
<td>9 to 13.6 fl oz</td>
<td>12 hrs</td>
<td>14</td>
<td>For use on snap beans only.</td>
</tr>
<tr>
<td>flupyradifurone, MOA 4D (Sivanto Prime)</td>
<td>10.5 to 14 fl</td>
<td>4 hrs</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>imidacloprid, MOA 4A</td>
<td></td>
<td></td>
<td></td>
<td>See label for soil application instructions.</td>
</tr>
<tr>
<td>Soil treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Admire Pro) 4.6 F (various) 2 F</td>
<td>7 to 10.5 fl oz</td>
<td>12 hrs</td>
<td>21</td>
<td>See label for soil application instructions.</td>
</tr>
<tr>
<td>(Admire Pro) 4.6 F (various) 1.6 F</td>
<td>1.2 fl oz</td>
<td>12 hrs</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>spirotetramat, MOA 23 (Movento)</td>
<td>4 to 5 fl oz</td>
<td>24 hrs</td>
<td>1 (succulent) 7 (dry)</td>
<td>PHI is 1 day for succulent beans and 7 days for dry beans.</td>
</tr>
</tbody>
</table>
TABLE 2-3. INSECT CONTROL FOR BEET

<table>
<thead>
<tr>
<th>Insecticide, Mode of Action Code, and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Restricted Entry Interval (REI)</th>
<th>Pre harvest Interval (PHI) (Days)</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>APHID</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>flonicamid, MOA 29 (Beleaf) 50 SG</td>
<td>2 to 2.8 oz</td>
<td>12 hrs</td>
<td>3</td>
<td>Begin applications before populations begin to build and before damage is evident. Use higher rates for high populations or dense foliage.</td>
</tr>
<tr>
<td>imidacloprid, MOA 4A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil treatment (Admire Pro) 4.6 F (various) 2 F</td>
<td>4.4 to 10.5 fl oz</td>
<td>12 hrs</td>
<td>21</td>
<td>See label for soil application instructions. Will also control flea beetle. Do not make exceed one application per season.</td>
</tr>
<tr>
<td>Foliar treatment (Admire Pro) 4.6 F (various) 1.6 F</td>
<td>1.2 fl oz</td>
<td>12 hrs</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>flupyradifurone, MOA 4D (Sivanto Prime) 1.67 SL</td>
<td>7.0 to 14 fl oz</td>
<td>4 hrs</td>
<td>7</td>
<td>Do not exceed 28 fl oz per acre per season.</td>
</tr>
<tr>
<td>thiamethoxam, MOA 4A (Platinum) 75 SG</td>
<td>1.7 to 4 oz</td>
<td>12 hrs</td>
<td>30</td>
<td>Soil application only. Platinum may be applied to direct-seeded crops in-furrow at seed or transplant depth, post seeding or transplant as a drench, or through drip irrigation. Do not exceed 3.67 fl oz per acre per season of Platinum. Check label for plant-back restrictions for a number of crops. Will also control flea beetle.</td>
</tr>
<tr>
<td>(Actara) 25 WDG</td>
<td>1.5 to 3 oz</td>
<td>12 hrs</td>
<td>7</td>
<td>Foliar application only. Do not exceed 4 oz per acre per season. Will also control flea beetle.</td>
</tr>
<tr>
<td>ARMYWORMS, BEET WEBWORM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chlorantraniliprole MOA 28 (Coragen) 1.67 SC</td>
<td>3.5 to 7.5 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>indoxacarb MOA 22B (Avaunt eVo) 30 DG</td>
<td>3.5 to 6 oz</td>
<td>12 hrs</td>
<td>7</td>
<td>Do not use adjuvants with Avaunt eVo.</td>
</tr>
<tr>
<td>methoxyfenozide MOA 18 (Intrepid) 2 F</td>
<td>6 to 16 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>spinetoram, MOA 5 (Radiant) 1 SC</td>
<td>6 to 8 fl oz</td>
<td>4 hrs</td>
<td>7</td>
<td>Do not apply more than 32 fluid ounces per acre per season.</td>
</tr>
<tr>
<td>spinosad, MOA 5 (Blackhawk)</td>
<td>1.7 to 3.3 oz</td>
<td>4 hrs</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>viruses</td>
<td>4 hrs</td>
<td></td>
<td></td>
<td>See Table 2-26 for virus-based insecticides effective against specific insects. ORMI listed.</td>
</tr>
<tr>
<td>BLISTER BEETLE, FLEA BEETLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>carbaryl, MOA 1A (Sevin) 50 WP 80 S XLR</td>
<td>3 lb</td>
<td>12 hrs</td>
<td>7</td>
<td>See Table 2-25 for a list of registered pyrethroids and pre-harvest intervals.</td>
</tr>
<tr>
<td>pyrethroid, MOA 3A</td>
<td>1.875 lb 1 qt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEAFMINER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>spinetoram, MOA 5 (Radiant) 1 SC</td>
<td>6 to 10 fl oz</td>
<td>4 hrs</td>
<td>7</td>
<td>Control will be improved with addition of a spray adjuvant.</td>
</tr>
</tbody>
</table>
TABLE 2-4. INSECT CONTROL FOR BROCCOLI, BRUSSELS SPROUT, CABBAGE, and CAULIFLOWER

<table>
<thead>
<tr>
<th>Insecticide, Mode of Action Code, and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Restricted Entry Interval (REI)</th>
<th>Pre harvest Interval (PHI) (Days)</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>APHID</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Where whitefly resistance is an issue (or any other insect with a high potential for resistance to Group 4A MOA insecticides), a foliar-applied Group 4A insecticide program and a soil-applied Group 4A program should not be used in the same season. Also, if using a foliar-applied program, avoid using a block of more than three consecutive applications of any products belonging to Group 4A insecticides.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>acetamiprid, MOA 4A (Assail) 30 SG</td>
<td>2 to 4 oz</td>
<td>12 hrs</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>aldirpyropen, MOA 9D (Versys) 0.83 DC</td>
<td>1.5 fl oz</td>
<td>12 hrs</td>
<td>0</td>
<td>Do not make more than 2 sequential applications before using a different mode of action.</td>
</tr>
<tr>
<td>clothianidin, MOA 4A (Belay) 50 WDG</td>
<td>4.8 to 6.4 oz</td>
<td>12 hrs</td>
<td>NA</td>
<td>Soil application at planting only.</td>
</tr>
<tr>
<td>Soil treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foliar treatment</td>
<td>1.6 to 2.1 oz</td>
<td>12 hrs</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>cyantraniliprole, MOA 28 (Exirel) SE</td>
<td>13.5 to 20.5 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>dimethoate 4 EC, MOA 1B</td>
<td>0.5 to 1 pt</td>
<td>48 hrs</td>
<td>7</td>
<td>Not for use on cabbage</td>
</tr>
<tr>
<td>flonicamid, MOA 29 (Beleaf) 50 SG</td>
<td>2 to 2.8 oz</td>
<td>12 hrs</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>flupyradifurone, MOA 4D (Sivanto Prime) 1.67</td>
<td>7.0 to 14.0 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>imidacloprid, MOA 4A (Admire Pro) 4.6 F (various) 2 F</td>
<td>4.4 to 10.5 fl oz, 10 to 24 fl oz</td>
<td>12 hrs</td>
<td>21</td>
<td>Do not follow soil applications of Admire with foliar applications of any neonicotinoid insecticide. Use only one application method. See label for soil application instructions. Imidacloprid also controls whiteflies.</td>
</tr>
<tr>
<td>Foliar treatment</td>
<td>1.3 fl oz, 3.75 fl oz</td>
<td>12 hrs</td>
<td>7</td>
<td>Imidacloprid also controls whiteflies. Not effective against flea beetle.</td>
</tr>
<tr>
<td>pymetrozine, MOA 9B (Fufill) 50 WDG</td>
<td>2.75 oz</td>
<td>12 hrs</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>pyrifluquinazon, MOA 9B (PQZ) 1.87 EC</td>
<td>2.4 to 3.2 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td>See label for rotational crop restrictions. Do not exceed 4.8 fl oz per acre per crop cycle.</td>
</tr>
<tr>
<td>spirotetramat, MOA 23 (Movento) 2 SC</td>
<td>4 to 5 fl oz</td>
<td>24 hrs</td>
<td>1</td>
<td>Do not exceed 10 fluid ounces per season. Requires surfactant.</td>
</tr>
<tr>
<td>cyantraniliprole, MOA 28 (Exirel) SE</td>
<td>13.5 to 20.5 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Soil treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>thiamethoxam, MOA 4A (Platinum) 75 SG</td>
<td>1.66 to 3.67 oz</td>
<td>12 hrs</td>
<td>30</td>
<td>Platinum may be applied to direct-seeded crops in-furrow at seed or transplant depth, post seeding or transplant as a drench, or through drip irrigation. Do not exceed 3.67 oz per acre per season.</td>
</tr>
<tr>
<td>Foliar treatment</td>
<td>1.5 to 3.0 oz</td>
<td>12 hrs</td>
<td>0</td>
<td>Thiamethoxam also controls whiteflies and certain thrips species.</td>
</tr>
<tr>
<td>tolfenpyrad, MOA 21A (Torac) 1.29EC</td>
<td>17 to 21 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>DIAMONDBACK MOTH, CABBAGE LOOPER, IMPORTED CABBAGEWORM, CORN EARWORM, CROSS-STRIPED CABBAGEWORM, CABBAGE WEBWORM, ARMYWORMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insecticide-resistant diamondback moth populations, widespread in Southeastern U.S., may not be controlled with some registered insecticides. To manage resistance, avoid transplants from Georgia and Florida and avoid repeated use of the same materials for extended periods. Also, pyrethroid insecticides destroy natural enemies and often aggravate diamondback moth problems. Do not allow populations to increase to large densities before initiating treatments.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacillus thuringiensis, MOA 11A (Dipel) DF (Javelin) 11A (Xentari) WDG</td>
<td>0.5 to 2 lb, 0.12 to 1.5 lb, 0.5 to 1.5 lb</td>
<td>4 hrs</td>
<td>0</td>
<td>On foliage every 7 days. On summer or fall plantings, during periods when eggs and larvae are present. This usually occurs when true leaves appear, on other plantings, it may occur later. A spreader/sticker will be helpful. Not effective against Cabbage webworm.</td>
</tr>
<tr>
<td>chlorantraniliprole, MOA 28 (Coragen) 1.67 SC</td>
<td>3.5 to 7.5 fl oz</td>
<td>4 hrs</td>
<td>3</td>
<td>Foliar, drip or soil application. See label for soil application instructions.</td>
</tr>
<tr>
<td>cyclaniliprole, MOA 28 (Harvanta) 50 SL</td>
<td>10.9 to 16.4 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td>Harvanta is for foliar application only.</td>
</tr>
<tr>
<td>Insecticide, Mode of Action Code, and Formulation</td>
<td>Amount of Formulation Per Acre</td>
<td>Restricted Entry Interval (REI)</td>
<td>Pre harvest Interval (PHI) (Days)</td>
<td>Precautions and Remarks</td>
</tr>
<tr>
<td>---</td>
<td>-------------------------------</td>
<td>--------------------------------</td>
<td>----------------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>DIAMONDBACK MOTH, CABBAGE LOOPER, IMPORTED CABBAGEWORM, CORN EARWORM, CROSS-STRIPED CABBAGEWORM, CABBAGE WEBWORM, ARMYWORMS (CONT’D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cyantraniliprole, MOA 28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil treatment (Verimark) 1.67 SC</td>
<td>5 to 13.5 fl oz</td>
<td>4 hrs</td>
<td>NA</td>
<td>Verimark is for soil application only and may be applied as transplant drench no earlier than 72 hr before planting, or as an in-furrow spray at planting. Higher rates will control aphids.</td>
</tr>
<tr>
<td>cyantraniliprole, MOA 28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foliar treatment (Exirel) 0.83SE</td>
<td>7 to 17 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td>Exirel is for foliar application only. Use higher rates for cabbage looper.</td>
</tr>
<tr>
<td>emamectin benzoate, MOA 6 (Proclaim) 5 WDG</td>
<td>3.2 to 4.8 oz</td>
<td>12 hrs</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Indoxacarb, MOA 22B (Avaunt eVo) 30 WDG</td>
<td>2.5 to 3.5 oz</td>
<td>12 hrs</td>
<td>3</td>
<td>Add a wetting agent to improve spray. Do not apply more than 14 ounces (0.26-pound a.i.) per acre per crop. The minimum interval between sprays is 3 days.</td>
</tr>
<tr>
<td>methoxyfenozide, MOA 18 (Intrepid) 2F</td>
<td>4 to 16 fl oz</td>
<td>4 hrs</td>
<td>7</td>
<td>Use lower rates for early season applications to young crops, and higher rates for mid- to late-season applications and heavier infestations. For suppression only against diamondback moth. Do not apply more than 16 fl oz per acre per season.</td>
</tr>
<tr>
<td>novaluron, MOA 15 (Rimon) 0.83 EC</td>
<td>6 to 12 fl oz</td>
<td>12 hrs</td>
<td>7</td>
<td>Use lower rates when targeting eggs or small larvae, and use higher rates when larvae are large. Make no more than three applications or 24 fluid ounces per acre per season.</td>
</tr>
<tr>
<td>spinetoram, MOA 5 (Radiant) 1 SC</td>
<td>5 to 10 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>viruses</td>
<td></td>
<td>4 hrs</td>
<td></td>
<td>See Table 2-26 for virus-based insecticides effective against specific insects. ORMI listed.</td>
</tr>
<tr>
<td>FLEA BEETLE, HARLEQUIN BUG, STINK BUG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>clothianidin, MOA 4A (Belay) 50 WDG</td>
<td>4.8 to 6.4 oz</td>
<td>12 hrs</td>
<td>NA</td>
<td>Soil applications may only be made at planting. See label for application methods.</td>
</tr>
<tr>
<td>Soil treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foliar treatment</td>
<td>1.6 to 2.1 oz</td>
<td>12 hrs</td>
<td>7</td>
<td>Do not exceed 14 oz per acre per season. Do not combine soil and foliar applications.</td>
</tr>
<tr>
<td>cyantraniliprole, MOA 28 (Verimark) 1.67 SC</td>
<td>6.75 to 13.5 fl oz</td>
<td>4 hrs</td>
<td>NA</td>
<td>Verimark is for at planting soil application only. See label for application options. Use higher rates for flea beetle. Not for harlequin or stink bug.</td>
</tr>
<tr>
<td>(Exirel) 0.83 SE</td>
<td>13.5 to 20.5 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td>Exirel is for foliar application only. Not for harlequin or stink bug.</td>
</tr>
<tr>
<td>dinofuran, MOA 4A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foliar treatment (Venom) 70 SG (Scorpion) 35 SL</td>
<td>1 to 4 oz</td>
<td>12 hrs</td>
<td>1</td>
<td>See label for soil application options. Do not combine soil and foliar applications.</td>
</tr>
<tr>
<td>Soil treatment (Venom) 70 SG (Scorpion) 35 SL</td>
<td>2 to 7 fl oz</td>
<td>12 hrs</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>dimethoate 4 EC, MOA 1B</td>
<td>0.5 to 1 pt</td>
<td>48 hrs</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>pyrethroid, MOA 3A</td>
<td></td>
<td>12 hrs</td>
<td></td>
<td>See Table 2-25 A for a list of registered pyrethroids and pre- harvest intervals</td>
</tr>
<tr>
<td>YELLOWMARGINED LEAF BEETLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pyrethroid, MOA 3A</td>
<td></td>
<td>12 hrs</td>
<td></td>
<td>Applications need to be made at the first sign of infestation, and before head formation. Problems are most common in spring and fall months along the gulf coast areas.</td>
</tr>
<tr>
<td>Spinetoram, MOA 5 (Radiant) SC</td>
<td>5 to 10 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td>Early application before head formation is important.</td>
</tr>
<tr>
<td>ROOT MAGGOT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>diazinon, MOA 1B (Diazinon 50 W) 50 WP</td>
<td>0.25 to 0.5 lb/ 50 gal</td>
<td>4 days</td>
<td></td>
<td>Transplant water: Apply in transplant water or drench water at 4 to 6 oz per plant at transplanting.</td>
</tr>
<tr>
<td>cyantraniliprole, MOA 28 (Verimark) 1.67 SC</td>
<td>10 to 13.5 fl oz</td>
<td>4</td>
<td></td>
<td>Apply to soil at planting as an in-furrow spray, transplant tray drench, transplant water, hill drench, surface band, or soil shank.</td>
</tr>
</tbody>
</table>
TABLE 2-4. INSECT CONTROL FOR BROCCOLI, BRUSSELS SPROUT, CABBAGE, and CAULIFLOWER (cont’d)

<table>
<thead>
<tr>
<th>Insecticide, Mode of Action Code, and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Restricted Entry Interval (REI)</th>
<th>Pre harvest Interval (PHI) (Days)</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>THRIPS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dimethoate 4 EC, MOA 1B (Assail) 30 SG</td>
<td>0.5 to 1 pt</td>
<td>48 hrs</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>acetamiprid, MOA 4A (Assail)</td>
<td>4.0 oz</td>
<td>12 hrs</td>
<td>7</td>
<td>Efficacy will vary depending on thrips species.</td>
</tr>
<tr>
<td>imidacloprid, MOA 4A (Admire Pro) 4.6F (various) 2F</td>
<td>1.3 fl oz 3.0 fl oz</td>
<td>12 hrs</td>
<td>7</td>
<td>Check label for rates for other formulations. Foliar applications only. Efficacy will vary depending on thrips species.</td>
</tr>
<tr>
<td>methomyl, MOA 1A (Lannate) 2.4 LV</td>
<td>1.5 pt</td>
<td>48 hrs</td>
<td>3 (1 for cabbage)</td>
<td></td>
</tr>
<tr>
<td>novaluron, MOA 15 (Rimon) 0.83 EC</td>
<td>6 to 12 fl oz</td>
<td>12 hrs</td>
<td>7</td>
<td>Make no more than two applications, or 24 fl oz per acre per season.</td>
</tr>
<tr>
<td>spinetoram, MOA 5 (Radiant) 1 SC</td>
<td>6 to 10 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>WHITEFLY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>acetamiprid, MOA 4A (Assail) 30 SG</td>
<td>2.5 to 4.0 oz</td>
<td>12 hrs</td>
<td>7</td>
<td>Use spreader stick to improve control.</td>
</tr>
<tr>
<td>afidopyropen, MOA 9D (Versys) 0.83 DC</td>
<td>5 to 7</td>
<td>12</td>
<td>0</td>
<td>Do not make more than 2 sequential applications before using a different mode of action.</td>
</tr>
<tr>
<td>cyantraniliprole, MOA 28 (Verimark) 1.67 SC</td>
<td>6.75 to 13.5 fl oz</td>
<td>4 hrs</td>
<td>NA</td>
<td>Verimark is for at planting soil application only. See label for application options.</td>
</tr>
<tr>
<td>Foliar treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil treatment (Exirel) 0.83 SE</td>
<td>13.5 to 20.5 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td>Exirel is for foliar application only.</td>
</tr>
<tr>
<td>dinotefuran, MOA 4A (Venom) 70 SG (Scorpion) 35 SL</td>
<td>1 to 4 oz 2 to 7 oz</td>
<td>12 hrs</td>
<td>1</td>
<td>Do not follow soil applications with foliar applications of any neonicotinoid insecticide. Use only one application method. Do not apply more than 6 oz per acre per season using foliar applications, or 12 oz per acre per season using soil applications. Soil applications may be applied by a narrow band below or above the seed line at planting; a post-seeding or transplant drench with sufficient water to ensure incorporation to the root zone; or through drip irrigation.</td>
</tr>
<tr>
<td>Foliar treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil treatment (Venom) 70 SG (Scorpion) 35 SL</td>
<td>5 to 6 oz 9 to 10.5 fl oz</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>flupyradifurone, MOA 4D (Sivanto Prime)</td>
<td>10.5 to 14 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td>Do not exceed 28 fl oz per acre per season. Do not combine foliar and soil applications. See label for application options.</td>
</tr>
<tr>
<td>Foliar treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil treatment</td>
<td>21 to 28 fl oz</td>
<td>4 hrs</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>spiromesifen, MOA 23 (Oberon) 2 SC</td>
<td>7 to 8.5 fl oz</td>
<td>12 hrs</td>
<td>14</td>
<td>Do not exceed 22.4 fl oz per acre per season.</td>
</tr>
<tr>
<td>spirotetramat, MOA 23 (Movento) 2 SC</td>
<td>4 to 5 fl oz</td>
<td>24 hrs</td>
<td>1</td>
<td>Do not exceed 10 fl oz per season. Requires surfactant. Use a spreader-penetrator adjuvant.</td>
</tr>
<tr>
<td>pyriflquinazon, MOA 9B (POZ) 1.87 EC</td>
<td>2.4 to 3.2 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td>See label for rotational crop restrictions. Do not exceed 4.8 fl oz per acre per crop cycle.</td>
</tr>
<tr>
<td>pyrazoxifen, MOA 7C (Knack) 0.86 EC</td>
<td>8 to 10 fl oz</td>
<td>12 hrs</td>
<td>7</td>
<td>Only treat whole fields, and do not apply to any crop other than those for which Knack is registered within 30 days after the last application. Will not control adults.</td>
</tr>
</tbody>
</table>
TABLE 2-5. INSECT CONTROL FOR CARROT

<table>
<thead>
<tr>
<th>Insecticide, Mode of Action Code, and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Restricted Entry Interval (REI)</th>
<th>Pre harvest Interval (PHI) (Days)</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>APHID, LEAFHOPPER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>imidacloprid, MOA 4A Soil treatment (Admire Pro) 4.6 F (various) 1.6 F</td>
<td>4.4 to 10.5 fl oz 10 to 24 fl oz</td>
<td>12 hrs</td>
<td>21</td>
<td>Must be applied to the soil. May be applied via chemigation into the root zone through low-pressure drip, trickle, micro sprinkler, or equivalent equipment; in-furrow spray or shanked-in 1 to 2 inches below seed depth during planting; or in a narrow band (2 inches or less) 1 to 2 inches directly below the eventual seed row in a bedding operation 14 or fewer days before planting. Higher rates provide longer lasting control. See label for information on approved application methods and rate per 100 row feet for different row spacing.</td>
</tr>
<tr>
<td>thiamethoxam, MOA 4A (Platinum) 75 SG</td>
<td>1.66 to 3.67 oz</td>
<td>12 hrs</td>
<td>30</td>
<td>Platinum may be applied to direct-seeded crops in-furrow at seeding, immediately after seeding with sufficient water to ensure incorporation into the root zone, or through trickle irrigation</td>
</tr>
<tr>
<td>(Actara) 25 WDG</td>
<td>1.5 to 3 oz</td>
<td>12 hrs</td>
<td>7</td>
<td>Actara is applied to foliage. Do not exceed 4 ounces Actara per acre per season.</td>
</tr>
<tr>
<td>fiorinocid, MOA 29 (Beleaf) 50 SG</td>
<td>2 to 2.8 fl oz</td>
<td>12 hrs</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>flupyradifurone, MOA 4D (Sivanto Prime) 1.67 SL</td>
<td>7.0 to 10.5 fl oz</td>
<td>4 hrs</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>cyrantraniliprole, MOA 28 (Exirel) 0.83 SE</td>
<td>13.5 to 20.5 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ARMYWORMS, PARSLEYWORM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pyrethroid, MOA 3A</td>
<td></td>
<td>12 hrs</td>
<td>See Table 2-25 A for a list of registered pyrethroids and pre-harvest intervals.</td>
<td></td>
</tr>
<tr>
<td>carbaryl, MOA 1A (Sevin) 80 S (Sevin) XLR Plus</td>
<td>1.25 lb 1 qt</td>
<td>12 hrs</td>
<td>7</td>
<td>On foliage as needed</td>
</tr>
<tr>
<td>chlorantraniliprole, MOA 28 (Coragen) 1.67 SC</td>
<td>3.5 to 7.5 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td>Coragen may be used for foliar or drip chemigation.</td>
</tr>
<tr>
<td>cyrantraniliprole, MOA 28 (Exirel) 0.83 SE</td>
<td>13.5 to 20.5 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>emamectin benzoate, MOA 6 Proclaim 5 SG</td>
<td>3.2 to 4.8 fl oz</td>
<td>12 hrs</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>methomyli, MOA 1A (Lannate) 2.4 LV (Lannate) 90 SP</td>
<td>0.75 to 1.5 pt 0.25 to 0.5 lb</td>
<td>48 hrs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>methoxyfenozide, MOA 18 (Intrepid) 2 F</td>
<td>4 to 10 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td>Use higher rates against large larvae.</td>
</tr>
<tr>
<td>spinetoram, MOA 5 (Radiant) 1 SC</td>
<td>6 to 8 fl oz</td>
<td>4 hrs</td>
<td>3</td>
<td>Radiant will not control leafhoppers. Do not make more than 4 applications per year.</td>
</tr>
<tr>
<td>viruses</td>
<td></td>
<td>4 hrs</td>
<td>See Table 2-26 for virus-based insecticides effective against specific insects. ORMi listed.</td>
<td></td>
</tr>
<tr>
<td>LEAFMINER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>spinetoram, MOA 5 (Radiant) 1 SC</td>
<td>6 to 8 fl oz</td>
<td>4 hrs</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>chlorantraniliprole, MOA 28 (Coragen) 1.67 SC</td>
<td>3.5 to 7.5 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td>Coragen may be used for foliar or drip chemigation.</td>
</tr>
<tr>
<td>cyrantraniliprole, MOA 28 (Exirel) 0.83 SE</td>
<td>13.5 to 20.5 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>WIREWORM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>diazinon, MOA 1B (Diazinon) (AG 500)</td>
<td>4 qt</td>
<td>3 days</td>
<td>—</td>
<td>Broadcast and incorporate preplant.</td>
</tr>
</tbody>
</table>
TABLE 2-6. INSECT CONTROL FOR CELERY

<table>
<thead>
<tr>
<th>Insecticide, Mode of Action Code, and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Restricted Entry Interval (REI)</th>
<th>Pre harvest Interval (PHI) (Days)</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>APHID, LEAFHOPPER, FLEA BEETLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>afidopyropen, MOA 9D (Versys) DC</td>
<td>1.5 fl oz</td>
<td>12 hrs</td>
<td>0</td>
<td>Do not make more than 2 sequential applications before using a different mode of action. Will not control flea beetle</td>
</tr>
<tr>
<td>imidacloprid, MOA 4A (Admire Pro) 4.6 F (various) 2 F</td>
<td>7 to 10.5 fl oz 16 to 24 fl oz</td>
<td>12 hrs</td>
<td>21</td>
<td>Apply via chemigation into the root zone, as an in-furrow spray at planting on/ or below the seed, or as a post-seeding or transplant drench.</td>
</tr>
<tr>
<td>thiamethoxam, MOA 4A (Actara) 25 WDG</td>
<td>1.5 to 3 oz</td>
<td>12 hrs</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>acetamiprid, MOA 4A (Assail) 30 SG</td>
<td>2 to 4 fl oz</td>
<td>12 hrs</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>clothianidin, MOA 4A (Belay) 2.13 SC Soil treatment</td>
<td>9 to 12 fl oz</td>
<td>4 hrs</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Foliar treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sulfoxafrole, MOA 4C (Closer) SC</td>
<td>1.5 to 2 fl oz</td>
<td>12 hrs</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>fipronil, MOA 29 (Beelaf) 50 SG</td>
<td>2 to 2.8 oz</td>
<td>12 hrs</td>
<td>0</td>
<td>Will not control flea beetle.</td>
</tr>
<tr>
<td>flupyradifurone, MOA 4D (Sivanto Prime) 1.67 SL</td>
<td>10.5 to 12.0 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td>Will not control flea beetle</td>
</tr>
<tr>
<td>pyrifluquinazon, MOA 29 (POZ) 1.87EC</td>
<td>2.4 to 3.2 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td>See label for rotational crop restrictions. Do not exceed 4.8 fl oz per acre per crop cycle. Will not control flea beetle</td>
</tr>
<tr>
<td>spirotetramat, MOA 23 (Movento) 2 SC</td>
<td>4 to 5 fl oz</td>
<td>24 hrs</td>
<td>3</td>
<td>Do not exceed 10 fluid ounces per season. Not for flea beetle. Requires surfactant. Will not control flea beetle</td>
</tr>
<tr>
<td>cyrantraniliprole, MOA 28 (Exirel) 0.83 SE</td>
<td>13.5 to 20.5 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>cyclaniliprole, MOA 28 (Harvanta) 50 SL</td>
<td>10.9 to 16.4 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>tolenpyrad, MOA 21A (Torac) 1.29 EC</td>
<td>17 to 21 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ARMYWORMS, CORN EARWORM, LOOPER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chlorantraniliprole, MOA 28 (Coragen) 1.67 SC</td>
<td>3.5 to 7.5 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td>Foliar or drip chemigation. Drip chemigation must be applied uniformly to the root zone. See label for instructions.</td>
</tr>
<tr>
<td>cyantraniliprole, MOA 28 (Exirel) 0.83 SE</td>
<td>7 to 13.5 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>cyclaniliprole, MOA 28 (Harvanta) 50 SL</td>
<td>10.9 to 16.4 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>emamectin benzoate, MOA 6 (Proclaim) 5 WDG</td>
<td>2.4 to 4.8 oz</td>
<td>12 hrs</td>
<td>7</td>
<td>Do not make more than two sequential applications without rotating to another product with a different mode of action.</td>
</tr>
<tr>
<td>indoxacarb, MOA 22B (Avaunt 30 WDG, Avaunt eVo)</td>
<td>3.5 oz</td>
<td>12 hrs</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>methomyl, MOA 1A (Lannate) 2.4 LV</td>
<td>3 pt</td>
<td>48 hrs</td>
<td>7</td>
<td>Methomyl may induce leafminer infestations.</td>
</tr>
<tr>
<td>methoxyfenozide, MOA 18 (Intrepid) 2 F</td>
<td>4 to 10 fl oz</td>
<td>4 hrs</td>
<td>7</td>
<td>For early season applications only to young crop and small plants. For mid- to late-season applications and heavier infestations and under conditions in which thorough coverage is more difficult. Do not apply more than 16 fl oz per application and do not exceed 64 fl oz per season. See Rotational Crop Restrictions on label.</td>
</tr>
<tr>
<td>pyrethroid, MOA 3A</td>
<td>12 hrs</td>
<td>See Table 2-25 A for registered pyrethroids and pre-harvest intervals.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>spinetoram, MOA 5 (Radiant) 1 SC</td>
<td>5 to 10 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td>Use higher rates for armyworms.</td>
</tr>
<tr>
<td>viruses</td>
<td>4 hrs</td>
<td>See Table 2-26 for virus-based insecticides effective against specific insects. ORMI listed.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LEAFMINER

<table>
<thead>
<tr>
<th>Insecticide, Mode of Action Code, and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Restricted Entry Interval (REI)</th>
<th>Pre harvest Interval (PHI) (Days)</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>abamectin, MOA 6 (Agri-Mek) 0.15EC</td>
<td>1.75 to 3.5 fl oz</td>
<td>12 hrs</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 2-6. INSECT CONTROL FOR CELERY (cont’d)

<table>
<thead>
<tr>
<th>Insecticide, Mode of Action Code, and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Restricted Entry Interval (REI)</th>
<th>Pre harvest Interval (PHI) (Days)</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEAFMINER (CONT’D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chlorantraniliprole, MOA 28 (Coragen) 1.67 SC</td>
<td>5 to 7.5 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td>Foliar or drip chemigation. Drip chemigation must be applied uniformly to the root zone. See label for instructions.</td>
</tr>
<tr>
<td>cyromazine, MOA 17 (Trigard 75 WP)</td>
<td>2.66 oz</td>
<td>12 hrs</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>spinetoram, MOA 5 (Radiant) 1 SC</td>
<td>6 to 10 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 2-7. INSECT CONTROL FOR COLLARD and MUSTARD GREENS

<table>
<thead>
<tr>
<th>Insecticide, Mode of Action Code, and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Restricted Entry Interval (REI)</th>
<th>Pre harvest Interval (PHI) (Days)</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>APHID</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>acetamiprid, MOA 4A (Assail) 30 SG</td>
<td>2 to 3 oz</td>
<td>12 hrs</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>afidopyropen, MOA 9D (Versys) DC</td>
<td>1.5 fl oz</td>
<td>12 hrs</td>
<td>0</td>
<td>Do not make more than 2 sequential applications before using a different mode of action.</td>
</tr>
<tr>
<td>clothianidin, MOA 4A (Belay) 50 WDG</td>
<td>4.8 to 6.4 oz</td>
<td>12 hrs</td>
<td>NA</td>
<td>Soil application at planting only.</td>
</tr>
<tr>
<td>Soil treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foliar treatment</td>
<td>1.6 to 2.1 oz</td>
<td>12 hrs</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>fipronil, MOA 20D (Beleaf) 50 SG</td>
<td>2 to 2.8 fl oz</td>
<td>12 hrs</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>flupyradifurone, MOA 4D (Sivanto Prime) 1.67 SL</td>
<td>10.5 to 14.0 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>imidacloprid, MOA 4A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foliar treatment</td>
<td>4.4 to 10.5 fl oz</td>
<td>12 hrs</td>
<td>21</td>
<td>See label for soil application instructions. Admire Pro will also control flea beetle.</td>
</tr>
<tr>
<td>pymetrozine, MOA 9B (Fulfill) 50 WDG</td>
<td>2.75 oz</td>
<td>12 hrs</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>pyrifluquinazon, MOA 29 (POZ) 1.87 EC</td>
<td>2.4 to 3.2 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td>See label for rotational crop restrictions. Do not exceed 4.8 fl oz per acre per crop cycle.</td>
</tr>
<tr>
<td>sulfmethuron, MOA 4C (Closer) SC</td>
<td>4.25 to 5.75 fl oz</td>
<td>12 hrs</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>spirotetramat, MOA 23 (Movento) 2 SC</td>
<td>4 to 5 fl oz</td>
<td>24 hrs</td>
<td>1</td>
<td>Do not exceed 10 fluid ounces per season. Requires surfactant.</td>
</tr>
</tbody>
</table>

CATERPILLARS, including DIAMONDBACK MOTH, CATERPILLARS, including CABBAGE LoOPER, IMPORTED CABBAGEWORM, CROSS-STRIPED CABBAGEWORM, CABBAGE WEBWORM, ARMYWORMS

Insecticide-resistant populations of diamondback may not be controlled with some registered insecticides. To manage resistance, avoid transplants from Georgia and Florida, and avoid the repeated use of the same materials for extended periods. Use of pyrethroid insecticides destroys natural enemies and aggravates diamondback moth problems. Do not allow populations to increase to large densities before treatments are initiated. Also, do not apply insecticides with the same mode of action (i.e., MOA group) more than twice to any generation of diamondback moth. After two applications, rotate to an insecticide with a different mode of action.

- **Bacillus thuringiensis, MOA 11A (Crymax) WDG (Dipel) 2X, DF (Dipel) (Xentari) DF**
 - 0.5 to 1.5 lb 8 oz 1 pt 0.5 to 2 lb
 - 4 hrs
 - Use a spreader/sticker. OMRI listed.

- **chlorantraniliprole, MOA 28 (Coragen) 1.67 SC**
 - 3.5 to 7.5 fl oz
 - 4 hrs
 - Foliar or drip chemigation. Drip chemigation must be applied uniformly to the root zone. See label for instructions.
TABLE 2-7. INSECT CONTROL FOR COLLARD and MUSTARD GREENS (cont’d)

<table>
<thead>
<tr>
<th>Insecticide, Mode of Action Code, and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Restricted Entry Interval (REI)</th>
<th>Pre harvest Interval (PHI) (Days)</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>CATERPILLARS, including DIAMONDBACK MOTH, CATERPILLARS, including CABBAGE LOOPER, IMPORTED CABBAGEWORM, CROSS-STRIPED CABBAGEWORM, CABBAGE WEBWORM, ARMYWORMS (CONT’D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cyclaniliprole, MOA 28 (Harvanta) 50 SL</td>
<td>10.9 to 16.4 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td>Harvanta is for foliar application only.</td>
</tr>
<tr>
<td>emanectin benzoate, MOA 6 (Proclaim) 5 WDG</td>
<td>2.4 to 4.8 oz</td>
<td>12 hrs</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>indexacarb, MOA 22B (Avaunt eVo) 30 WDG</td>
<td>3.5 oz</td>
<td>12 hrs</td>
<td>3</td>
<td>Do not apply Avaunt more than twice to any generation of diamondback moth. After two applications, rotate to an insecticide with a different mode of action. Do not make more than 6 applications (4 in GA), or exceed 14 ounces per season per crop.</td>
</tr>
<tr>
<td>spinetoram, MOA 5 (Radiant) 1 SC</td>
<td>5 to 10 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>methoxyfenozide, MOA 18 (Intrepid) 2 F</td>
<td>4 to 10 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>tolfenpyrad, MOA 21A (Torac)</td>
<td>21 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>viruses</td>
<td></td>
<td>4 hrs</td>
<td>See Table 2-26 for virus-based insecticides effective against specific insects. ORM listed.</td>
<td></td>
</tr>
<tr>
<td>FLEA BEETLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>carbaryl, MOA 1A (Sevin) 50 WP</td>
<td>3 lb</td>
<td>12 hrs</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>carbaryl, MOA 1A (Sevin) 80 S</td>
<td>1.675 lb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>acetamiprid, MOA 4A (Assail) 30 SG</td>
<td>2 to 4 oz</td>
<td>12 hrs</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>dinotefuran, MOA 4A Foliar treatment</td>
<td></td>
<td>12 hrs</td>
<td>7</td>
<td>Do not follow soil applications with foliar applications. Use only one application method. Do not apply more than 6 ounces per acre per season using foliar applications, or 12 ounces per acre per season using soil applications.</td>
</tr>
<tr>
<td>(Venom) 70 SG (Scorpion) 35 SL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Venom) 70 SG (Scorpion) 35 SL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pyrethroid, MOA 3A</td>
<td></td>
<td>12 hrs</td>
<td></td>
<td>See Table 2-25 A for a list of registered pyrethroids and pre-harvest intervals. May flare diamond back moth populations.</td>
</tr>
<tr>
<td>GRASSHOPPER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pyrethroid, MOA 3A</td>
<td></td>
<td>12 hrs</td>
<td></td>
<td>See Table 2-25 A for a list of registered pyrethroids and pre-harvest intervals. May flare diamond back moth populations.</td>
</tr>
<tr>
<td>HARLEQUIN BUG, STINK BUG, YELLOWMARGINED LEAF BEETLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>clothianidin, MOA 4A (Belay) 50 WDG</td>
<td></td>
<td>12 hrs</td>
<td></td>
<td>Soil application at planting only.</td>
</tr>
<tr>
<td>Soil treatment</td>
<td></td>
<td>1.68 to 2.3 oz</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Foliar treatment</td>
<td></td>
<td>1.6 to 2.1 oz</td>
<td>12 hrs</td>
<td>7 Dinotefuran recommendations are for foliar applications.</td>
</tr>
<tr>
<td>(Venom) 70 SG (Scorpion) 35 SL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dinotefuran, MOA 4A (Venom) 70 SG (Scorpion) 35 SL</td>
<td>1 to 4 oz</td>
<td>12 hrs</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>pyrethroid, MOA 3A</td>
<td></td>
<td>12 hrs</td>
<td></td>
<td>See Table 2-25 A for a list of registered pyrethroids and pre-harvest intervals. May flare diamond back moth populations.</td>
</tr>
<tr>
<td>thiamethoxam, MOA 4A (Actara) 25 WDG</td>
<td></td>
<td>12 hrs</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>ROOT MAGGOT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tolfenpyrad, MOA 21A (Torac)</td>
<td>21 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td>Read soil application guidelines on label.</td>
</tr>
<tr>
<td>cyantraniliprole, MOA 28 (Verimark)</td>
<td>10 to 13.5 fl oz</td>
<td>4 hrs</td>
<td>at-planting only</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 2-7. INSECT CONTROL FOR COLLARD and MUSTARD GREENS (cont’d)

<table>
<thead>
<tr>
<th>Insecticide, Mode of Action Code, and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Restricted Entry Interval (REI)</th>
<th>Pre harvest Interval (PHI) (Days)</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHITEFLY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>acetamiprid, MOA 4A (Assail) 30 SG</td>
<td>2.5 to 4.0 oz</td>
<td>12 hrs</td>
<td>7</td>
<td>Apply against adults, before nymphs are present. Use a spreader/sticker to improve control.</td>
</tr>
<tr>
<td>afidopropen, MOA 9D (Versys) DC</td>
<td>5 to 7</td>
<td>12 hrs</td>
<td>0</td>
<td>Do not make more than 2 sequential applications before using a different mode of action.</td>
</tr>
<tr>
<td>fluapyridifurone, MOA 4D (Sivanto) 200 L</td>
<td>10.5 to 14.0 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td>Do not make more than 3 applications or apply more than 28 fluid oz per season.</td>
</tr>
<tr>
<td>pyriproxyfen, MOA 7C (Knack) 0.86 EC</td>
<td>8 to 10 fl oz</td>
<td>12 hrs</td>
<td>7</td>
<td>Apply against adults, before nymphs are present. Use a spreader/sticker to improve control.</td>
</tr>
<tr>
<td>pyrifluquinazon, MOA 29 (POZ) 1.87 EC</td>
<td>2.4 to 3.2 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td>See label for rotational crop restrictions. Do not exceed 4.8 fl oz per acre per crop cycle.</td>
</tr>
<tr>
<td>spiromesifen, MOA 23 (Oberon) 2 SC</td>
<td>7 to 8.5 fl oz</td>
<td>12 hrs</td>
<td>7</td>
<td>Do not apply Knack more than twice per season or exceed 0.134 pound per acre per season.</td>
</tr>
<tr>
<td>spirotetramat, MOA 23 (Movento) 2 SC</td>
<td>4 to 5 fl oz</td>
<td>24 hrs</td>
<td>1</td>
<td>Do not exceed 10 fluid ounces per season. Requires surfactant.</td>
</tr>
<tr>
<td>sulfoxaflor, MOA 4C (Closer) SC</td>
<td>4.25 to 5.75 fl oz</td>
<td>12 hrs</td>
<td>3</td>
<td>Do not apply more than 15.4 fl oz of Coragen or 0.2 lb a.i. of chlorantraniliprole per acre per year.</td>
</tr>
</tbody>
</table>

TABLE 2-8. INSECT CONTROL FOR CORN, SWEET

<table>
<thead>
<tr>
<th>Insecticide, Mode of Action Code, and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Restricted Entry Interval (REI)</th>
<th>Pre harvest Interval (PHI) (Days)</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>CORN EARWORM, FALL ARMYWORMS, EUROPEAN CORN BORER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>transgenic sweet corn varieties expressing Bt protein</td>
<td>Highly effective against European corn borer. Effectiveness against corn earworm will vary among BT traits and there is evidence that resistance in corn earworm to commonly used traits is becoming common. Varieties containing the Vip3A gene (Attribute II and Attribute Plus Series) are still effective at controlling corn earworm. Additional insecticide applications may be required to prevent damage to the ear tips of varieties without the Vip3A gene.</td>
<td>12 hrs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pyrethroid, MOA 3A</td>
<td>6 to 10 fl oz</td>
<td>24 hrs</td>
<td>1</td>
<td>Check label for variety limitations and grazing restrictions. In addition, instances of corn earworm resistance to pyrethroids are becoming more prevalent in recent years. To protect ears, begin sprays when tassel shoots first appear. The frequency of sprays will vary depending on location and intensity of earworm populations, ranging from daily to twice weekly in higher elevations. Corn earworms and fall armyworms present in the late whorl stage must be controlled before tassel emergence to prevent migration to ears.</td>
</tr>
<tr>
<td>chlorantraniliprole MOA 28 (Coragen) 1.67 SC</td>
<td>3.5 to 7.5 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td>Do not apply more than 15.4 fl oz of Coragen or 0.2 lb a.i. of chlorantraniliprole per acre per year.</td>
</tr>
<tr>
<td>lambda-cyhalothrin, MOA 3A + chlorantraniliprole, MOA 28 (Besiege) 2C</td>
<td>Highly effective against European corn borer. Effectiveness against corn earworm will vary among BT traits and there is evidence that resistance in corn earworm to commonly used traits is becoming common. Varieties containing the Vip3A gene (Attribute II and Attribute Plus Series) are still effective at controlling corn earworm. Additional insecticide applications may be required to prevent damage to the ear tips of varieties without the Vip3A gene.</td>
<td>6 to 10 fl oz</td>
<td>24 hrs</td>
<td>1</td>
</tr>
<tr>
<td>methoxyfenozide, MOA 18 + spinetoram, MOA 5 (Intrepid Edge)</td>
<td>Highly effective against European corn borer. Effectiveness against corn earworm will vary among BT traits and there is evidence that resistance in corn earworm to commonly used traits is becoming common. Varieties containing the Vip3A gene (Attribute II and Attribute Plus Series) are still effective at controlling corn earworm. Additional insecticide applications may be required to prevent damage to the ear tips of varieties without the Vip3A gene.</td>
<td>8 to 12 fl oz</td>
<td>4 hrs</td>
<td>3</td>
</tr>
<tr>
<td>methomyl, MOA 1A (Lannate) 90 SP (Lannate) 2.4 LV</td>
<td>Highly effective against European corn borer. Effectiveness against corn earworm will vary among BT traits and there is evidence that resistance in corn earworm to commonly used traits is becoming common. Varieties containing the Vip3A gene (Attribute II and Attribute Plus Series) are still effective at controlling corn earworm. Additional insecticide applications may be required to prevent damage to the ear tips of varieties without the Vip3A gene.</td>
<td>4 to 8 oz 0.75 to 1.5 pt</td>
<td>48 hrs</td>
<td>0</td>
</tr>
<tr>
<td>indoxacarb, MOA 22BA (Avault eVo) 30 WDG</td>
<td>Highly effective against European corn borer. Effectiveness against corn earworm will vary among BT traits and there is evidence that resistance in corn earworm to commonly used traits is becoming common. Varieties containing the Vip3A gene (Attribute II and Attribute Plus Series) are still effective at controlling corn earworm. Additional insecticide applications may be required to prevent damage to the ear tips of varieties without the Vip3A gene.</td>
<td>2.5 to 3.5 oz</td>
<td>12 hrs</td>
<td>3</td>
</tr>
<tr>
<td>spinetoram, MOA 5 (Radiant) 1 SC</td>
<td>3 to 6 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td>Do not apply more than 36 ounces per acre per year.</td>
</tr>
<tr>
<td>spinosad, MOA 5 (Blackhawk)</td>
<td>1.7 to 3.3 oz</td>
<td>4 hrs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 2-8. INSECT CONTROL FOR CORN, SWEET (cont’d)

<table>
<thead>
<tr>
<th>Insecticide, Mode of Action Code, and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Restricted Entry Interval (REI)</th>
<th>Pre harvest Interval (PHI) (Days)</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>CORN EARWORM, FALL ARMYWORMS, EUROPEAN CORN BORER (CONT’D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>viruses</td>
<td></td>
<td></td>
<td>4 hrs</td>
<td>See Table 2-26 for virus-based insecticides effective against specific insects. ORM1 listed.</td>
</tr>
<tr>
<td>CUTWORM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pyrethroid, MOA 3A</td>
<td></td>
<td></td>
<td>12 hrs</td>
<td>See Table 2-25A for a list of registered pyrethroids and pre-harvest intervals.</td>
</tr>
<tr>
<td>SAP BEETLE, FLEA BEETLE, GRASSHOPPER, JAPANESE BEETLE, ROOTWORM BEETLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pyrethroid, MOA 3A</td>
<td></td>
<td></td>
<td>12 hrs</td>
<td>See Table 2-25A for a list of registered pyrethroids and pre-harvest intervals.</td>
</tr>
<tr>
<td>carbaryl, MOA 1A (Sevin) 50 WP (Sevin) 80 S (Sevin) XLR Plus</td>
<td>2 lb 1.25 lb 1 qt</td>
<td>12 hrs</td>
<td>2</td>
<td>Sap beetle infestations usually associated with prior ear damage. Populations build on over mature and damaged fruit and vegetables. Sanitation is critical.</td>
</tr>
<tr>
<td>SOUTHERN CORN BILLBUG, ROOTWORM, WIREWORM, CHINCH BUGS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seed treatments:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>acetamiprid, MOA 4A (Poncho 600)</td>
<td>1.13 to 2.26 fl oz per 80,000 seeds</td>
<td>—</td>
<td>—</td>
<td>Seed treatments are applied by commercial seed treaters only. Not for use in hopper bins, slurry mixes, or any other type of on-farm treatment.</td>
</tr>
<tr>
<td>imidacloprid, MOA 4A (Gaucho 600)</td>
<td>3.6 to 6 oz per cwt seed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pyrethroid, MOA 3A</td>
<td></td>
<td></td>
<td>12 hrs</td>
<td>See Table 2-25A for a list of registered pyrethroids and pre-harvest intervals.</td>
</tr>
<tr>
<td>terbufos, MOA 1B (Counter) 15 G</td>
<td>Banded: 6.5 to 13 lb (40 in. row) OR 6 to 16 oz/1,000 ft row OR In-Furrow: 6.5 lb (40 in. row) OR 6 to 8 oz/1000 ft row</td>
<td></td>
<td></td>
<td>Place granules in a 7-inch band over the row directly behind the planter shoe in front of press wheel. Place granules directly in the seed furrow behind the planter shoe. Rotation is advised.</td>
</tr>
<tr>
<td>STINK BUG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pyrethroids, MOA 3A</td>
<td></td>
<td></td>
<td></td>
<td>See Table 2-25A for a list of registered pyrethroids and pre-harvest intervals.</td>
</tr>
<tr>
<td>methomyl, MOA 1A (Lannate) 90 SP</td>
<td>0.5 lb</td>
<td>48 hrs</td>
<td>0</td>
<td>Certain hybrid varieties of sweet corn are susceptible to methomyl injury.</td>
</tr>
</tbody>
</table>

TABLE 2-9. INSECT CONTROL FOR CUCURBITS (CUCUMBER, CANTALOUPE, PUMPKIN, SQUASH, & WATERMELON) (cont’d)

<table>
<thead>
<tr>
<th>Insecticide, Mode of Action Code, and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Restricted Entry Interval (REI)</th>
<th>Pre harvest Interval (PHI) (Days)</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOTE: Insecticide applications in cucurbits should be made in late evening to protect pollinating insects. Refer to the pollination section of the general production recommendations in this publication for more information about protecting pollinators.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APHID</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>acetamiprid MOA 4A (Assail) 30 SG</td>
<td>2.5 to 4.0 oz</td>
<td>12 hrs</td>
<td>0</td>
<td>Do not exceed 0.5 pound per acre per season.</td>
</tr>
<tr>
<td>afidopyropen, MOA 9D (Sefina) DC</td>
<td>3 oz</td>
<td>12 hrs</td>
<td>0</td>
<td>Do not make more than 2 sequential applications before using a different mode of action.</td>
</tr>
<tr>
<td>cyantraniliprole MOA 28 (Verimark) 1.67 SC</td>
<td>6.75 to 13.5 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td>Applied to the soil at planting or later via drip irrigation system. See label for application options.</td>
</tr>
</tbody>
</table>

2022 Vegetable Crop Handbook for Southeastern United States
TABLE 2-9. INSECT CONTROL FOR CUCURBITS (CUCUMBER, CANTALOUPE, PUMPKIN, SQUASH, & WATERMELON) (cont’d)

<table>
<thead>
<tr>
<th>Insecticide, Mode of Action Code, and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Restricted Entry Interval (REI)</th>
<th>Pre harvest Interval (PHI) (Days)</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>APHID (CONT’D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>flonicamid, MOA 20D (Beleaf) 50 SG</td>
<td>2 to 2.8 oz</td>
<td>12 hrs</td>
<td>0</td>
<td>Begin applications before populations begin to increase and before damage is evident.</td>
</tr>
<tr>
<td>flupyradifurone, MOA 4D (Sivanto Prime) 1.67</td>
<td>21 to 28 fl oz</td>
<td>4 hrs</td>
<td>21</td>
<td>Soil applications through drip irrigation, injected below the seed level at planting, or drench at transplanting.</td>
</tr>
<tr>
<td>Foliar treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>imidacloprid, MOA 4A (Admire Pro) 4.6 F</td>
<td>7 to 10.5 fl oz</td>
<td>12 hrs</td>
<td>21</td>
<td>Must be applied to the soil. May be applied preplant; at planting as a post-seeding drench, transplant water drench, or hill drench; subsurface sidedress or by chemigation using low-pressure drip irrigation methods. Will also control cucumber beetles, thrips and whiteflies.</td>
</tr>
<tr>
<td>pymetrozine, MOA 9B (Fulfill) 50 WDG</td>
<td>2.75 oz</td>
<td>12 hrs</td>
<td>0</td>
<td>Apply before aphids reach damaging levels. Do not exceed 5.5 ounces per acre per season.</td>
</tr>
<tr>
<td>pyrfludinazon, MOA 9B (POZ) 1.87 EC</td>
<td>2.4 to 3.2 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td>See label for rotational crop restrictions. Do not exceed 4.8 fl oz of product per acre per crop cycle. See supplemental label for aerial application.</td>
</tr>
<tr>
<td>sulfoxaflor, MOA 4C (Transform) 50WG</td>
<td>0.75 oz</td>
<td>12 hrs</td>
<td>3</td>
<td>Limit application to times when managed and native pollinators are least active; e.g., 2 hrs before sunset or when temperature is below 50°F.</td>
</tr>
<tr>
<td>thiamethoxam, MOA 4A (Platinum) 75 SG</td>
<td>1.66 to 3.67 oz</td>
<td>12 hrs</td>
<td>30</td>
<td>Platinum is for soil application and may be applied to direct-seeded crops in-furrow at seed or transplant depth, post seeding. See plant-back restrictions for a number of crops.</td>
</tr>
<tr>
<td>ARMYWORMS, CABBAGE LOOPER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacillus thuringiensis, MOA 11A (Crymax) WDG</td>
<td>0.5 to 1.5 lb</td>
<td>4 hrs</td>
<td>0</td>
<td>On foliage as needed.</td>
</tr>
<tr>
<td>(Dipel) 2X</td>
<td>8 oz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Xentari) DF</td>
<td>0.5 to 2 lb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chlorantraniliprole, MOA 28 (Coragen) 1.67 SC</td>
<td>3.5 to 7.5 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td>Coragen may be used for foliar or drip chemigation.</td>
</tr>
<tr>
<td>cyantraniliprole, MOA 28 (Verimark) 1.67 SC</td>
<td>5 to 13.5 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td>Verimark is for soil application only. It may be applied to the soil at planting at 6.75 to 13.5 ounces, or via drip Chemigation at 5 to 10 fluid ounces. Do not make more than two soil or chemigation. See label for application options.</td>
</tr>
<tr>
<td>Foliar treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>indoxacarb, MOA 22B (Avaunt eVo) 30 WDG</td>
<td>2.5 to 6.0 oz</td>
<td>12 hrs</td>
<td>3</td>
<td>Use higher rates for beet armyworm or large larvae.</td>
</tr>
<tr>
<td>methoxyfenozide, MOA 18 (Intrepid) 2 F</td>
<td>4 to 10 fl oz</td>
<td>4 hrs</td>
<td>3</td>
<td>Apply at first sign of infestation, targeting eggs and small larvae.</td>
</tr>
<tr>
<td>novaluron, MOA 15 (Rimon) 0.83 EC</td>
<td>9 to 12 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td>Apply when peak population is at egg hatch through second instar.</td>
</tr>
<tr>
<td>spinetoram, MOA 5 (Radiant) 1 SC</td>
<td>5 to 10 fl oz</td>
<td>4 hrs</td>
<td>3</td>
<td>Use the higher rate for heavy infestations or large larvae.</td>
</tr>
<tr>
<td>viruses</td>
<td></td>
<td>4 hrs</td>
<td></td>
<td>See Table 2-26 for virus-based insecticides effective against specific insects. ORMIL listed.</td>
</tr>
<tr>
<td>CUCUMBER BEETLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>acetamiprid MOA 4A (Assail) 30 SG</td>
<td>2.5 to 5.3 oz</td>
<td>12 hrs</td>
<td>0</td>
<td>Do not exceed 0.5 pound per acre per season.</td>
</tr>
<tr>
<td>carbaryl MOA 1A (Sevin) 50 WP (Sevin) 80 S (Sevin) XLR Plus</td>
<td>2 lb 1.25 lb 1 qt</td>
<td>12 hrs</td>
<td>3</td>
<td>Soil application at planting or through chemigation. See label for application options.</td>
</tr>
<tr>
<td>clothianidin, MOA 4A (Beley) 2.13</td>
<td>9 to 12 fl oz</td>
<td>12 hrs</td>
<td>21</td>
<td>Do not use an adjuvant with foliar applications. Do not spray after the 4th true leaf.</td>
</tr>
</tbody>
</table>
TABLE 2-9. INSECT CONTROL FOR CUCURBITS
(CUCUMBER, CANTALOUPE, PUMPKIN, SQUASH, & WATERMELON) (cont’d)

<table>
<thead>
<tr>
<th>Insecticide, Mode of Action Code, and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Restricted Entry Interval (REI)</th>
<th>Pre harvest Interval (PHI) (Days)</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUCUMBER BEETLE (CONT’D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| dinotefuran MOA 4A
Foliar treatment
(Venom) 70 SG
(Scorpion) 35 SL | 1 to 4 oz
2 to 7 fl oz | 1 | 1 | Do not make a soil and foliar application – use one or the other. Applications made at planting are most effective against cucumber beetle. Will also control whiteflies and squash bug. |
| **Soil treatment**
(Scorpion) 35 SL | 9 to 10.5 fl oz | 21 | | |
| imidacloprid, MOA 4A
(Admire Pro) 4.6 F | 7 to 10.5 fl oz | 12 hrs | 21 | Must be applied to the soil. May be applied preplant; at planting as a post-seeding drench, transplant water drench or hill drench, subsurface sidedress or by chemigation using low pressure drip irrigation methods. Will also control aphids and whiteflies. |
| pyrethroid, MOA 3A | 12 hrs | | | |
| LEAFMINER | | | | |
| pyrethroid, MOA 3A | 12 hrs | | | See Table 2-25 A for a list of registered pyrethroids and pre-harvest intervals. |
| abamectin, MOA 6
(Agri-Mek) 0.7 SC | 1.75 to 3.5 fl oz | 12 hrs | 7 | To avoid illegal residues, Agri-Mek must be mixed with a nonionic activator type wetting, spreading, and/or penetrating spray adjuvant. For resistance management do not make more than two sequential applications. |
| cyromazine, MOA 17
(Trigard) 75 WS | 2.7 oz | 12 hrs | 0 | |
| chlorantraniliprole, MOA 28
(Coragen) 1.67 SC | 5 to 7.5 fl oz | 4 hrs | 1 | For foliar or soil application or drip chemigation. Drip chemigation must be applied uniformly to the root zone. See label for instructions. |
| cyclaniliprole, MOA 28
(Harvanta) 50 SL | 10.9 to 16.4 fl oz | 4 hrs | 1 | |
| spinetoram, MOA 5
(Radiant) 1 SC | 6 to 10 fl oz | 4 hrs | 3 | |
| PICKLEWORM, MELONWORM, CUTWORM | | | | |
| pyrethroid, MOA 3A | 12 hrs | | | See Table 2-25 A for a list of registered pyrethroids and pre-harvest intervals. |
| carbaryl MOA 1A
(Sevin) 50 WP
(Sevin) 80 S
(Sevin) XLR Plus | 2 lb
1.25 lb
1 qt | 12 hrs | 3 | Apply to foliage when worms appear in blossoms. Repeat as needed. Protect pollinators by applying early morning or late evening when pollinators are not active. Rarely a problem before July. |
| chlorantraniliprole, MOA 28
(Coragen) 1.67 SC | 2.5 to 7.5 fl oz | 4 hrs | 1 | For foliar application or drip chemigation. Drip chemigation must be applied uniformly to the root zone. See label for instructions. Use high rate for pickleworm. |
| cyclaniliprole, MOA 28
(Harvanta) 50 SL | 10.9 to 16.4 fl oz | 4 hrs | 1 | |
| cyantraniliprole, MOA 28
(Verimark) 1.67 SC
(Exirel) 0.83 SE | 5 to 10 fl oz
7 to 13.5 fl oz | 4 hrs | 1 | Verimark is for drip chemigation only for these pests. Do not make more than two chemigation applications. See label for application options. Exirel is for foliar application only. |
| methoxyfenozide, MOA 18
(Intrepid) 2 F | 4 to 10 fl oz | 4 hrs | 3 | |
| spinetoram, MOA 5
(Radiant) 1 SC | 5 to 10 fl oz | 4 hrs | 3 | |
| SPIDER MITES | | | | |
| Spider mites are primarily a problem on cucumber and watermelon, and less of an issue on squash and pumpkin. |
| abamectin, MOA 6
(Agri-Mek) 0.7 SC | 1.75 to 3.4 fl oz | 12 hrs | 7 | To avoid illegal residues, Agri-Mek must be mixed with a nonionic activator type wetting, spreading and/or penetrating spray adjuvant. For resistance management, do not make more than two sequential applications. |
| bifenazate, MOA 20D
(Acramec) 50 WS | 0.75 to 1.0 lb | 12 hrs | 3 | Do not make more than one application per season. |
| etoxazole, MOA 10B
(Zeal) 72 WSP | 2 to 3 oz | 12 hrs | 7 | Does not kill adults. Do not make more than one application per season. |
| fenazaquin, MOA 21A
(Magister) 1.7 | 24 to 36 fl oz | 12 hrs | 3 | Do not make more than one application per year. |
| spiromesifen, MOA 23
(Oberon) 2 SC | 7 to 8.5 fl oz | 12 hrs | 7 | |
TABLE 2-9. INSECT CONTROL FOR CUCURBITS (CUCUMBER, CANTALOUPE, PUMPKIN, SQUASH, & WATERMELON) (cont’d)

<table>
<thead>
<tr>
<th>Insecticide, Mode of Action Code, and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Restricted Entry Interval (REI)</th>
<th>Pre harvest Interval (PHI) (Days)</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SQUASH BUGS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>acetamiprid MOA 4A (Assail) 30 SG</td>
<td>5.3 oz</td>
<td>12 hrs</td>
<td>0</td>
<td>Assail is most effective against newly laid eggs and nymphs.</td>
</tr>
<tr>
<td>clothianidin, MOA 4A (Belay) 2.13</td>
<td>3 to 4 fl oz</td>
<td>12 hrs</td>
<td>21</td>
<td>Do not spray after the 4th true leaf. See label for restrictions for protection of pollinators.</td>
</tr>
<tr>
<td>dinotefuran, MOA 4A Foliar treatment</td>
<td>1 to 4 oz</td>
<td>12 hrs</td>
<td>1</td>
<td>Do not make an oil and foliar application – use one or the other. Do not exceed 6 ounces (foliar) or 12 oz (soil) of Venom per acre per season. Do not exceed 10.5 fl oz (foliar) or 21 fl oz (soil) of Scorpion per acre per season. See label for application restrictions for protection of pollinators.</td>
</tr>
<tr>
<td>Soil treatment</td>
<td>5 to 7.5 oz</td>
<td>12 hrs</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>flupyradifurone, MOA 4D (Sivanto Prime)</td>
<td>10.5 to 14.0 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td>Do not apply Sivanto Prime to cantaloupe, honeydew melon, or muskmelon. See label for other additional melons to which it should not be applied.</td>
</tr>
<tr>
<td>piperthroid, MOA 3A</td>
<td>12 hrs</td>
<td></td>
<td></td>
<td>See Table 2-25 A for a list of registered piperthroids and pre-harvest intervals.</td>
</tr>
<tr>
<td>SQUASH VINE BORER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>acetamiprid MOA 4A (Assail) 30 SG</td>
<td>5.3 oz</td>
<td>12 hrs</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>piperthroid, MOA 3A</td>
<td>12 hrs</td>
<td></td>
<td></td>
<td>See Table 2-25 A for a list of registered piperthroids and pre-harvest intervals.</td>
</tr>
<tr>
<td>THRIPS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>methomyl, MOA 1A (Lannate) 2.4 LV</td>
<td>0.75 to 1.5 pt</td>
<td>48 hrs</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>(Lannate) 90 SP</td>
<td>0.25 to 0.5 lb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>spinetoram, MOA 5 (Radiant) 1 SC</td>
<td>6 to 10 fl oz</td>
<td>4 hrs</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>WHITEFLIES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>acetamiprid MOA 4A (Assail) 30 SG</td>
<td>2.5 to 3 oz</td>
<td>12 hrs</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>buprofezin, MOA 16 (Courier) 40 SC</td>
<td>9 to 13.6 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td>Use sufficient water to ensure good coverage. Do not apply more than twice per crop cycle.</td>
</tr>
<tr>
<td>chlorantraniliprole, MOA 28 (Coragen) 1.67 SC</td>
<td>5 to 7.5 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td>For foliar or soil application or drip irrigation. Drip chemigation must be applied uniformly to the root zone. See label for instructions.</td>
</tr>
<tr>
<td>cytantraniliprole, MOA 28 (Verimark) 1.67 SC</td>
<td>6.8 to 13.5 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td>Verimark is for soil application only. It may be applied to the soil at planting at 6.75 to 13.5 fl oz, or via drip chemigation at 10 fl oz. See label for application options.</td>
</tr>
<tr>
<td>(Exirel) 0.83SE</td>
<td>13.5 to 20.5 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td>Exirel is for foliar application only. Use an adjuvant for best results.</td>
</tr>
<tr>
<td>dinotefuran, MOA 4A (Venom) 70SG Soil treatment</td>
<td>5 to 7.5 oz</td>
<td>12 hrs</td>
<td>21</td>
<td>Soil applications may be made with irrigation systems, including drip, or overhead irrigation. Do not apply while bees are foraging. Residues may remain toxic to bees up to 38 hrs following treatment.</td>
</tr>
<tr>
<td>Foliar treatment</td>
<td>1 to 4 oz</td>
<td>12 hrs</td>
<td>1</td>
<td>Soil applications by injection below the seed level at planting, drench at transplanting, or drip chemigation.</td>
</tr>
<tr>
<td>flupyradifurone, MOA 4D (Sivanto Prime) 1.67</td>
<td>21 to 28 fl oz</td>
<td>4 hrs</td>
<td>21</td>
<td>Do not make foliar applications of Sivanto to muskmelon, cantaloupe, or honeydew melon. See label for additional melons to which it should not be applied.</td>
</tr>
<tr>
<td>Soil treatment</td>
<td>10.5 to 14 fl oz</td>
<td>4 hrs</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Foliar treatment</td>
<td>10.5 to 14 fl oz</td>
<td>4 hrs</td>
<td>7</td>
<td>Must be applied to the soil. May be applied preplant; at planting; as a post-seeding drench or hill drench; subsurface sidedress; or by chemigation using low-pressure drip or trickle irrigation. Will also control aphids and cucumber beetles. Will also control wireworms.</td>
</tr>
<tr>
<td>imidacloprid, MOA 4A (Admire Pro) 4.6 F</td>
<td>7 to 10.5 oz</td>
<td>12 hrs</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>pyriproxyfen, MOA 7C (Knack) 0.86 EC</td>
<td>8 to 10 fl oz</td>
<td>12 hrs</td>
<td>7</td>
<td>Do not make more than two applications per season, and do not make applications closer than 14 days apart.</td>
</tr>
</tbody>
</table>
TABLE 2-9. INSECT CONTROL FOR CUCURBITS (CUCUMBER, CANTALOUPE, PUMPKIN, SQUASH, & WATERMELON) (cont’d)

<table>
<thead>
<tr>
<th>Insecticide, Mode of Action Code, and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Restricted Entry Interval (REI)</th>
<th>Pre harvest Interval (PHI) (Days)</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHITEFIES (CONT’D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pyrifluquinazon, MOA 9B (PQZ) 1.87 EC</td>
<td>2.4 to 3.2 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td>See label for rotational crop restrictions. Do not exceed 4.8 fl oz per acre per crop cycle.</td>
</tr>
<tr>
<td>spiromesifen, MOA 23 (Oberon) 2 SG</td>
<td>7 to 8.5 fl oz</td>
<td>12 hrs</td>
<td>7</td>
<td>Does not control adults. Apply when colonies first appear and before leaf damage or discoloration. Do not exceed 3 applications per season.</td>
</tr>
<tr>
<td>thiamethoxam, MOA 4A (Platinum)</td>
<td>5 to 11 fl oz</td>
<td>12 hrs</td>
<td>30</td>
<td>Platinum is for soil application and may be applied to direct-seeded crops in-furrow at seed or transplant depth, post seeding or transplant as a drench, or through drip irrigation. Do not exceed 11 fl oz per acre per season of Platinum. Check label for plant-back restrictions for several crops.</td>
</tr>
<tr>
<td>(Actara) 25 WDG</td>
<td>3 to 5.5 oz</td>
<td>12 hrs</td>
<td>0</td>
<td>Actara is for foliar application. See label for application restrictions for protection of pollinators.</td>
</tr>
<tr>
<td>WIREWORM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>diazinon MOA 1B (Diazinon) AG 500</td>
<td>3 to 4 qt</td>
<td>3 days</td>
<td></td>
<td>Broadcast on soil just before planting and thoroughly work into upper 4 to 8 inches of soil.</td>
</tr>
<tr>
<td>Imidacloprid (MOA 4A) (Admire Pro) 4.6F</td>
<td>7 to 10.5 fl oz</td>
<td>12 hrs</td>
<td>21</td>
<td>Soil application only on cucurbits. May be applied preplant; at planting as a post-seeding drench, transplant water drench, or hill drench; subsurface sidedress or by chemigation using low-pressure drip irrigation methods. Will also control cucumber beetles, thrips and whiteflies.</td>
</tr>
</tbody>
</table>

TABLE 2-10. INSECT CONTROL FOR EGGPLANT

<table>
<thead>
<tr>
<th>Insecticide, Mode of Action Code, and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Restricted Entry Interval (REI)</th>
<th>Pre harvest Interval (PHI) (Days)</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>APHID</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>acetamiprid, MOA 4A (Assail) 30 SG</td>
<td>2 to 4 oz</td>
<td>12 hrs</td>
<td>7</td>
<td>Thoroughly cover foliage to control aphids effectively. Do not apply more than once every 7 days, and do not exceed a total of 7 oz per season.</td>
</tr>
<tr>
<td>flonicamid, MOA 20D (Beleaf) 50 SG</td>
<td>2 to 4.8 oz</td>
<td>12 hrs</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>afidopyropen, MOA 9D (Sefina) DC</td>
<td>3 oz</td>
<td>12 hrs</td>
<td>0</td>
<td>Do not make more than 2 sequential applications before using a different mode of action.</td>
</tr>
<tr>
<td>flupyradifurone, MOA 4D (Sivanto Prime) 1.67 SL</td>
<td>7.0 to 12.0 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>sulfosulfuron (Closer) 2 SC</td>
<td>1.5 to 2.0 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>imidacloprid, MOA 4A Soil treatment (Admire Pro) 4.6 F (various) 1.6 F</td>
<td>7 to 10.5 oz 16 to 24 fl oz</td>
<td>12 hrs</td>
<td>21</td>
<td>See label for soil application instructions. For short-term protection of transplants at planting, apply Admire Pro (0.44 ounces per 10,000 plants) not more than 7 days before transplanting by (1) uniformly spraying transplants, followed immediately by sufficient overhead irrigation to wash product into potting media, or (2) injection into overhead irrigation system with adequate volume to thoroughly saturate soil media.</td>
</tr>
<tr>
<td>Foliar treatment (Admire Pro) 4.6 F (various) 1.6 F</td>
<td>1.3 to 2.2 fl oz 3.75 fl oz</td>
<td>12 hrs</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>pymetrozine, MOA 9B (Fulfil) 50 WDG</td>
<td>2.75 oz</td>
<td>12 hrs</td>
<td>14</td>
<td>Apply before aphids reach damaging levels. Do not exceed 5.5 ounces per acre per season.</td>
</tr>
<tr>
<td>pyrifluquinazon, MOA 9B (PQZ) 1.87 EC</td>
<td>2.4 to 3.2 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td>See label for rotational crop restrictions. Do not exceed 4.8 fl oz per acre per crop cycle.</td>
</tr>
<tr>
<td>spirotetramat, MOA 23 (Movento) 2 SC</td>
<td>4 to 5 fl oz</td>
<td>24 hrs</td>
<td>1</td>
<td>Do not exceed 10 fluid ounces per season. Requires surfactant.</td>
</tr>
<tr>
<td>thiamethoxam, MOA 4A Soil treatment (Platinum) 75 SG</td>
<td>1.66 to 3.67 oz</td>
<td>12 hrs</td>
<td>30</td>
<td>Platinum may be applied to direct-seeded crops in-furrow at seed or transplant depth, post seeding or transplant as a drench, or through drip irrigation. Do not exceed 8 oz per acre per season. Check label for plant-back restrictions.</td>
</tr>
<tr>
<td>Foliar treatment (Actara) 25 WDG</td>
<td>2 to 3 oz</td>
<td>12 hrs</td>
<td>0</td>
<td>Actara is for foliar application.</td>
</tr>
<tr>
<td>Insecticide, Mode of Action Code, and Formulation</td>
<td>Amount of Formulation Per Acre</td>
<td>Restricted Entry Interval (REI)</td>
<td>Pre harvest Interval (PHI) (Days)</td>
<td>Precautions and Remarks</td>
</tr>
<tr>
<td>---</td>
<td>-------------------------------</td>
<td>--------------------------------</td>
<td>----------------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>BLISTER BEETLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pyrethroid, MOA 3A</td>
<td></td>
<td>12 hrs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COLORADO POTATO BEETLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistance too many insecticides is widespread in Colorado potato beetle. To reduce risk of resistance, scout fields and apply insecticides only when needed to prevent damage to the crop. Crop rotation will help prevent damaging Colorado potato beetle infestations. If control failures or reduced levels of control occur with a particular insecticide, do NOT make a second application of the same insecticide at the same or higher rate. If an additional insecticide application is necessary, a different insecticide representing a different MOA class should be used. Do NOT use insecticides belonging to the same class 2 years in a row for Colorado potato beetle control</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>abamectin, MOA 6 (Agri-Mek) 0.7 SC</td>
<td>1.75 to 3.5 fl oz</td>
<td>12 hrs</td>
<td>7</td>
<td>Apply when adults and small larvae are present but before large larvae appear. For resistance management, use the higher rate. See Table 2-25 A for a list of registered pyrethroids and pre- harvest intervals.</td>
</tr>
<tr>
<td>acetamiprid, MOA 4A (Assail) 30 SG</td>
<td>2 to 4 oz</td>
<td>12 hrs</td>
<td>7</td>
<td>Do not apply more than once every 7 days, and do not exceed 7 ounces of formulation per season. See Table 2-25 A for a list of registered pyrethroids and pre-harvest intervals.</td>
</tr>
<tr>
<td>pyrethroid, MOA 3A</td>
<td></td>
<td>12 hrs</td>
<td></td>
<td>See Table 2-25 A for a list of registered pyrethroids and pre-harvest intervals.</td>
</tr>
<tr>
<td>chlorantraniliprole, MOA 28 (Coragen) 1.67 SC</td>
<td>3.5 to 7.5 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td>Foliar or drip chemigation. Drip chemigation must be applied uniformly to the root zone. See label for instructions.</td>
</tr>
<tr>
<td>cyclaniliprole, MOA 28 (Harvanta) 50 SL</td>
<td>10.9 to 16.4 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>dinofuran, MOA 4A (Venom) 70 SG (Scorpion) 35SL</td>
<td>1 to 4 oz (2 to 7 fl oz)</td>
<td>12 hrs</td>
<td>1</td>
<td>Do not follow soil applications with foliar applications on any neonicotinoid insecticide. Use only one application method. Do not apply more than 6 ounces per acre per season using foliar applications, or 12 ounces per acre per season using soil applications. Soil applications may be applied by (1) a narrow band below or above the seed line at planting, (2) a post-seeding or trans-planting drench with sufficient water to ensure movement to the root zone, or (3) drip irrigation.</td>
</tr>
<tr>
<td>imidacloprid, MOA 4A (Admire Pro) 4.6 F (various) 2 F</td>
<td>7 to 10.5 fl oz (16 to 24 fl oz)</td>
<td>12 hrs</td>
<td>21</td>
<td>See application methods under Aphids, Thrips.</td>
</tr>
<tr>
<td>novaluron, MOA 15 (Rimon) 0.83 EC</td>
<td>1.3 fl oz (3.75 fl oz)</td>
<td>12 hrs</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>spinetoram, MOA 5 (Radiant) 1 SC</td>
<td>9 to 12 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>thiamethoxam, MOA 4A (Platinum) 75 SG (Actara) 25 WDG</td>
<td>1.66 to 3.67 fl oz (2 to 3 oz)</td>
<td>12 hrs</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>EGGPLANT LACE BUG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>imidacloprid, MOA 4A (Admire Pro) 4.6 F (various) 2 F</td>
<td>1.3 to 2.2 fl oz (3.8 to 6.2 fl oz)</td>
<td>12 hrs</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>FLEA BEETLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>malathion, MOA 1B (various brands) 57 EC</td>
<td>3 pt</td>
<td>12 hrs</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>pyrethroid, MOA 3A</td>
<td></td>
<td>12 hrs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>carbaryl, MOA 1A (Sevin) 50 WP (Sevin) 80 S (Sevin) XLR Plus</td>
<td>2 lb (1.25 lb) (1 lb)</td>
<td>12 hrs</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>cytantraniliprole, MOA 28 (Verimark) 1.67 SC</td>
<td>6.75 to 13.5 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td>Verimark for soil application only. Apply at planting or via drip chemigation. See label for application options.</td>
</tr>
</tbody>
</table>

See Table 2-25 A for a list of registered pyrethroids and pre-harvest intervals.
<table>
<thead>
<tr>
<th>Insecticide, Mode of Action Code, and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Restricted Entry Interval (REI)</th>
<th>Pre harvest Interval (PHI) (Days)</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLEA BEETLE (CONT’D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dinotefuran, MOA 4A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foliar treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Venom) 70 SG</td>
<td>1 to 4 oz</td>
<td>12 hrs</td>
<td>1</td>
<td>Do not follow soil applications with foliar applications on any neonicotinoid insecticide. Use only one application method. Do not apply more than 6 ounces per acre per season using foliar applications, or 12 ounces per acre per season using soil applications.</td>
</tr>
<tr>
<td>(Scorpion) 35 SL</td>
<td>2 to 7 fl oz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Venom) 70 SG</td>
<td>5 to 6 fl oz</td>
<td>12 hrs</td>
<td>21</td>
<td>Soil applications may be applied by (1) a narrow band below or above the seed line at planting, (2) a post-seeding or transplanting drench with sufficient water to ensure movement to the root zone, or (3) drip irrigation.</td>
</tr>
<tr>
<td>(Scorpion) 35 SL</td>
<td>9 to 10.5 fl oz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>thiamethoxam, MOA 4A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Platinum) 75 SG</td>
<td>1.66 to 3.67 oz</td>
<td>12 hrs</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>(Actara) 25 WDG</td>
<td>2 to 3 oz</td>
<td>12 hrs</td>
<td>0</td>
<td>See application methods under Aphids</td>
</tr>
<tr>
<td>HORNWORM, EUROPEAN CORN BORER, BEET ARMY WORM, CORN EARWORM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chlorantraniliprole, MOA 28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Coragen) 1.67 SC</td>
<td>3.5 to 7.5 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td>Foliar or drip chemigation. Drip chemigation must be applied uniformly to the root zone. See label for instructions.</td>
</tr>
<tr>
<td>cyantraniliprole, MOA 28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Verimark) 1.67 SC</td>
<td>5 to 10 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td>Verimark is for soil application only. Drip chemigation must be applied uniformly to the root zone. See label for application options.</td>
</tr>
<tr>
<td>Foliar treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Exirel) 0.83SE</td>
<td>7 to 13.5 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td>Exirel is for foliar application only.</td>
</tr>
<tr>
<td>cyclaniliprole, MOA 28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Harvanta) 50 SL</td>
<td>10.9 to 16.4 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>indoxacarb, MOA 22B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Avant eVo) 30 WDG</td>
<td>2.5 to 3.5 oz</td>
<td>12 hrs</td>
<td>3</td>
<td>Do not apply more than 14 ounces per acre per season.</td>
</tr>
<tr>
<td>methomyl, MOA 1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Lannate) 2.4 LV</td>
<td>1.5 to 3 pt</td>
<td>48 hrs</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>methoxyfenozide, MOA 18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Intrepid) 2 F</td>
<td>4 to 16 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td>Apply at rates of 4 to 8 fluid ounces early in season when plants are small. Apply at rates of 8 to 16 ounces to large plants or when infestations are heavy. During periods of continuous moth flights, retreatments at 7 to 14 days may be required. Do not apply more than 16 fluid ounces per application or 64 fluid ounces of Intrepid 2F per acre per season.</td>
</tr>
<tr>
<td>spinetoram, MOA 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Radiant) 1 SC</td>
<td>5 to 10 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>pyrethroid, MOA 3A</td>
<td></td>
<td></td>
<td>12 hrs</td>
<td>See Table 2-25 A for a list of registered pyrethroids and pre-harvest intervals.</td>
</tr>
<tr>
<td>viruses</td>
<td></td>
<td></td>
<td>4 hrs</td>
<td>See Table 2-26 for virus-based insecticides effective against specific insects. ORMI listed.</td>
</tr>
<tr>
<td>LEAFMINER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>abamectin, MOA 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Agri-Mek) 0.15 EC</td>
<td>6 to 16 fl oz</td>
<td>12 hrs</td>
<td>7</td>
<td>Use low rates for low to moderate infestations, and high rates for severe infestations.</td>
</tr>
<tr>
<td>chlorantraniliprole, MOA 28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Coragen) 1.67 SC</td>
<td>5 to 7.5 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td>Foliar, soil, or drip chemigation. Drip chemigation must be applied uniformly to the root zone. See label for application instructions.</td>
</tr>
<tr>
<td>oxamyl, MOA 1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Vydate) 2 L</td>
<td>1 to 2 qt</td>
<td>48 hrs</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>spinetoram, MOA 5</td>
<td></td>
<td></td>
<td>4 hrs</td>
<td></td>
</tr>
<tr>
<td>(Radiant) 1 SC</td>
<td>5 to 10 fl oz</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>STINK BUG, LEAFFOOTTED BUG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pyrethroid MOA 3A</td>
<td></td>
<td></td>
<td>12 hrs</td>
<td>See Table 2-25 A for a list of registered pyrethroids and pre- harvest intervals.</td>
</tr>
<tr>
<td>dinotefuran, MOA 4A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foliar treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Venom) 70 SG</td>
<td>1 to 4 oz</td>
<td>12 hrs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(Scorpion) 35 SL</td>
<td>2 to 7 fl oz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Venom) 70 SG</td>
<td>5 to 6 fl oz</td>
<td>12 hrs</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>(Scorpion) 35 SL</td>
<td>9 to 10.5 fl oz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>thiamethoxam, MOA 4A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Actara) 25 WDG</td>
<td>3 to 5.5 oz</td>
<td>12 hrs</td>
<td>0</td>
<td>Do not exceed 11 ounces Actara per acre per season.</td>
</tr>
</tbody>
</table>
TABLE 2-10. INSECT CONTROL FOR EGGPLANT (cont’d)

<table>
<thead>
<tr>
<th>Insecticide, Mode of Action Code, and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Restricted Entry Interval (REI)</th>
<th>Pre harvest Interval (PHI) (Days)</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPIDER MITE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>abamectin, MOA 6 (Agri-Mek) 0.7 SC</td>
<td>1.75 to 3.5 fl oz</td>
<td>12 hrs</td>
<td>7</td>
<td>Use low rates for low to moderate infestations, and high rates for severe infestations.</td>
</tr>
<tr>
<td>acequinocyl, MOA 20B (Kanemite) 15SC</td>
<td>31 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>bifenthrin, MOA 20D (Agramite) 50 WS</td>
<td>0.75 to 1.0 lb</td>
<td>12 hrs</td>
<td>3</td>
<td>Do not make more than one application per season.</td>
</tr>
<tr>
<td>etoxazole, MOA 10B (Zeal)</td>
<td>2 to 3 oz</td>
<td>12 hrs</td>
<td>7</td>
<td>Do not make more than one Zeal application per season.</td>
</tr>
<tr>
<td>fenpyroximate MOA 21 (Portal) 0.4EC</td>
<td></td>
<td>12 hrs</td>
<td>3</td>
<td>Do not make more than two applications per season.</td>
</tr>
<tr>
<td>fenazaquin, MOA 21A (Magister) 1.7</td>
<td></td>
<td>12 hrs</td>
<td>3</td>
<td>Do not make more than one application per year.</td>
</tr>
<tr>
<td>hexakis, MOA 12B (Vendex) 50 WP</td>
<td></td>
<td>48 hrs</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>spiromesifen, MOA 23 (Oberon) 2 SG</td>
<td>7 to 8.5 fl oz</td>
<td>12 hrs</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>THRIPS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dinotefuran, MOA 4A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foliar treatment</td>
<td>1 to 4 oz</td>
<td>12 hrs</td>
<td>1</td>
<td>Will not control western flower thrips, only tobacco thrips, which are common early in the season. See Whitefly for application instructions. Soil applications are more effective against thrips than foliar applications are.</td>
</tr>
<tr>
<td>Soil treatment</td>
<td>2 to 7 fl oz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cyantraniliprole, MOA 28 (Verimark) 1.67 SC</td>
<td>5 to 6 oz</td>
<td>4 hrs</td>
<td>1</td>
<td>Soil applications of Verimark will suppress western flower thrips. Foliar applications of Exirel are less effective.</td>
</tr>
<tr>
<td>cyclaniliprole, MOA 28 (Harvanta) 50 SL</td>
<td>10.9 to 16.4 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td>Foliar applications will help suppress western flower thrips when used in a rotational program.</td>
</tr>
<tr>
<td>imidacloprid, MOA 4A Admire Pro 4.6 F (various) 2 F</td>
<td>7 to 10.5 fl oz</td>
<td>12 hrs</td>
<td>21</td>
<td>Will not control western flower thrips, only tobacco thrips, which are common early in the season. See Aphids for application instructions.</td>
</tr>
<tr>
<td>methomyl, MOA 1A (Lannate) 2.4 LV</td>
<td>1.5 to 3 pt</td>
<td>48 hrs</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>spinetoram, MOA 5 (Radiant) 1 SC</td>
<td></td>
<td>4 hrs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Tolfenpyrad, MOA 21A (Torac) 1.29 EC</td>
<td></td>
<td>12 hrs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>WHITEFLY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>acetamiprid, MOA 4A (Assail) 30 SG</td>
<td>2.5 to 4 oz</td>
<td>12 hrs</td>
<td>7</td>
<td>Begin applications when significant populations of adults appear. Do not wait until heavy populations have become established. Do not apply more than once every 7 days, and do not exceed 4 applications per season. Do not apply more than 7 ounces per season.</td>
</tr>
<tr>
<td>afidopyropen, MOA 9D (Sefina) DC</td>
<td>14 oz</td>
<td>12 hrs</td>
<td>0</td>
<td>Do not make more than 2 sequential applications before using a different mode of action.</td>
</tr>
<tr>
<td>chlorantraniliprole, MOA 28 (Coragen) 1.67 SC</td>
<td>5 to 7.5 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td>For foliar or drip chemigation. Drip chemigation must be applied uniformly to the root zone. See label for instructions.</td>
</tr>
<tr>
<td>cyantraniliprole, MOA 28 Soil treatment</td>
<td>6.75 to 13.5 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td>Verimark for soil application only. Apply at planting or via drip chemigation. See label for application options.</td>
</tr>
<tr>
<td>(Verimark) 1.67 SC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foliar treatment (Exirel) 0.83SE</td>
<td>13.5 to 20.5 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td>Exirel for foliar application only.</td>
</tr>
</tbody>
</table>
TABLE 2-10. INSECT CONTROL FOR EGGPLANT (cont’d)

<table>
<thead>
<tr>
<th>Insecticide, Mode of Action Code, and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Restricted Entry Interval (REI)</th>
<th>Pre harvest Interval (PHI) (Days)</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHITEFLY (CONT’D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dinotefuran, MOA 4A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foliar treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Venom) 70 SG</td>
<td>1 to 4 oz</td>
<td>12 hrs</td>
<td>1</td>
<td>Use only one application method (foliar or soil) of Group 4A insecticides. Soil applications may be applied in a narrow band on the plant row in bedding operations, as a post-seeding or transplant drench, as a side-dress after planting and incorporated 1 or more inches, or through the drip irrigation system.</td>
</tr>
<tr>
<td>(Scorpion) 35 SL</td>
<td>2 to 7 fl oz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Venom) 70 SG</td>
<td>5 to 6 fl oz</td>
<td>12 hrs</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>(Scorpion) 35 SL</td>
<td>9 to 10.5 fl oz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>flupyradifurone, MOA 4D</td>
<td>10.5 to 14.0 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(Sivanto Prime) 1.67 SL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>imidacloprid, MOA 4A</td>
<td>7 to 10.5 fl oz</td>
<td>12 hrs</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>(Admire Pro) 4.6 F</td>
<td>16 to 24 fl oz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(various) 2 F</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pymirexyn, MOA 7C (Knack) 0.8 EC</td>
<td>8 to 10 fl oz</td>
<td>12 hrs</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>pymirexyn, MOA 9B (PQZ) 1.87 EC</td>
<td>2.4 to 3.2 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td>See label for rotational crop restrictions. Do not exceed 4.8 fl oz per acre per crop cycle.</td>
</tr>
<tr>
<td>spirotetramat, MOA 23 (Movento) 2 SC</td>
<td>4 to 5 fl oz</td>
<td>24 hrs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>spirotesfen, MOA 23 (Oberon) 2 SC</td>
<td>7 to 8.5 fl oz</td>
<td>12 hrs</td>
<td>7</td>
<td>Do not exceed 3 applications or 25.5 fluid ounces per season.</td>
</tr>
<tr>
<td>thiamethoxam, MOA 4A (Platinum) 75 SG</td>
<td>1.66 to 3.67 oz</td>
<td>12 hrs</td>
<td>30</td>
<td>Platinum is for soil applications and may be applied to direct-seeded crops in furrow at seed or transplant depth, as post seeding or transplant as a drench, or through drip irrigation. Do not exceed 11 ounces per acre per season. Check label for plant-back restrictions for a number of plants.</td>
</tr>
<tr>
<td>(Actara) 25 WDG</td>
<td>3 to 5.5</td>
<td>12 hrs</td>
<td>0</td>
<td>Actara is for foliar application.</td>
</tr>
</tbody>
</table>

TABLE 2-11. INSECT CONTROL FOR HOPS

<table>
<thead>
<tr>
<th>Insecticide, Mode of Action Code, and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Restricted Entry Interval (REI)</th>
<th>Pre harvest Interval (PHI) (Days)</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>APHIDS and LEAFHOPPERS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>imidacloprid, MOA 4A</td>
<td>2.8 to 8.4 fl oz</td>
<td>12 hrs</td>
<td>60</td>
<td>Soil applications can be made by drip chemigation, Subsurface side- dress shanked into root-zone, or a hill drench in sufficient water to ensure incorporation into the root zone by irrigation.</td>
</tr>
<tr>
<td>(Admire) 4.6 F</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foliar treatment</td>
<td>2.8 fl oz</td>
<td>12 hrs</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>pymetrozine, MOA 9B (Fulfil) 50 WDG</td>
<td>4 to 6 oz</td>
<td>12 hrs</td>
<td>14</td>
<td>For aphids only. Will not control leafhoppers.</td>
</tr>
<tr>
<td>spirotetramat, MOA 23 (Movento) 2 F</td>
<td>5 to 6 fl oz</td>
<td>24 hrs</td>
<td>7</td>
<td>Do not exceed 12.5 fl oz per acre per season. Will also control twospotted spider mite.</td>
</tr>
<tr>
<td>malathion, MOA 1B 5 EC 8 EC</td>
<td>1 pt 0.63 pt</td>
<td>12 hrs</td>
<td>7</td>
<td>May suppress twospotted spider mite.</td>
</tr>
<tr>
<td>pyrethrins, MOA 3A Pyganic EC 1.4 II Pyganic EC 5 II</td>
<td>16 to 64 fl oz 4.5 to 17 fl oz</td>
<td>12 hrs</td>
<td>0</td>
<td>OMRI listed. Pyrethrins degrade very quickly in sun-light. Do not expect residual control.</td>
</tr>
<tr>
<td>JAPANESE BEETLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bifenthrin, MOA 3A (Brigade) 2 EC (Brigade) WSB</td>
<td>3.8 to 6.4 fl oz 9.6 to 16 of oz</td>
<td>12 hrs</td>
<td>14</td>
<td>See Table of Generic Insecticides for other bifenthrin products.</td>
</tr>
<tr>
<td>imidacloprid, MOA 4A (Admire) 4.6 F (generics) 2</td>
<td>2.8 fl oz 6.4 fl oz</td>
<td>12 hrs</td>
<td>28</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 2-11. INSECT CONTROL FOR HOPS (cont’d)

<table>
<thead>
<tr>
<th>Insecticide, Mode of Action Code, and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Restricted Entry Interval (REI)</th>
<th>Pre harvest Interval (PHI) (Days)</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARMYWORMS, CUTWORMS, LOOPERS, LEAFROLLER, QUESTION MARK BUTTERFLY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacillus thuringiensis, MOA 11A (Xentari) DF (Crymax) WDG</td>
<td>0.5 to 2 lb 0.5 to 2 lb</td>
<td>4 hrs</td>
<td>0</td>
<td>Foliar or drip chemigation. Drip chemigation must be applied uniformly to the root zone. See label for instructions.</td>
</tr>
<tr>
<td>chlorantraniliprole, MOA 28 (Coragen) 1.67 SC</td>
<td>3.5 to 7.5 fl oz</td>
<td>4 hrs</td>
<td>0</td>
<td>OMRI listed.</td>
</tr>
<tr>
<td>spinosad, MOA 5 (Entrust) SC</td>
<td>4 to 6 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td>OMRI listed.</td>
</tr>
<tr>
<td>spinetoram, MOA 5 (Delegate) 25 WG</td>
<td>2.5 to 4 oz</td>
<td>4 hrs</td>
<td>1</td>
<td>OMRI listed.</td>
</tr>
<tr>
<td>viruses</td>
<td>4 hrs</td>
<td>See Table 2-26 for virus-based insecticides effective against specific insects. OMRI listed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPIDER MITES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>abamectin, MOA 6 (Agri-Mek) 0.7 SC</td>
<td>1.75 to 3.5 fl oz</td>
<td>12 hrs</td>
<td>28</td>
<td>Do not exceed 48 fluid ounces per acre per season, or more than two sequential applications.</td>
</tr>
<tr>
<td>acetamiprid, MOA 4A (Assail) 30 SG</td>
<td>2 to 4 oz</td>
<td>12 hrs</td>
<td>7</td>
<td>Do not apply more than once every 7 days, and do not exceed 4-5 applications per calendar year.</td>
</tr>
<tr>
<td>acequinocyl, MOA 20B (Kanemite) 15 SC</td>
<td>31 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td>The use of a surfactant/adjuvant with Kanemite on tomatoes is prohibited.</td>
</tr>
<tr>
<td>bifenthrin, MOA 20D (Acracide) 50 WS</td>
<td>0.75 to 1.0 lb</td>
<td>12 hrs</td>
<td>14</td>
<td>Do not make more than one application per season.</td>
</tr>
<tr>
<td>etoxazole, MOA 10B (Zea) 72 WSP</td>
<td>3 to 4 oz</td>
<td>12 hrs</td>
<td>7</td>
<td>Apply when mites are low, because Zeal is primarily an ovicide/larvicide.</td>
</tr>
<tr>
<td>fenazaquin, MOA 21A (Magister) 1.7</td>
<td>24 to 36 fl oz</td>
<td>12 hrs</td>
<td>7</td>
<td>Do not make more than one application per year.</td>
</tr>
<tr>
<td>fenpyroximate MOA 21 (Portia) 0.4 EC</td>
<td>2 pts</td>
<td>12 hrs</td>
<td>15</td>
<td>Do not make more than two applications per season.</td>
</tr>
<tr>
<td>hexythiazox, MOA 10A (Save) 50 DF</td>
<td>4 to 6 oz</td>
<td>12 hrs</td>
<td>—</td>
<td>May be applied up to burr formation in hop vines. Apply when mites are low, because Savey is primarily an ovicide, and sterilizes females.</td>
</tr>
<tr>
<td>mineral oil (TriTek) (Various brands)</td>
<td>1 to 2% soln.</td>
<td>4 hrs</td>
<td>0</td>
<td>OMRI listed. TriTek is the only emulsified formulation of oil. No others contain an emulsifier.</td>
</tr>
</tbody>
</table>

TABLE 2-12. INSECT CONTROL FOR LETTUCE (cont’d)

<table>
<thead>
<tr>
<th>Insecticide, Mode of Action Code, and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Restricted Entry Interval (REI)</th>
<th>Pre harvest Interval (PHI) (Days)</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>APHID</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>acetamiprid, MOA 4A (Assail) 30 SG</td>
<td>2 to 4 oz</td>
<td>12 hrs</td>
<td>7</td>
<td>Do not apply more than once every 7 days, and do not exceed 4-5 applications per calendar year.</td>
</tr>
<tr>
<td>afidopyropen, MOA 9D (Versys) DC</td>
<td>1.5 fl oz</td>
<td>12 hrs</td>
<td>0</td>
<td>Do not make more than 2 sequential applications before using a different mode of action.</td>
</tr>
<tr>
<td>clothianidin, MOA 4A (Belay) 50 WDG</td>
<td>Soil treatment 4.8 to 6.4 oz 10.5 to 14.0 fl oz</td>
<td>12 hrs</td>
<td>Soil application at planting only. Do not incorporate an adjuvant with foliar applications. Do not apply more than 6.4 oz per acre per season.</td>
<td></td>
</tr>
<tr>
<td>clothianidin, MOA 4A (Belay) 50 WDG</td>
<td>Foliar treatment 1.6 to 2.1 oz 1.3 to 3.8 fl oz</td>
<td>12 hrs</td>
<td>7</td>
<td>For use on leaf lettuce</td>
</tr>
<tr>
<td>dimethoate 4 EC, MOA 1B</td>
<td>0.5 pt 10.5 to 14.0 fl oz</td>
<td>48 hrs</td>
<td>14</td>
<td>Do not follow soil applications with foliar applications of any neonicotinoid insecticide. See label for soil application instructions.</td>
</tr>
<tr>
<td>fipronil, MOA 29 (Beleaf) 50 SG</td>
<td>2 to 2.8 oz</td>
<td>12 hrs</td>
<td>0</td>
<td>Do not apply more than once every 7 days, and do not exceed 4-5 applications per calendar year.</td>
</tr>
<tr>
<td>flufenacet, MOA 4D (Sivanto Prime) 1.67 SL</td>
<td>Soil treatment 4.4 to 10.5 fl oz 10.5 to 14.0 fl oz</td>
<td>12 hrs</td>
<td>21</td>
<td>For use on leaf lettuce</td>
</tr>
<tr>
<td>flufenacet, MOA 4D (Sivanto Prime) 1.67 SL</td>
<td>Foliar treatment 1.3 to 3.8 fl oz 4.4 to 10.5 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td>Do not follow soil applications with foliar applications of any neonicotinoid insecticide. See label for soil application instructions.</td>
</tr>
<tr>
<td>Insecticide, Mode of Action Code, and Formulation</td>
<td>Amount of Formulation Per Acre</td>
<td>Restricted Entry Interval (REI)</td>
<td>Pre harvest Interval (PHI) (Days)</td>
<td>Precautions and Remarks</td>
</tr>
<tr>
<td>---</td>
<td>--------------------------------</td>
<td>--------------------------------</td>
<td>-----------------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>APHID (cont’d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pymetrozine, MOA 9B (Fulflo) 50 WDG</td>
<td>2.75 oz</td>
<td>12 hrs</td>
<td>7</td>
<td>Apply before aphids reach damaging levels. Do not exceed 5.5 oz per acre per season</td>
</tr>
<tr>
<td>pyriproxyfen, MOA 9D (POZ) 1.87 EC</td>
<td>2.4 to 3.2 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td>See label for rotational crop restrictions. Do not exceed 4.8 fl oz per acre per crop cycle</td>
</tr>
<tr>
<td>spirotetramat, MOA 23 (Movento) 2 SC</td>
<td>4 to 5 fl oz</td>
<td>24 hrs</td>
<td>3</td>
<td>Do not exceed 10 fl oz per season. Requires surfactant.</td>
</tr>
<tr>
<td>thiamethoxam, MOA 4A</td>
<td>Soil treatment (Platinum) 75 SG</td>
<td>1.66 to 3.67 oz</td>
<td>12 hrs</td>
<td>30</td>
</tr>
<tr>
<td>Foliar treatment (Actara) 25 WDG</td>
<td>1.5 to 3 oz</td>
<td>12 hrs</td>
<td>7</td>
<td>Actara is for foliar application.</td>
</tr>
<tr>
<td>tolfenpyrad, MOA 21A (Torac) 1.29 EC</td>
<td>17 to 21 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td>Do not apply until at least 14 days after plant emergence or after transplanting to allow time for root establishment.</td>
</tr>
<tr>
<td>CABBAGE LOOPER, CORN EARWORM, ARMYWORMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacillus thuringiensis, MOA 11A (Crymax) WDG (Dipel) DF</td>
<td>0.5 to 1.5 lb</td>
<td>0.8 oz</td>
<td>4 hrs</td>
<td>0</td>
</tr>
<tr>
<td>chlorantraniliprole, MOA 28 (Coragen) 1.67 SC</td>
<td>3.5 to 7.5 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td>Foliar or drip chemigation. See label for instructions.</td>
</tr>
<tr>
<td>cyantraniliprole, MOA 28 (Vermark) 1.67 SC</td>
<td>5 to 13.5 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td>Verimark is for soil application only. Applications made at planting and/or via drip chemigation. Use higher rates (>10 fluid ounces) where cabbage looper is a concern. See label for application options.</td>
</tr>
<tr>
<td>Foliar treatment (Exirel) 0.83SE</td>
<td>7 to 17 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td>Exirel is for foliar application only. Use higher rates (>13.5 fluid ounces) for Cabbage loopers.</td>
</tr>
<tr>
<td>cyclaniliprole, MOA 28 (Harvanta) 50 SL</td>
<td>11 to 16.4 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>emamectin benzoate, MOA 6 (Proclaim) 5 WDG (Lannate) 90 SP (Lannate) 2.4 LV</td>
<td>3.2 to 4.8 oz</td>
<td>12 hrs</td>
<td>7</td>
<td>Do not make more than two sequential applications without rotating to another product with a different mode of action.</td>
</tr>
<tr>
<td>indoxacarb, MOA 22B (Avaunt eVo) 30 WDG</td>
<td>2.5 to 3.5 lb</td>
<td>12 hrs</td>
<td>3</td>
<td>Do not apply more than 14 ounces of Avaunt (0.26 lb a.i.) per acre per crop. The minimum interval between sprays is 3 days.</td>
</tr>
<tr>
<td>methomyl, MOA 1A (Lannate) 90 SP (Lannate) 2.4 LV</td>
<td>0.5 to 1 lb</td>
<td>1.5 to 3 pts</td>
<td>48 hrs</td>
<td>See Label</td>
</tr>
<tr>
<td>methoxyfenozide, MOA 18 (Intrepid) 2 F</td>
<td>4 to 10 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td>Low rates for early-season applications to young or small plants. For mid- and late-season applications, use 6 to 10 ounces.</td>
</tr>
<tr>
<td>spinetoram, MOA 5 (Radiant) 1 SC</td>
<td>5 to 10 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>pyrethroid, MOA 3A</td>
<td></td>
<td>12 hrs</td>
<td>See Table 2-25 A for registered pyrethroids and pre-harvest intervals. Not recommended for armyworms.</td>
<td></td>
</tr>
<tr>
<td>viruses</td>
<td></td>
<td>4 hrs</td>
<td>See Table 2-26 for virus-based insecticides effective against specific insects. ORM listed.</td>
<td></td>
</tr>
<tr>
<td>LEAFHOPPER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>buprofezin, MOA 16 (Courier) 40 SC</td>
<td>9 to 13.6 fl oz</td>
<td>12 hrs</td>
<td>7</td>
<td>Do not apply more than 27.2 fl oz per acre per crop cycle.</td>
</tr>
<tr>
<td>dinofuran, MOA 4A</td>
<td>Foliar treatment (Venom) 70 SG (Scorpion) 35 SL</td>
<td>1 to 3 oz</td>
<td>2 to 2.25 fl oz</td>
<td>12 hrs</td>
</tr>
<tr>
<td>Soil treatment (Venom) 70 SG (Scorpion) 35 SL</td>
<td>5 to 6 fl oz</td>
<td>9 to 10.5 fl oz</td>
<td>21</td>
<td>Soil applications may be applied by: (1) narrow band below or above the seed line at planting, (2) post seeding or transplant drench with sufficient water to ensure incorporation, or (3) drip irrigation.</td>
</tr>
<tr>
<td>dimethoate 4 EC, MOA 1B</td>
<td></td>
<td>48 hrs</td>
<td>14</td>
<td>14-day interval for leaf lettuce.</td>
</tr>
<tr>
<td>flupyradifurone, MOA 4D</td>
<td>Foliar treatment (Sivanto Prime) 1.67</td>
<td>7.0 to 14 fl oz</td>
<td>4 hrs</td>
<td>1</td>
</tr>
</tbody>
</table>
TABLE 2-12. INSECT CONTROL FOR LETTUCE (cont’d)

<table>
<thead>
<tr>
<th>Insecticide, Mode of Action Code, and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Restricted Entry Interval (REI)</th>
<th>Pre harvest Interval (PHI) (Days)</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEAFHOPPER (CONT’D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>flupyradifurone, MOA 4D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil treatment (Sivanto Prime) 1.67</td>
<td>21 to 28 fl oz</td>
<td>4 hrs</td>
<td>21</td>
<td>Chemigation via drip, injection below the eventual seed line prior to transplanting, post-transplant drench following setting and covering, and planting hole drench after transplanting.</td>
</tr>
<tr>
<td>imidacloprid, MOA 4A (various) 1.6 F</td>
<td>3.75 fl oz</td>
<td>12 hrs</td>
<td>7</td>
<td>There is a 12-month plant-back restriction for a number of crops. Check label for restrictions.</td>
</tr>
<tr>
<td>pyrethroid, MOA 3A</td>
<td></td>
<td>12 hrs</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>thiamethoxam, MOA 4A (Actara) 25 WDG</td>
<td>1.5 to 3 oz</td>
<td>12 hrs</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>tolfenpyrad, MOA 21A (Torac) 1.29 EC</td>
<td>14 to 21 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td>Do not apply until at least 14 days after plant emergence or after transplanting to allow time for root establishment.</td>
</tr>
<tr>
<td>SLUGS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>iron phosphate (Sluggo)</td>
<td>20 to 44 lbs</td>
<td>0 hrs</td>
<td>0</td>
<td>OMRI listed. Sluggo should be scattered around the perimeter of the crop to provide a protective barrier for slugs and snails. If slugs are inside the rows, scatter the bait on the soil around the plants and between rows. For smaller plantings use at 0.5 to 1 lb 1,000 square feet.</td>
</tr>
</tbody>
</table>

TABLE 2-13. INSECT CONTROL FOR OKRA

<table>
<thead>
<tr>
<th>Insecticide, Mode of Action Code, and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Restricted Entry Interval (REI)</th>
<th>Pre harvest Interval (PHI) (Days)</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>APHID</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>acetamiprid, MOA 4A (Assail) 30 SG</td>
<td>2 to 4 oz</td>
<td>12 hrs</td>
<td>7</td>
<td>Do not apply more than once every 7 days, and do not exceed 4 applications per season.</td>
</tr>
<tr>
<td>afidopyropen, MOA 9D (Sefina) DC</td>
<td>3 oz</td>
<td>12 hrs</td>
<td>0</td>
<td>Do not make more than 2 sequential applications before using a different mode of action.</td>
</tr>
<tr>
<td>imidacloprid, MOA 4A Soil treatment (Admire Pro) 4.6 F (various) 2 F</td>
<td>7 to 10.5 fl oz</td>
<td>12 hrs</td>
<td>21</td>
<td>See label for soil treatment instructions.</td>
</tr>
<tr>
<td>Foliar treatment (Admire Pro) 4.6 F (various) 1.6 F</td>
<td>1.3 to 2.2 fl oz 3.8 fl oz</td>
<td>12 hrs</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>flonicamid, MOA 20D (Beleaf) 50 SG</td>
<td>2 to 2.8 oz</td>
<td>12 hrs</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>flupyradifurone, MOA 4D (Sivanto Prime) 1.67 SL</td>
<td>7.0 to 12 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>pyrifluquinazon, MOA 9B (POZ) 1.87 EC</td>
<td>2.4 to 3.2 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td>See label for rotational crop restrictions. Do not exceed 4.8 fl oz per acre per crop cycle.</td>
</tr>
<tr>
<td>spirotetramat, MOA 23 (Movento) 2 SC</td>
<td>4 to 5 fl oz</td>
<td>24 hrs</td>
<td>3</td>
<td>Do not exceed 10 fluid ounces per season. Not for flea beetle. Requires surfactant.</td>
</tr>
<tr>
<td>sulfotep (Closer) 2 SC</td>
<td>1.5 to 2.0 fl oz</td>
<td>12 hrs</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>malathion, MOA 1B (various brands) 8 F (various brands) 25 WP</td>
<td>1.5 pt</td>
<td>12 hrs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>BLISTER BEETLE, FLEA BEETLE, JAPANESE BEETLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>carbachlor, MOA 1A (Sevin) 50 WP</td>
<td>4 lb</td>
<td>12 hrs</td>
<td>3</td>
<td>On foliage as needed.</td>
</tr>
<tr>
<td>(Sevin) 80 S (Sevin) XLR Plus</td>
<td>2.5 lb 2 qt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pyrethroid, MOA 3A</td>
<td>12 hrs</td>
<td></td>
<td>See Table 2-25 A for a list of registered pyrethroids and pre-harvest intervals.</td>
<td></td>
</tr>
<tr>
<td>Insecticide, Mode of Action Code, and Formulation</td>
<td>Amount of Formulation Per Acre</td>
<td>Restricted Entry Interval (REI)</td>
<td>Pre harvest Interval (PHI) (Days)</td>
<td>Precautions and Remarks</td>
</tr>
<tr>
<td>---</td>
<td>--------------------------------</td>
<td>---------------------------------</td>
<td>-----------------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>CORN EARWORM, TOBACCO BUDWORM, EUROPEAN CORN BORER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>carbaryl, MOA 1A (Sevin) 50 WP (Sevin) 80 S (Sevin) XLR Plus</td>
<td>4 lb 2.5 lb 2 qt</td>
<td>12 hrs 3</td>
<td></td>
<td>On foliage as needed.</td>
</tr>
<tr>
<td>chlorantraniliprole, MOA 28 (Coragen) 1.67 SC</td>
<td>3 to 7.5 fl oz</td>
<td>4 hrs 1</td>
<td></td>
<td>Foliar or drip chemigation. Drip chemigation must be applied uniformly to the root zone. See label for instructions.</td>
</tr>
<tr>
<td>cyclaniliprole, MOA 28 (Harvanta) 50 SL</td>
<td>10.9 to 16.4 fl oz</td>
<td>4 hrs 1</td>
<td></td>
<td>Foliar applications will help suppress western flower thrips when used in a rotational program.</td>
</tr>
<tr>
<td>cyantraniliprole, MOA 28 Soil treatment (Verimark) 1.67 SC</td>
<td>5 to 10 fl oz</td>
<td>4 hrs 1</td>
<td></td>
<td>Verimark is for soil application only. Applications made at planting and/or via drip chemigation. See label for application options. Exirel is for foliar application only. Rates >13.5 for loopers only.</td>
</tr>
<tr>
<td>methoxyfenozide, MOA 18 (Intrepid) 2 F</td>
<td>8 to 16 fl oz</td>
<td>4 hrs 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>novaluron, MOA 15 (Rimon) 0.83 EC</td>
<td>9 to 12 fl oz</td>
<td>12 hrs 1</td>
<td></td>
<td>For corn earworm only.</td>
</tr>
<tr>
<td>spinetoram, MOA 5 (Radiant) 1 SC</td>
<td>5 to 10 fl oz</td>
<td>4 hrs 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pyrethroid, MOA 3A</td>
<td></td>
<td>12 hrs</td>
<td></td>
<td>See Table 2-25 A for a list of registered pyrethroids and pre-harvest intervals.</td>
</tr>
<tr>
<td>viruses</td>
<td></td>
<td>4 hrs</td>
<td></td>
<td>See Table 2-26 for virus-based insecticides effective against specific insects. ORMi listed.</td>
</tr>
<tr>
<td>SPIDER MITES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bifenthrin, MOA 20D (Acrinite) 50 WP</td>
<td>0.75 to 1 lb</td>
<td>12 hrs 3</td>
<td></td>
<td>Do not make more than one application per season.</td>
</tr>
<tr>
<td>fenpyroximate MOA 21 (Portal) 0.4 EC</td>
<td>2 pt</td>
<td>12 hrs 3</td>
<td></td>
<td>Do not make more than two applications per season.</td>
</tr>
<tr>
<td>STINK BUG, LEAFFOOTED BUG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pyrethroid, MOA 3A</td>
<td></td>
<td>12 hrs</td>
<td></td>
<td>See Table 2-25 A for a list of registered pyrethroids and pre-harvest intervals.</td>
</tr>
<tr>
<td>WHITEFLY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>buprofezin, MOA 16 (Courier) 40 SC</td>
<td>9 to 13.6 fl oz</td>
<td>12 hrs 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>chlorantraniliprole, MOA 28 (Coragen) 1.67 SC</td>
<td>3.5 to 7.5 fl oz</td>
<td>4 hrs 1</td>
<td></td>
<td>Foliar or drip chemigation. Drip chemigation must be applied uniformly to the root zone. See label for instructions.</td>
</tr>
<tr>
<td>cyantraniliprole, MOA 28 Soil treatment (Verimark) 1.67 SC</td>
<td>6.75 to 13.5 fl oz</td>
<td>4 hrs 1</td>
<td></td>
<td>Apply Verimark to at planting and/or later via drip irrigation or soil injection. See label for application options.</td>
</tr>
<tr>
<td>Foliar treatment (Exirel) 0.83SE</td>
<td>13.5 to 20.5 fl oz</td>
<td>12 hrs 1</td>
<td></td>
<td>Exirel is for foliar application.</td>
</tr>
<tr>
<td>flupyradifurone, MOA 4D (Sivanto Prime) 1.67 SL</td>
<td>10.5 to 14.0 fl oz</td>
<td>4 hrs 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>imidacloprid, MOA 4A Soil treatment (Admire Pro) 4.6 F (various) 2 F</td>
<td>7 to 14 fl oz 16 to 32 fl oz</td>
<td>12 hrs 21</td>
<td></td>
<td>See label for soil application instructions.</td>
</tr>
<tr>
<td>Foliar treatment (Admire Pro) 4.6 F (various) 1.6 F</td>
<td>1.3 to 2.2 fl oz 3.8 oz</td>
<td>12 hrs 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pyriproxyfen, MOA 7C (Knack) 0.86 EC</td>
<td>8 to 10 fl oz</td>
<td>12 hrs 1</td>
<td></td>
<td>Do not make more than two applications per season.</td>
</tr>
<tr>
<td>spirotetramat, MOA 23 (Movento) 2 SC</td>
<td>4 to 5 fl oz</td>
<td>24 hrs 3</td>
<td></td>
<td>Do not exceed 10 fluid ounces per season. Not for flea beetle. Requires surfactant.</td>
</tr>
</tbody>
</table>
Count on Takii’s Full Range of Cabbage
Varieties that meet the needs of growers, processors, retailers and consumers

Cheers
- Medium maturity, approximately 75 days from transplant
- Very uniform, large frame with good wrap, head weight around 5 pounds
- Slow to burst
- High resistance to Fusarium yellows, moderate resistance to black rot
- Good for both fresh market and processing

Acclaim
- Medium maturity, approximately 75 days from transplant
- Medium frame produces uniform, round, dense heads with short cores
- Excellent heat tolerance, well adapted for spring harvest
- High resistance to Fusarium yellows, moderate resistance to black rot
- Good for both fresh market and processing

Celebrate
- Main season, 80 to 85 days from transplant
- Medium frame produces uniform, round heads
- Wrap leaves provide good head protection, high onion thrip tolerance
- High resistance to Fusarium yellows, moderate resistance to black rot
- Good for both fresh market and processing

Monterrey
- Early maturity, approximately 65 days from transplant
- Medium-small frame produces slightly-flattened round heads
- Excellent field holding ability
- High resistance to Fusarium yellows, moderate resistance to black rot
- Ideal for carton market

Ruby King
- Early maturity, approximately 70 days from transplant
- Medium frame produces uniform, round, dense heads weighing around 3.5 pounds
- Very good tolerance to heat, good tolerance to cold
- Intermediate resistance to black rot
- Good for both fresh market and processing
TABLE 2-14. INSECT CONTROL FOR ONION

<table>
<thead>
<tr>
<th>Insecticide, Mode of Action Code, and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Restricted Entry Interval (REI)</th>
<th>Pre harvest Interval (PHI) (Days)</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARMYWORMS, CUTWORM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chlorantraniliprole, MOA 28 (Coragen)</td>
<td>3.5 to 7.5 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>cyrantraniliprole, MOA 28 (Exirel) SE</td>
<td>7.0 to 13.5 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>methoxyfenozide, MOA 18 (Intrepid) 2 F</td>
<td>4 to 8 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td>For use against lepidopteran pests on green onion only. Use lower rates in early season on small plants; use higher rates in late season and for heavy infestations</td>
</tr>
<tr>
<td>pyrethroid, MOA 3A</td>
<td>12 hrs</td>
<td></td>
<td>See Table 2-25 A for a list of registered pyrethroids and pre-harvest intervals.</td>
<td></td>
</tr>
<tr>
<td>spinetoram, MOA 5 (Radiant) 1 SC</td>
<td>5 to 10 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

LEAFMINER				
cyromazine, MOA 17 (Trigard) 75 WS	2.66 oz	12 hrs	7	
spinetoram, MOA 5 (Radiant) 1 SC	6 to 10 fl oz	4 hrs	1	Control may be improved by mixing with an adjuvant.

ONION MAGGOT, SEED CORN MAGGOT				
Onion seed pre-treated with cyromazine (Trigard) can be used to control onion and seed corn maggot.				
diazinon, MOA 1B (Diazinon) (AG 500)	2 to 4 qt	3 days	Broadcast just before planting and mix into the top 3 to 4 inches of soil.	
pyrethroid, MOA 3A	12 hrs		See Table 2-25 A for a list of registered pyrethroids and pre-harvest intervals.	

THRIPS				
acetamiprid MOA 4A (Assail) 70 WP	5 to 8 oz	12 hrs	7	Control may be improved by tank mixing with an adjuvant. Do not exceed 4 applications per year.
methomyl, MOA 1A (Lannate) 2.4 LV	3 pt	48 hrs	7	May be applied by overhead sprinkler chemigation to control thrips. Add a wetting agent to improve coverage.
spinetoram, MOA 5 (Radiant) 1 SC	6 to 10 fl oz	4 hrs	1	Control may be improved by mixing with an adjuvant.
pyrethroid, MOA 3A	12 hrs		See Table 2-25 A for a list of registered pyrethroids and pre-harvest intervals.	

TABLE 2-15. INSECT CONTROL FOR PEA, ENGLISH AND SNOW PEA (SUCCULENT AND DRIED)

<table>
<thead>
<tr>
<th>Insecticide, Mode of Action Code, and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Restricted Entry Interval (REI)</th>
<th>Pre harvest Interval (PHI) (Days)</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>APHID</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>acetamiprid MOA 4A (Assail) 30 SG</td>
<td>2.5 to 5.3 oz</td>
<td>12 hrs</td>
<td>7</td>
<td>Also controls leafhoppers. Succulent peas only.</td>
</tr>
<tr>
<td>pyrethroid, MOA 3A</td>
<td>12 hrs</td>
<td></td>
<td>See Table 2-25 A for a list of registered pyrethroids and pre-harvest intervals.</td>
<td></td>
</tr>
<tr>
<td>dimethoate, MOA 1B (Dimethoate) 400 (4E)</td>
<td>0.32 pt</td>
<td>48 hrs</td>
<td>0</td>
<td>Do not make more than one application per season, and do not feed or graze if a mobile viner is used, or for 21 days, if a stationary viner is used. Re-entry interval is 48 hours.</td>
</tr>
<tr>
<td>flupyradifurone, MOA 4D (Sivanto Prime) 1.67 SL</td>
<td>7.0 to 14 fl oz</td>
<td>4 hrs</td>
<td>7</td>
<td>Will also control leafhopper</td>
</tr>
<tr>
<td>imidacloprid, MOA 4A Soil treatment (Admire Pro) 4.6 F (various) 2 F</td>
<td>7 to 10.5 fl oz</td>
<td>12 hrs</td>
<td>21</td>
<td>See label for soil application instructions.</td>
</tr>
<tr>
<td>Foliar treatment (Admire Pro) 4.6 F (various) 2 F</td>
<td>1.2 fl oz</td>
<td></td>
<td>12 hrs</td>
<td></td>
</tr>
<tr>
<td>Foliar treatment (Admire Pro) 4.6 F (various) 2 F</td>
<td>3.5 fl oz</td>
<td></td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 2-15. INSECT CONTROL FOR PEA, ENGLISH AND SNOW PEA (SUCCULENT AND DRIED) (cont’d)

<table>
<thead>
<tr>
<th>Insecticide, Mode of Action Code, and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Restricted Entry Interval (REI)</th>
<th>Pre harvest Interval (PHI) (Days)</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARMYWORMS, CLOVERWORM, CUTWORM, LOOPER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chlorantraniliprole MOA 28 (Coragen) 1.67 SC</td>
<td>3.5 to 7.5 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>spinetoram, MOA 5 (Radiant) 1 SC</td>
<td>4 to 8 fl oz</td>
<td>4 hrs</td>
<td>3 (succulent) 28 (dried)</td>
<td>Not for cutworm.</td>
</tr>
<tr>
<td>spinosad, MOA 5 (Blackhawk)</td>
<td>2.2 to 3.3 oz</td>
<td>4 hrs</td>
<td>3 (succulent) 28 (dried)</td>
<td></td>
</tr>
<tr>
<td>viruses</td>
<td>4 hrs</td>
<td></td>
<td></td>
<td>See Table 2-26 for virus-based insecticides effective against specific insects. ORMI listed.</td>
</tr>
<tr>
<td>LEAFHOPPER, LYGUS BUG, STINK BUG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>methomyl, MOA 1A (Lannate) 2.4 LV</td>
<td>1.5 to 3 pt</td>
<td>48 hrs</td>
<td>1 (pea) 5 (forage)</td>
<td>Apply to foliage as needed.</td>
</tr>
<tr>
<td>pyrethroid, MOA 3A</td>
<td>12 hrs</td>
<td></td>
<td></td>
<td>See Table 2-25 A for registered pyrethroids and pre-harvest intervals.</td>
</tr>
<tr>
<td>SEEDCORN MAGGOT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>See Beans for control</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 2-16. INSECT CONTROL FOR PEA, SOUTHERN (COWPEAS)

<table>
<thead>
<tr>
<th>Insecticide, Mode of Action Code, and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Restricted Entry Interval (REI)</th>
<th>Pre harvest Interval (PHI) (Days)</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>APHID, THRIPS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>acetamiprid MOA 4A (Assail) 70 WP</td>
<td>1 to 2.3 oz</td>
<td>12 hrs</td>
<td>7</td>
<td>Succulent peas only.</td>
</tr>
<tr>
<td>pyrethroid, MOA 3A</td>
<td>12 hrs</td>
<td></td>
<td></td>
<td>See Table 2-25 A for registered pyrethroids and pre-harvest intervals.</td>
</tr>
<tr>
<td>flupyradifurone, MOA 4D (Sivanto Prime) 1.67 SL</td>
<td>7.0 to 14 fl oz</td>
<td>4 hrs</td>
<td>7</td>
<td>Will not control thrips.</td>
</tr>
<tr>
<td>imidacloprid, MOA 4A Soil treatment (Admire Pro) 4.6 F (various) 2 F</td>
<td>7 to 10.5 fl oz</td>
<td>12 hrs</td>
<td>21</td>
<td>See label for soil application instructions.</td>
</tr>
<tr>
<td>Foliar treatment (Admire Pro) 4.6 F (various) 2 F</td>
<td>1.2 fl oz to 2.8 fl oz</td>
<td>12 hrs</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>spinetoram, MOA 5 (Radiant) 1 SC</td>
<td>5 to 8 fl oz</td>
<td>4 hrs</td>
<td>3 (succulent) 28 (dried)</td>
<td>Radiant is not effective against aphids.</td>
</tr>
<tr>
<td>spinosad, MOA 5 (Blackhawk)</td>
<td>2.2 to 3.3 oz</td>
<td>4 hrs</td>
<td>3 (succulent) 21 (dried)</td>
<td>Blackhawk is not effective against aphids.</td>
</tr>
<tr>
<td>sulfotep (Transform) 50 WG</td>
<td>0.75 to 1.0 oz</td>
<td>24 hrs</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>BEAN LEAF BEETLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>carbaryl, MOA 1A (Sevin) XLR</td>
<td>0.5 to 1 qt</td>
<td>12 hrs</td>
<td>3 (succulent) 21 (dried)</td>
<td>Do not feed treated foliage to livestock for 14 days after application.</td>
</tr>
<tr>
<td>pyrethroid, MOA 3A</td>
<td>12 hrs</td>
<td></td>
<td></td>
<td>See Table 2-25 A for a list of registered pyrethroids and pre-harvest intervals.</td>
</tr>
<tr>
<td>CORN EARWORM, LOOPERS, EUROPEAN CORN BORER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chlorantraniliprole MOA 28 (Coragen) 1.67 SC</td>
<td>3.5 to 7.5 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>cyantraniliprole, MOA 28 (Exire) SE</td>
<td>10 to 20.5 fl oz</td>
<td>12 hrs</td>
<td>1 (succulent) 7 (dried)</td>
<td></td>
</tr>
<tr>
<td>methoxyfenozide, MOA 18 (Intrepid) 2 F</td>
<td>4 to 16 fl oz</td>
<td>4 hrs</td>
<td>7</td>
<td>Use lower rates on smaller plants and higher rates in mid- to late season applications, against corn earworm. Do not apply more than 16 fl ounces per acre per season.</td>
</tr>
<tr>
<td>spinetoram, MOA 5 (Radiant) 1 SC</td>
<td>3 to 8 fl oz</td>
<td>4 hrs</td>
<td>3 (succulent) 28 (dried)</td>
<td>Do not apply more than 28 (succulent) or 12 fl oz (dried) per acre per season.</td>
</tr>
<tr>
<td>pyrethroid, MOA 3A</td>
<td>12 hrs</td>
<td></td>
<td></td>
<td>See Table 2-25 A for a list of registered pyrethroids and pre-harvest intervals.</td>
</tr>
</tbody>
</table>
TABLE 2-16. INSECT CONTROL FOR PEA, SOUTHERN (COWPEAS) (cont’d)

<table>
<thead>
<tr>
<th>Insecticide, Mode of Action Code, and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Restricted Entry Interval (REI)</th>
<th>Pre harvest Interval (PHI) (Days)</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>methomyl, MOA 1A (Lannate) 90 SP</td>
<td>0.5 to 1 lb</td>
<td>48 hrs</td>
<td>1</td>
<td>Re-entry interval is 48 hr.</td>
</tr>
<tr>
<td>viruses</td>
<td></td>
<td>4 hrs</td>
<td></td>
<td>See Table 2-26 for virus-based insecticides effective against specific insects. ORMI listed.</td>
</tr>
<tr>
<td>COWPEA CURCULIO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pyrethroids, MOA 3A</td>
<td></td>
<td>12 hrs</td>
<td></td>
<td>Control may be poor in areas where resistant populations occur, primarily in parts of Alabama and Georgia. In areas where resistance is a problem, pyrethroid insecticides should be used at the highest labeled rate and synergized by tank mixing with 1-pint piperonyl butoxide synergist per acre. In field where resistance is a problem, applications every 3 to 5 days may be necessary to maintain control of the cowpea curculio population.</td>
</tr>
<tr>
<td>lambda-cyhalothrin, MOA 3A + chlorantraniliprole, MOA 28 (Besiege) ZC</td>
<td>6 to 10 fl oz</td>
<td>24 hrs</td>
<td>7 (succulent) 21 (dried)</td>
<td></td>
</tr>
<tr>
<td>STINK BUG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pyrethroid, MOA 3A</td>
<td></td>
<td>12 hrs</td>
<td></td>
<td>See Table 2-25 A for a list of registered pyrethroids and pre-harvest intervals. Control may be poor in areas where resistant populations occur, primarily in the Gulf Coast areas.</td>
</tr>
<tr>
<td>methomyl, MOA1A (Lannate) 90 SP</td>
<td>0.5 to 1 lb</td>
<td>48 hrs</td>
<td>1 (1.5 pt) 3 (>1.5 pt)</td>
<td></td>
</tr>
<tr>
<td>LEAFMINER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>spinetoram, MOA 5 (Radiant) 1 SC</td>
<td>5 to 8 fl oz</td>
<td>4 hrs</td>
<td>3 (succulent) 28 (dried)</td>
<td></td>
</tr>
<tr>
<td>spinosad, MOA 5 (Blackhawk)</td>
<td>2.5 to 3.3 oz</td>
<td>4 hrs</td>
<td>3 (succulent) 28 (dried)</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 2-17. INSECT CONTROL FOR PEPPER

<table>
<thead>
<tr>
<th>Insecticide, Mode of Action Code, and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Restricted Entry Interval (REI)</th>
<th>Pre harvest Interval (PHI) (Days)</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>acephate, MOA 1B (Orthene) 97</td>
<td>8 oz</td>
<td>24 hrs</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>acetamiprid, MOA 4A (Assail) 70 WP</td>
<td>0.8 to 1.2 oz</td>
<td>12 hrs</td>
<td>7</td>
<td>Do not apply more than once every 7 days, and do not exceed 4 applications per season.</td>
</tr>
<tr>
<td>aldichlorspin, MOA 9D (Sefina) DC</td>
<td>3 oz</td>
<td>12 hrs</td>
<td>0</td>
<td>Do not make more than 2 sequential applications before using a different mode of action.</td>
</tr>
<tr>
<td>cyantraniliprole, MOA 28 (Verimark) SC</td>
<td>6.75 to 13.5 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td>Apply to soil at planting, as a transplant tray drench, in transplant water or hill drench. After planting may be applied via drip irrigation.</td>
</tr>
<tr>
<td>flonicamid, MOA 20D (Beleaf) 50 SG</td>
<td>2 to 4.8 oz</td>
<td>12 hrs</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>flupyradifurone, MOA 4D (Sivanto Prime) 1.67 SL</td>
<td>7.0 to 14.0 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>imidacloprid, MOA 4A Soil treatment (Admire Pro) 4.6 F (various) 2 F</td>
<td>7 to 14 fl oz 16 to 32 fl oz</td>
<td>12 hrs</td>
<td>21</td>
<td>Where whitefly resistance is a concern, do not follow soil applications with foliar applications of any neonicotinoid. See label for soil application instructions. For short-term protection of transplants at planting, apply Admire Pro (0.44 oz/10,000 plants) not more than 7 days before transplanting by 1) uniformly spraying on transplants, followed immediately by sufficient overhead irrigation to wash product into potting media; or 2) injection into overhead irrigation system using adequate volume to thoroughly saturate soil media.</td>
</tr>
<tr>
<td>Foliar treatment (Admire Pro) 4.6 F (various) 2 F</td>
<td>1.3 fl oz 3.8 fl oz</td>
<td>12 hrs</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>pymetrozine, MOA 9B (Fulfill) 50 WDG</td>
<td>2.75 oz</td>
<td>12 hrs</td>
<td>0</td>
<td>Apply before aphids reach damaging levels. Do not exceed 5.5 ounces per acre per season. Not for flea beetle.</td>
</tr>
<tr>
<td>pyrfluquinazon, MOA 9B (POZ) 1.87 EC</td>
<td>2.4 to 3.2 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td>See label for rotational crop restrictions. Do not exceed 4.8 fl oz per acre per crop cycle.</td>
</tr>
<tr>
<td>Insecticide, Mode of Action Code, and Formulation</td>
<td>Amount of Formulation Per Acre</td>
<td>Restricted Entry Interval (REI)</td>
<td>Pre harvest Interval (PHI) (Days)</td>
<td>Precautions and Remarks</td>
</tr>
<tr>
<td>---</td>
<td>-------------------------------</td>
<td>--------------------------------</td>
<td>----------------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>APHID (CONT’D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>spirotetramat, MOA 23 (Movento) 2SC</td>
<td>4 to 5 fl oz</td>
<td>24 hrs</td>
<td>1</td>
<td>Do not exceed 10 fluid ounces per season. Requires surfactant. Will not control flea beetle.</td>
</tr>
<tr>
<td>sulfotiafol (Closer) 2 SC (Transform) WG</td>
<td>1.5 to 2.0 fl oz / 0.75 to 1.0 oz</td>
<td>24 hrs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>tolfenpyrad, MOA 21A (Torac)</td>
<td>17 to 21 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>thiamethoxam, MOA 4A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil treatment (Platinum) 75 SG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foliar treatment (Actara) 25 WDG</td>
<td>1.5 to 3 oz</td>
<td>12 hrs</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>ARMYWORMS, CORN EARWORM, LOOPER, EUROPEAN CORN BORER, HORNWORM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacillus thuringiensis, MOA 11A (Dipel) DF</td>
<td>0.5 to 1.5 lb / 0.5 to 2 lb</td>
<td>4 hrs</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>chlorantraniliprole, MOA 28 (Coragen) 1.67 SC</td>
<td>2 to 7.5 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td>Foliar or drip chemigation. Drip chemigation must be applied uniformly to the root zone. See label for instructions.</td>
</tr>
<tr>
<td>cyantraniliprole, MOA 28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil treatment (Verimark) 1.67 SC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foliar treatment (Exirel) 0.83SE</td>
<td>7 to 13.5 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td>Exirel is for foliar application only.</td>
</tr>
<tr>
<td>cyclaniliprole, MOA 28 (Harvanta) 50 SL</td>
<td>10.9 to 16.4 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>emamectin benzoate, MOA 6 (Proclain) 5 WDG</td>
<td>2.4 to 4.8 oz</td>
<td>12 hrs</td>
<td>7</td>
<td>Apply when larvae are first observed. Additional applications may be necessary to maintain control.</td>
</tr>
<tr>
<td>indoxacarb, MOA 22B (Avaunt eVo) 30 WDG</td>
<td>2.5 to 3.5 oz</td>
<td>12 hrs</td>
<td>3</td>
<td>Use only higher rate for control of armyworm and corn earworm. Do not apply more than 14 ounces of Avaunt (0.26 lb a.i. per acre per crop). Minimum interval between sprays is 5 days.</td>
</tr>
<tr>
<td>methoxyfenozide, MOA 18 (Intrepid) 2 F</td>
<td>4 to 16 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td>Apply at rates of 4 to 8 fluid ounces early in season when plants are small. Apply at rates of 8 to 16 ounces to large plants or when infestations are heavy. During periods of continuous moth flights re-treatments at 7 to 14 days may be required. Do not apply more than 16 fluid ounces per application or 64 fluid ounces of Intrepid per acre per season.</td>
</tr>
<tr>
<td>novaluron, MOA 15 (Rimon) 0.83 EC</td>
<td>9 to 12 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td>The use of a surfactant/adjuvant with Rimon is prohibited on pepper.</td>
</tr>
<tr>
<td>spinetoram, MOA 5 (Radiant) 1 SC</td>
<td>5 to 10 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>pyrethroid, MOA 3A</td>
<td></td>
<td>12 hrs</td>
<td>See Table 2-25 A for a list of registered pyrethroids and pre-harvest intervals.</td>
<td></td>
</tr>
<tr>
<td>viruses</td>
<td></td>
<td>4 hrs</td>
<td>See Table 2-26 for virus-based insecticides effective against specific insects. ORMl listed.</td>
<td></td>
</tr>
<tr>
<td>BLISTER BEETLE, STINK BUG, LEAFFOOTED BUG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pyrethroid, MOA 3A</td>
<td></td>
<td>12 hrs</td>
<td>See Table 2-25 A for a list of registered pyrethroids and pre-harvest intervals.</td>
<td></td>
</tr>
<tr>
<td>dinofeturan, MOA 4A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foliar treatment (Venom) 70 SG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dinofeturan (Venom) 70 SG (Scorpion) 35 SL</td>
<td>1 to 4 oz / 2 to 7 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td>Do not combine foliar applications with soil applications, or vice versa. Use only one application method.</td>
</tr>
<tr>
<td>Soil treatment (Venom) 70 SG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dinofeturan (Venom) 70 SG (Scorpion) 35 SL</td>
<td>5 to 6 oz / 9 to 10.5 fl oz</td>
<td></td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>thiamethoxam, MOA 4A (Actara) 25 WDG</td>
<td>3 to 5.5 oz</td>
<td>12 hrs</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 2-17. INSECT CONTROL FOR PEPPER (cont’d)

<table>
<thead>
<tr>
<th>Insecticide, Mode of Action Code, and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Restricted Entry Interval (REI)</th>
<th>Pre harvest Interval (PHI) (Days)</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEAFMINER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>abamectin, MOA 6 (Agri-Mek) 0.7 SC</td>
<td>1.75 to 3.5 fl oz</td>
<td>12 hrs</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>cyromazine, MOA 17 (Trigard) 75 WP</td>
<td>2.66 oz</td>
<td>12 hrs</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>dimethoate 4 EC, MOA 1B</td>
<td>0.5 pt</td>
<td>48 hrs</td>
<td>0</td>
<td>Re-entry interval is 48 hr.</td>
</tr>
<tr>
<td>spinetoram, MOA 5 (Radiant) 1 SC</td>
<td>6 to 10 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PEPPER MAGGOT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>acephate, MOA 1B (Orthene) 97 PE</td>
<td>0.75 to 1 lb</td>
<td>24 hrs</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>dimethoate 4 EC, MOA 1B</td>
<td>0.5 to 0.67 pt</td>
<td>48 hrs</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>pyrethroid, MOA 3A</td>
<td>12 hrs</td>
<td></td>
<td></td>
<td>See Table 2-25 A for registered pyrethroids and pre-harvest intervals</td>
</tr>
<tr>
<td>PEPPER WEEVIL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>acetamiprid, MOA 4A (Assail) 30 SG</td>
<td>4 oz</td>
<td>12 hrs</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>cyclaniliprole, MOA 28 (Harvanta) 50 SL</td>
<td>10.9 to 16.4 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>oxamyl, MOA 1A (Vydate) 2 L</td>
<td>2 to 4 pt</td>
<td>48 hrs</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>thiamethoxam, MOA 4A (Actara) 25 WP</td>
<td>3 to 4 oz</td>
<td>12 hrs</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>tolfenpyrad, MOA 21A (Torac)</td>
<td>17 to 21 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>pyrethroid, MOA 3A</td>
<td>12 hrs</td>
<td></td>
<td></td>
<td>See Table 2-25 A for registered pyrethroids and pre-harvest intervals</td>
</tr>
<tr>
<td>BROAD MITE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>abamectin, MOA 6 (Agri-Mek) 0.7 SC</td>
<td>1.75 to 3.5 fl oz</td>
<td>12 hrs</td>
<td>7 On foliage as needed.</td>
<td></td>
</tr>
<tr>
<td>fenpyroximate MOA 21 (Portal) 0.4 EC</td>
<td>2 pt</td>
<td>12 hrs</td>
<td>3 Do not make more than two applications per season.</td>
<td></td>
</tr>
<tr>
<td>spiromesifen, MOA 23 (Oberon) 2 SG</td>
<td>7 to 8.5 fl oz</td>
<td>12 hrs</td>
<td>7 Do not exceed 3 applications per season</td>
<td></td>
</tr>
<tr>
<td>spirotetramat MOA 23 (Movento) 2 SC</td>
<td>4 to 5 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>tolfenpyrad, MOA 21A (Torac)</td>
<td>17 to 21 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>THRIPS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dinofuran, MOA 4A (Venom) 70 SG</td>
<td>5 to 6 oz</td>
<td>12 hrs</td>
<td>21 Dinofuran is not effective against western flower thrips.</td>
<td></td>
</tr>
<tr>
<td>(Scorpion) 35 SL</td>
<td>9 to 10.5 fl oz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>imidacloprid, MOA 4A (Admire Pro) 4.6 F</td>
<td>7 to 14 fl oz</td>
<td>12 hrs</td>
<td>21 See Aphids for application instructions. Treating transplants before setting in the field, followed by drip irrigation may suppress incidence of tomato spotted virus. Imidacloprid is ineffective against western flower thrips.</td>
<td></td>
</tr>
<tr>
<td>cyclaniliprole, MOA 28 (Harvanta)</td>
<td>10.9 to 16.4 fl oz</td>
<td>4 hrs</td>
<td>1 Harvanta used in a rotational program will help suppress western flower thrips.</td>
<td></td>
</tr>
<tr>
<td>flonicamid, MOA 20D (Beleaf) 50 SG</td>
<td>2 to 4.8 fl oz</td>
<td>12 hrs</td>
<td>0 This is an option for insecticide-resistant western flower thrips. Do not exceed 8.4 oz per acre per season.</td>
<td></td>
</tr>
<tr>
<td>methomyl, MOA 1A (Lannate) 2.4 LV</td>
<td>1.5 pt</td>
<td>48 hrs</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>spinetoram, MOA 5 (Radiant) 1 SC</td>
<td>6 to 10 fl oz</td>
<td>4 hrs</td>
<td>1 Do not exceed 29 fluid ounces per acre per season. Control of thrips may be improved by adding a spray adjuvant. See label for instructions. This is an option for insecticide-resistant thrips.</td>
<td></td>
</tr>
<tr>
<td>tolfenpyrad, MOA 21A (Torac), 1.29 EC</td>
<td>21 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 2-18. INSECT CONTROL FOR POTATO, IRISH

<table>
<thead>
<tr>
<th>Insecticide, Mode of Action Code, and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Restricted Entry Interval (REI)</th>
<th>Pre harvest Interval (PHI) (Days)</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>acetamiprid, MOA 4A (Assail) 30 SG</td>
<td>1.5 to 4 oz</td>
<td>12 hrs</td>
<td>7</td>
<td>Do not make more than 4 applications per season. Thorough coverage is important. Assail belongs to the same class of insecticides (neonicotinoid, 4A) as Admire Pro, Belay and Platinum (soil insecticides) and Provado and Actara (foliar insecticides). Colorado potato beetle populations have developed resistance to this class.</td>
</tr>
<tr>
<td>clothianidin MOA 4A (Belay) 2.13</td>
<td>2 to 3 fl oz</td>
<td>12 hrs</td>
<td>7</td>
<td>Apply Belay 50 as foliar spray when populations reach a threshold level. Do not apply more than 3 applications. Be- lay belongs to the same class of insecticides (neonicotinoid) as Admire Pro, Provado, Actara, and Platinum and Colorado potato beetle populations have the potential to become resistant to this class.</td>
</tr>
<tr>
<td>fioranil, MOA 20D (Belay) 50 SG</td>
<td>2 to 2.8 oz</td>
<td>12 hrs</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>flupyradifurone, MOA 4D (Sivanto Prime) 1.67 SL</td>
<td>7.0 to 12.0 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>dimethoate 4 EC, MOA 1B</td>
<td>0.5 to 1 pt</td>
<td>48 hrs</td>
<td>0</td>
<td>Do not apply more than 2 pints total per year.</td>
</tr>
<tr>
<td>imidacloprid, MOA 4A (Admire Pro) 4.6F</td>
<td>1.2 fl oz</td>
<td>12 hrs</td>
<td>7</td>
<td>To minimize selection for resistance in Colorado potato beetle, do not use acetamiprid, imidacloprid, or thiamethoxam for aphid control if either of these compounds was applied to the crop for control of Colorado potato beetle. See comments on insecticide rotation under Colorado potato beetle.</td>
</tr>
<tr>
<td>pymetrozine, MOA 9B (Fulfil) 50 WDG</td>
<td>2.75 oz</td>
<td>12 hrs</td>
<td>14</td>
<td>Allow at least 7 days between applications. Do not exceed a total of 5.5 ounces (0.17 lb a.i.) per acre per season.</td>
</tr>
<tr>
<td>thiamethoxam, MOA 4A (Actara) 25 WDG</td>
<td>3 oz</td>
<td>12 hrs</td>
<td>14</td>
<td>To minimize selection for resistance in Colorado potato beetle, do not use imidacloprid or thiamethoxam for aphid control if either of these compounds was applied to the crop for control of Colorado potato beetle.</td>
</tr>
</tbody>
</table>

COLORADO POTATO BEETLE

Colorado potato beetle populations in most commercial potato-growing areas have developed resistance to many insecticides. As a result, insecticides that are effective in some areas, or were effective in the past, may no longer provide control in particular areas. Colorado potato beetle readily develops resistance to insecticides. The following practices help to reduce the risk of resistance developing:

CROP ROTATION AND INSECTICIDE ROTATION

The use of insecticides representing different modes of action IRAC MoA class number in different years and against different generations of potato beetle within a year are essential if insecticide resistance is to be managed and the risks of control failures due to resistance minimized. If control failures or reduced levels of control are observed with a particular insecticide, do NOT make a second application of the same insecticide at the same or higher rate. If an additional insecticide application is necessary, a different insecticide representing a different IRAC MoA class number should be used. Because potato beetle adults will move between adjacent and nearby fields from one year to the next, it is important to maintain the same rotation schedule of insecticide MOA classes in adjacent fields are groups of nearby fields.

SCOUT FIELDS: All insecticide applications to the potato crop, regardless of the target insect pest, have the potential to in-crease the resistance of the Colorado potato beetle to insecticides. Unnecessary insecticide applications should be avoided by scouting fields for insect pests and applying insecticides only when potentially damaging insect populations are present.

SPOT TREATMENTS: Because overwintered potato beetles invade rotated fields from sources outside the field, potato beetle infestations in rotated fields occur first along field edges early in the season. Limiting insecticide applications to infested portions of the field will provide effective control and reduce costs. Growers are advised to keep accurate records on which insecticides have been applied to their potato crop for control of Colorado potato beetle and on how effective those insecticides were at controlling infestations. This will make choosing an insecticide and maintaining insecticide rotations easier. Monitoring the insecticide resistance status of local populations will also make insecticide selection easier.

<table>
<thead>
<tr>
<th>Insecticide, Mode of Action Code, and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Restricted Entry Interval (REI)</th>
<th>Pre harvest Interval (PHI) (Days)</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>abamectin, MOA 6 (Agri-Mek) 0.7 SC</td>
<td>1.75 to 3.5 fl oz</td>
<td>12 hrs</td>
<td>14</td>
<td>Apply when adults and/or small larvae are present but before large larvae appear. Do not exceed two applications per season. Apply in at least 20 gallons water per acre.</td>
</tr>
<tr>
<td>Acetamiprid, MOA 4A (Assail) 70 WP</td>
<td>0.6 to 1.7 oz</td>
<td>12 hrs</td>
<td>7</td>
<td>Apply when most egg masses have hatched and many small but few large larvae are present. An additional application should be used only if defoliation increases. Allow at least 7 days between foliar applications. To minimize selection for resistance, do not use foliar applications of any IRAC MOA class 4A insecticides if any IRAC MOA class 4A insecticides were applied to the crop as soil or seed piece treatments. See comments on insecticide rotation under Colorado potato beetle.</td>
</tr>
<tr>
<td>thionantraniliprole, MOA 28 (Coragen) 1.67</td>
<td>3.5 to 7.5 oz</td>
<td>4 hrs</td>
<td>14</td>
<td>Do not apply more than 15.4 ounces Coragen per acre per crop season. Coragen treated insects may take several days to die, but stop feeding almost immediately after treatment.</td>
</tr>
<tr>
<td>clothianidin MOA 4A (Belay) 2.13</td>
<td>2 to 3 fl oz</td>
<td>12 hrs</td>
<td>7</td>
<td>Apply Belay 50 WDG as foliar spray. Apply when adults and/or small larvae are present but before large larvae appear. Do not apply more than 3 applications. Belay belongs to the same class of insecticides (neonicotinoid) as Admire Pro, Provado, Actara, and Platinum and Colorado potato beetle populations have developed resistance to this class.</td>
</tr>
<tr>
<td>cyantraniliprole, MOA 28 (Verimark) 1.67 SC</td>
<td>6.75 to 13.5 fl oz</td>
<td>4 hr</td>
<td>NA</td>
<td>Apply in furrow at planting. Do not apply any other MOA Group 28 insecticide for Colorado potato beetle control following an at-plant application for cyantraniliprole. When applied at 10 to 13.5 fluid ounces per acre will provide control of European corn borer in most years, except possibly in very early-planted potatoes.</td>
</tr>
</tbody>
</table>
Table 2-18. Insect Control for Potato, Irish (cont’d)

<table>
<thead>
<tr>
<th>Insecticide, Mode of Action Code, and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Restricted Entry Interval (REI)</th>
<th>Pre Harvest Interval (PHI) (Days)</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>COLORADO POTATO BEETLE (CONT’D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dinotefuran, MOA 4A (Venom) 70 SG</td>
<td>1 to 1.5 oz (foliar) 6.5 to 7.5 oz (soil)</td>
<td>12 hrs</td>
<td>7</td>
<td>Soil treatment for preplant, preemergence, or ground crack application only. To minimize selection for resistance, do not use foliar applications of any IRAC MOA class 4A insecticides if any IRAC MOA class 4A insecticides were applied to the crop as soil or seed piece treatments. See comments on insecticide rotation under Colorado potato beetle.</td>
</tr>
<tr>
<td>imidacloprid, MOA 4A Seed Piece treatment (Genesis) 240 g/L</td>
<td>0.4 to 0.6 fl oz/100 lb of seed tubers</td>
<td>12 hrs</td>
<td>—</td>
<td>Resistance has been reported and may reduce efficacy or duration of control. To minimize selection for resistance, do not use foliar applications of any IRAC MOA class 4A insecticides if any of these compounds were applied to the crop as soil or seed piece treatments. See label for specific instructions. For early-plant ed potatoes, control may be marginal because of the prolonged time between application and Colorado potato beetle emergence. Limit use to locations where Colorado potato beetles were a problem in the same or adjacent fields during the previous year. Do not apply other IRAC MOA class 4A insecticides to a field if seed pieces were treated with Genesis. See product label for restrictions on rotational crops.</td>
</tr>
<tr>
<td>Foliar treatment (Admire Pro) 4.6F (various) 2.0 F</td>
<td>0.74 fl oz/1,000 ft row</td>
<td>12 hrs</td>
<td>7</td>
<td>Resistance has been reported and may reduce efficacy or duration of control. To minimize selection for resistance, see comments on insecticide rotation under Colorado potato beetle. Admire Pro applied in-furrow at planting time may provide sea-son-long control. However, for early-planted potatoes control may be marginal due to the prolonged time between application and Colorado potato beetle emergence. Use only in potato fields that have a history of potato beetle infestations. If potatoes are rotated to a field adjacent to one planted in potato last year, a barrier treatment may be effective. Admire Pro may also be applied as a seed treatment. Check label for instructions regarding this use. Check label for restrictions on planting crops following Admire Pro treated potatoes. There have been reports of low levels of resistance to imidacloprid. To minimize selection for resistance, do not use foliar applications of any IRAC MOA class 4A insecticides if any of these compounds were applied to the crop as soil or seed piece treatments. See comments on insecticide rotation under Colorado potato beetle.</td>
</tr>
<tr>
<td>Imidacloprid, MOA 4A + cyfluthrin, MOA 3A premix (Leverage) 2.7 SE</td>
<td>3 to 3.75 fl oz</td>
<td>12 hrs</td>
<td>7</td>
<td>There have been reports of low levels of resistance to imidacloprid. To minimize selection for resistance, do not use foliar applications of any IRAC MOA class 4A insecticides if any of these compounds were applied to the crop as soil or seed piece treatments. See comments on insecticide rotation under Colorado potato beetle. Apply when most of the egg masses have hatched and most larvae are small (1/8 to 3/16 in.). An additional application should be made only if defoliation increases. Allow at least 7 days between foliar applications. Do not exceed 5.6 fluid ounces of Admire Pro per field per acre per season. Regardless of formulation, do NOT apply more than a total of 0.31 lb imidacloprid per season. Foliar applications of imidacloprid should not be applied if soil application was used.</td>
</tr>
<tr>
<td>novaluron, MOA 15 (Rimon) 0.83 EC</td>
<td>9 to 12 fl oz</td>
<td>12 hrs</td>
<td>14</td>
<td>Novaluron is an insect growth regulator with activity against eggs and larvae. Larvae are killed as they molt to the next stage. Eggs present at the time of application are killed. Adults exposed produce few eggs. Novaluron is most effective if directed against overwintered adults when egg numbers are increasing, and small larvae are just beginning to appear. Do not apply to successive generations of Colorado potato beetle. Do not apply more than 24 fl oz per season.</td>
</tr>
<tr>
<td>spinosad, MOA 5 (Blackhawk) 36 WG</td>
<td>1.7 to 3.3 oz</td>
<td>3</td>
<td></td>
<td>Apply when most egg masses have hatched and both small and large larvae are present. Thorough coverage is important. Do not apply more than a total of 0.33 lb a.i. (14.4 ounces of Blackhawk or 21 ounces of Radiant) per crop. Do not apply in consecutive generations of Colorado potato beetle and do not make more than two applications per single generation of Colorado potato beetle. Do not make successive applications less than 7 days apart. To minimize the potential for resistance, do NOT use spinosad or spinetoram if either product was applied to a potato crop in the field or an adjacent field within the last year.</td>
</tr>
<tr>
<td>spinetoram, MOA 5 (Radiant) 1 SC</td>
<td>6 to 8 fl oz</td>
<td>4 hrs</td>
<td>7</td>
<td>See comments above under spinosad.</td>
</tr>
<tr>
<td>Insecticide, Mode of Action Code, and Formulation</td>
<td>Amount of Formulation Per Acre</td>
<td>Restricted Entry Interval (REI)</td>
<td>Pre harvest Interval (PHI) (Days)</td>
<td>Precautions and Remarks</td>
</tr>
<tr>
<td>--</td>
<td>--------------------------------</td>
<td>--------------------------------</td>
<td>---------------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>thiamethoxam, MOA 4A Seed Piece treatment (Cruiser) 5 FS</td>
<td>0.11 to 0.16 fl oz/100 lb</td>
<td>12 hrs</td>
<td>7</td>
<td>See label for specific instructions. Resistance to neonicotinoid insecticides has been reported and may reduce efficacy or duration of control by thiamethoxam. To minimize selection for resistance, do not use foliar applications of any IRAC MOA class 4A insecticides if any of these compounds were applied to the crop as soil or seed piece treatments. See comments on insecticide rotation under Colorado potato beetle. For early-planted potatoes, control may be marginal because of the prolonged time between application and Colorado potato beetle emergence. Limit use to locations where Colorado potato beetles were a problem in the same or adjacent fields during the previous year.</td>
</tr>
<tr>
<td>thiamethoxam, MOA 4A (Platinum) 75 SG</td>
<td>1.66 to 2.67 oz</td>
<td>12 hrs</td>
<td>7</td>
<td>Resistance to neonicotinoid insecticides has been reported and may reduce efficacy or duration of control by thiamethoxam. To minimize selection for resistance, do not use foliar applications of any IRAC MOA class 4A insecticides if any of these compounds were applied to the crop as soil or seed piece treatments. See comments on insecticide rotation under Colorado potato beetle. Platinum applied in-furrow at planting time may provide season-long control. For early-planted potatoes, control may be marginal because of the prolonged time between application and Colorado potato beetle emergence. Limit use to locations where Colorado potato beetles were a problem in the same or adjacent fields in the previous year. See product label for restrictions on rotational crops.</td>
</tr>
<tr>
<td>(Actara) 25 WDG</td>
<td>3 oz</td>
<td>12 hrs</td>
<td>7</td>
<td>Resistance to neonicotinoid insecticides has been reported and may reduce efficacy or duration of control by thiamethoxam. To minimize selection for resistance, do not use foliar applications of any IRAC MOA class 4A insecticides if any of these compounds were applied to the crop as soil or seed piece treatments. See comments on insecticide rotation under Colorado potato beetle. Actara is applied as a foliar spray. Apply when most of the eggs have hatched and most of the larvae are small (1/8 to 3/16 inch.). An additional application should be made only if defoliation increases. Allow at least 7 days between applications. Do not make more than 2 applications of Actara per crop per season.</td>
</tr>
<tr>
<td>thiamethoxam, MOA 4A + chlorantraniliprole, MOA 28 Premix (Voliam Flex)</td>
<td>4 oz</td>
<td>12 hrs</td>
<td>14</td>
<td>Resistance to neonicotinoid insecticides has been reported and may reduce efficacy or duration of control by thiamethoxam. To minimize selection for resistance, do not use foliar applications of any IRAC MOA class 4A insecticides if any of these compounds were applied to the crop as soil or seed piece treatments. See comments on insecticide rotation under Colorado potato beetle. Voliam Flexi is applied as a foliar spray. Apply when most of the eggs have hatched and most of the larvae are small (1/8 to 3/16 inch.). An additional application should be made only if defoliation increases. Allow at least 7 days between applications. To minimize selection for resistance, do not use foliar applications of any IRAC MOA class 4A insecticides if any of these compounds were applied to the crop as soil or seed piece treatments. Do not exceed 8 ounces of Voliam Flexi. See label for rotational restrictions. Voliam Flexi can be expected to provide control of European corn borer if application is timed correctly (see European corn borer for correct timing.</td>
</tr>
<tr>
<td>pyrethroid, MOA 3A</td>
<td>12 hrs</td>
<td>Apply when threshold is reached (usually during the first half of May). A second application may be needed if the percentage of infested stems increases substantially 7 to 10 days after the first application. Ground applications are usually more effective than aerial applications. See Table 2-25 A for a list of registered pyrethroids and pre-harvest intervals.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>chlorantraniliprole, MOA 28 (Coragen) 1.67</td>
<td>3.5 to 7.5 oz</td>
<td>4 hrs</td>
<td>14</td>
<td>Correct timing of application is important. Apply when threshold is reached (usually during the first half of May). Do not apply more than 15.4 ounces Coragen per acre per crop season.</td>
</tr>
<tr>
<td>thiamethoxam, MOA 4A + chlorantraniliprole, MOA 28 premix (Voliam Flexi)</td>
<td>4 oz</td>
<td>12 hrs</td>
<td>14</td>
<td>Voliam Flexi is applied as a foliar spray. Correct timing of application is important for control of European corn borer. Apply when threshold is reached (usually during the first half of May). Voliam Flexi can also be expected to provide control of Colorado potato beetle if most of the potato beetle eggs have hatched and most of the larvae are small (1/8 to 3/16 inch.). Voliam Flexi applications targeting European corn borer will select for resistance to neonicotinoid insecticides in Colorado potato beetle, if present. To minimize selection for resistance to Colorado potato beetle, do not use foliar applications of any IRAC MOA class 4A insecticides if any of these compounds were applied to the crop as soil or seed piece treatments. Do not exceed 8 ounces of Voliam Flexi. See label for rotational restrictions.</td>
</tr>
<tr>
<td>spinetoram, MOA 5 (Radiant) 1 SC</td>
<td>6 to 8 fl oz</td>
<td>4 hrs</td>
<td>7</td>
<td>Do not apply more than a total of 0.25 lb a.i. (32 fl oz) per crop.</td>
</tr>
</tbody>
</table>

EUROPEAN CORN BORER

The Atlantic variety of potato is very tolerant of injury by European corn borer larvae. Consequently, control is not recommended on Atlantic unless more than 30 percent of the stems are infested. Control on all other varieties is recommended when infestations reach 20 percent infest ed stems. Application timing is critical. Scout for eggs and treat when eggs hatch or at the first sign of larvae entering petioles. Several days of cool wet weather will kill larvae and may eliminate the need for insecticide applications. If this occurs, flag additional egg masses and apply insecticide at hatch.
TABLE 2-18. INSECT CONTROL FOR POTATO, IRISH (cont’d)

<table>
<thead>
<tr>
<th>Insecticide, Mode of Action Code, and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Restricted Entry Interval (REI)</th>
<th>Pre harvest Interval (PHI) (Days)</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLEA BEETLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>imidacloprid, MOA 4A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil treatment (Admire Pro) 4.6</td>
<td>0.74 fl oz/1,000 ft row</td>
<td>12 hrs</td>
<td>—</td>
<td>If imidacloprid or thiamethoxam resistant Colorado potato beetles occur in the field, application of imidacloprid to control flea beetles has the potential to further increase resistance levels. Imidacloprid applied in-furrow at planting time may provide season-long control of flea beetles. However, for early-planted potatoes control may be marginal due to the prolonged time between application and crop emergence. Check label for restrictions on planting crops following Admire Pro treated potatoes.</td>
</tr>
<tr>
<td>Foliar treatment (Admire Pro) 4.6</td>
<td>1.3 fl oz 3.75 fl oz</td>
<td>12 hrs</td>
<td>7</td>
<td>See comments for imidacloprid resistance in Colorado potato beetle</td>
</tr>
<tr>
<td>thiamethoxam, MOA 4A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seed Piece treatment (Cruiser) 5 FS</td>
<td>0.11 to 0.16 fl oz/100 lb</td>
<td>12 hrs</td>
<td>7</td>
<td>See label for specific instructions. For early-planted potatoes, control may be marginal because of the prolonged time between application and flea beetle emergence. Limit use to locations where Colorado potato beetles were not a problem in the same or adjacent fields during the previous year. To minimize selection for resistance, do not use foliar applications of any IRAC MOA class 4A insecticides if any of these compounds were applied to the crop as soil or seed piece treatments. See comments on insecticide rotation under Colorado potato beetle.</td>
</tr>
<tr>
<td>thiamethoxam, MOA 4A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Platinum) 2 SC</td>
<td>5 to 8 fl oz</td>
<td>12 hrs</td>
<td>7</td>
<td>Platinum applied in-furrow at planting time may provide season-long control. However, for early-planted potatoes control may be marginal due to the prolonged time between application and crop emergence. Limit use to locations where Colorado potato beetles were not a problem in the same or adjacent fields during the previous year. See product label for restrictions on rotational crops. See comments for imidacloprid resistance in Colorado potato beetle.</td>
</tr>
<tr>
<td>(Actara) 25 WDG</td>
<td>3 oz</td>
<td>12 hrs</td>
<td>7</td>
<td>Actara is applied as foliar spray. See comments for imidacloprid resistance in Colorado potato beetle. If imidacloprid or thiamethoxam resistant Colorado potato beetles occur in the field, application of Voliam Flexi should control flea beetle has the potential to increase resistance levels. See comments for imidacloprid resistance in Colorado potato beetle.</td>
</tr>
<tr>
<td>thiamethoxam, MOA 4A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chlorantraniliprole MOA 28 (Voliam Flexi)</td>
<td>4 fl oz</td>
<td>14</td>
<td>7</td>
<td>Do not exceed 8.0 fluid ounces per acre Voliam Flexi or 0.094 lb a.i/acre of thiamethoxam-containing products or 0.2-pound a.i/acre of chlorantraniliprole-containing products per growing season. If Colorado potato beetles occur in the field, application of Voliam Flexi to control flea beetles has the potential to increase resistance levels. See comments for imidacloprid resistance in Colorado potato beetle.</td>
</tr>
<tr>
<td>pyrethroid, MOA 3A</td>
<td></td>
<td></td>
<td>12 hrs</td>
<td>See Table 2-25 A for a list of registered pyrethroids and pre-harvest intervals.</td>
</tr>
<tr>
<td>LEAFHOPPER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>carbaryl, MOA 1A</td>
<td></td>
<td></td>
<td></td>
<td>On foliage when leafhoppers first appear. Repeat every 10 days as needed. Often a problem in the mountains.</td>
</tr>
<tr>
<td>dimethoate, MOA 1B</td>
<td></td>
<td></td>
<td></td>
<td>Check label for rate, PHI and REI.</td>
</tr>
<tr>
<td>imidacloprid + cyfluthrin premix, MOA 4A and 3</td>
<td>3 to 3.80 fl oz 2.8 fl oz</td>
<td>7</td>
<td>7</td>
<td>There have been reports of low levels of resistance to imidacloprid. To minimize selection for resistance, do not use foliar applications of any IRAC MOA class 4A insecticides if any of these compounds were applied to the crop as soil or seed piece treatments. See comments on insecticide rotation under Colorado potato beetle. Leverage should not be used in fields treated with Admire Pro.</td>
</tr>
<tr>
<td>methomyl, MOA 1A</td>
<td>1.5 pt</td>
<td>48 hrs</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>pyrethroid, MOA 3A</td>
<td>12 hrs</td>
<td></td>
<td>See Table 2-25 A for a list of registered pyrethroids and pre-harvest intervals.</td>
<td></td>
</tr>
<tr>
<td>LEAFMINER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dimethoate, MOA 1B</td>
<td></td>
<td></td>
<td></td>
<td>Check label for rate, PHI and REI.</td>
</tr>
<tr>
<td>chlorantraniliprole, MOA 28 (Coragen) 1.67 SC</td>
<td>3.5 to 5 fl oz</td>
<td>4 hrs</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>BLISTER BEETLE, LEAFFOOTTED BUG, PLANT BUG, STINK BUG, VEGETABLE WEEVIL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>carbaryl, MOA 1A</td>
<td>2 to 4 lb</td>
<td>12 hrs</td>
<td>7</td>
<td>On foliage as needed.</td>
</tr>
<tr>
<td>pyrethroid, MOA 3A</td>
<td></td>
<td></td>
<td>12 hrs</td>
<td>See Table 2-25 A for a list of registered pyrethroids and pre-harvest intervals.</td>
</tr>
<tr>
<td>POTATO TUBERWORM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chlorantraniliprole, MOA 28 (Coragen) 1.67 SC</td>
<td>3.5 to 7.5 fl oz</td>
<td>4 hrs</td>
<td>14</td>
<td>Do not exceed 4 applications per acre per crop. Do not apply more than 15.4 ounces Coragen or 0.2 lbs ai/acre chlorantraniliprole containing products per acre per calendar year. Minimum interval between applications is 5 days. Performance is improved if applied via overhead chemigation (see label).</td>
</tr>
</tbody>
</table>
TABLE 2-18. INSECT CONTROL FOR POTATO, IRISH (cont’d)

<table>
<thead>
<tr>
<th>Insecticide, Mode of Action Code, and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Restricted Entry Interval (REI)</th>
<th>Pre harvest Interval (PHI) (Days)</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>POTATO TUBERWORM (CONT’D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cyantraniliprole, MOA 28 (Exirel) 0.83 SE</td>
<td>7 to 13.5 fl oz</td>
<td>12 hrs</td>
<td>12</td>
<td>Apply as foliar spray. Do not apply more than 0.4 lb ai/acre (including seed treatments) of cyantraniliprole containing products per calendar year. Methylated seed oil (MSO) adjuvant at 1 gal.100 gal. spray volume (1%v/v) improves control by foliar sprays. Performance is improved if applied via overhead chemigation (see label). Do not apply more than 0.4 lb ai/acre (including seed treatments) of cyantraniliprole containing products per calendar year.</td>
</tr>
<tr>
<td>methomyl, MOA 1A (Lannate) 2.4 LV</td>
<td>1.5 pt</td>
<td>48 hrs</td>
<td>6</td>
<td>Prevent late-season injury by keeping potatoes covered with soil. To prevent damage in storage, practice sanitation.</td>
</tr>
<tr>
<td>pyrethroid, MOA 3A</td>
<td></td>
<td>12 hrs</td>
<td></td>
<td>See Table 2-25 A for a list of registered pyrethroids and pre-harvest intervals.</td>
</tr>
</tbody>
</table>

THRIPS

dimethoate 4 EC, MOA 1B

spinetoram, MOA 5 (Radiant) 1 SC

spinosad, MOA 5 (Blackhawk) 36 WG

WIREWORM

Planting in fields previously in corn, soybean, or fallow may increase risk of wireworm.

bifenthrin, MOA 3A (Capture LFR)

clothianidin (Belay) 2.13

ethoprop, MOA 1B (Mocap) 15 G

fipronil, MOA 2B (Regent) 4 SC

phorate, MOA 1B (Thimet) 20 G

ROOT MAGGOT, WIREWORM

TABLE 2-19. INSECT CONTROL FOR RADISH

<table>
<thead>
<tr>
<th>Insecticide, Mode of Action Code, and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Restricted Entry Interval (REI)</th>
<th>Pre harvest Interval (PHI) (Days)</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>APHID, FLEA BEETLE, LEAFMINER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pyrethroid, MOA 3A</td>
<td></td>
<td>12 hrs</td>
<td></td>
<td>See Table 2-25 A for a list of registered pyrethroids and pre-harvest intervals.</td>
</tr>
<tr>
<td>flupyradifurone, MOA 4D (Sivanto Prime) 1.67 SL</td>
<td>7.0 to 14 fl oz</td>
<td>4 hrs</td>
<td>7</td>
<td>Will not control flea beetles or leafminer.</td>
</tr>
<tr>
<td>imidacloprid, MOA 4A Foliar treatment (Admire Pro) 4.8 F (various) 2 F</td>
<td>1.2 fl oz to 2.8 fl oz</td>
<td>12 hrs</td>
<td>7</td>
<td>Will not control leafminer.</td>
</tr>
<tr>
<td>fionicamid, MOA 29 (Beleaf) 50 SG</td>
<td>2 to 2.8 oz</td>
<td>12 hrs</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>thiamethoxam, MOA 4A Soil treatment (Platinum) 75 SG</td>
<td>1.7 to 2.17 oz</td>
<td>12 hrs</td>
<td>NA</td>
<td>Platinum is for soil application within 24 hr of planting only. See label for application instructions.</td>
</tr>
<tr>
<td>Foliar treatment (Actara) 25 WDG</td>
<td>1.5 to 3 oz</td>
<td>12 hrs</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

ROOT MAGGOT, WIREWORM

diazinon, MOA 1B (AG 500) (50 WP)

Broadcast just before planting and immediately incorporate into the upper 4 to 8 inches of soil. Do not exceed 4 qt (AG 500) or 8 lbs (50 WP) per acre per year.
<table>
<thead>
<tr>
<th>Insecticide, Mode of Action Code, and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Restricted Entry Interval (REI)</th>
<th>Pre harvest Interval (PHI) (Days)</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>APHID</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>acetamiprid, MOA 4A (Assail) 30 SG</td>
<td>2 to 4 oz</td>
<td>12 hrs</td>
<td>7</td>
<td>Do not apply more than once every 7 days, and do not exceed 5 applications per calendar year.</td>
</tr>
<tr>
<td>alfpyropen, MOA 9D (Versys) DC</td>
<td>1.5 fl oz</td>
<td>12 hrs</td>
<td>0</td>
<td>Do not make more than 2 sequential applications before using a different mode of action.</td>
</tr>
<tr>
<td>clothianidin, MOA 4A (Belay) 50 WDG</td>
<td>4.8 to 6.4 oz</td>
<td>12 hrs</td>
<td>NA</td>
<td>Soil application at planting only. Belay must not be applied during bloom. Do not incorporate an adjuvant with foliar applications. Do not apply more than 6.4 oz per acre per season.</td>
</tr>
<tr>
<td>Soil treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foliar treatment</td>
<td>1.6 to 2.1 fl oz</td>
<td>12 hrs</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>cyantraniliprole, MOA 28 (Versimark) 1.67 SC</td>
<td>6.75 to 13.5 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td>Suppression only. Soil applications made at planting only. See label for application options.</td>
</tr>
<tr>
<td>flonicamid, MOA 29 (Beleaf) 50 SG</td>
<td>2 to 2.8 oz</td>
<td>12 hrs</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>flupyradiforone, MOA 4D (Sivanto Prime) 1.67 SL</td>
<td>10.5 to 12.0 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td>Do not follow soil applications with foliar applications of any neonicotinoid insecticides. See label for soil application instructions.</td>
</tr>
<tr>
<td>imidacloprid, MOA 4A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil treatment (Admire Pro) 4.6 F (various) 2 F</td>
<td>4.4 to 10.5 fl oz</td>
<td>12 hrs</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Foliar treatment (Admire Pro) 4.6 F (various) 1.6 F</td>
<td>1.2 fl oz, 3.8 fl oz</td>
<td>12 hrs</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>pymetrozine, MOA 9B (Fulfil) 50 WDG</td>
<td>2.75 oz</td>
<td>12 hrs</td>
<td>7</td>
<td>Apply before aphids reach damaging levels. Use sufficient water to ensure good coverage.</td>
</tr>
<tr>
<td>pyrifluquinazon, MOA 9B (PQZ) 1.87 EC</td>
<td>2.4 to 3.2 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td>See label for rotational crop restrictions. Do not exceed 4.8 fl oz per acre per crop cycle.</td>
</tr>
<tr>
<td>spiroetramat, MOA 23 (Movento) 2 SC</td>
<td>4 to 5 fl oz</td>
<td>24 hrs</td>
<td>3</td>
<td>Do not exceed 10 fluid ounces per season. Requires surfactant.</td>
</tr>
<tr>
<td>thiamethoxam, MOA 4A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil treatment (Platinum) 75 SG</td>
<td>1.7 to 3.7 oz</td>
<td>12 hrs</td>
<td>30</td>
<td>See label for soil application instructions.</td>
</tr>
<tr>
<td>Foliar treatment (Actara) 25 WDG</td>
<td>1.5 to 3 oz</td>
<td>12 hr</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>tolfenpyrad, MOA 21A (Torac) 1.29 EC</td>
<td>17 to 21 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td>Do not apply until at least 14 days after plant emergence or after transplanting to allow time for root establishment.</td>
</tr>
<tr>
<td>LEAFMINER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chlorantraniliprole, MOA 28 (Coragen) 1.67 SC</td>
<td>5 to 7.5 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td>Foliar or drip chemigation. Drip chemigation must be applied uniformly to the root zone. See label for instructions.</td>
</tr>
<tr>
<td>cyantraniliprole, MOA 28 (Verimark) 1.67 SC</td>
<td>5 to 13.5 fl oz</td>
<td>4 hrs</td>
<td>N/A</td>
<td>Verimark is for soil application only. Applications made at planting and/or via drip chemigation. Use higher rates (>10 fluid ounces) where cabbage looper is a concern. See label for application options.</td>
</tr>
<tr>
<td>Foliar treatment (Exirel) 0.83 SE</td>
<td>7 to 17 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td>Exirel is for foliar application only. Use higher rates (>13.5 fluid ounces) for cabbage loopers. Do not apply more than 0.4 lb a.i. per acre per year of CYAZYPYR or cyantraniliprole containing products.</td>
</tr>
<tr>
<td>cyclaniliprole, MOA 28 (Harvanta) 50 SL</td>
<td>10.9 to 16.4 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>cyromazine, MOA 17 (Trigard) 75 WP</td>
<td>2.66 oz</td>
<td>12 hrs</td>
<td>7</td>
<td>Spray adjuvants may enhance efficacy against leafminers. See label for information on adjuvants.</td>
</tr>
<tr>
<td>spinetoram, MOA 5 (Radiant) 1 SC</td>
<td>6 to 10 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ARMYWORMS, BEET WEBWORM, CORN EARBORW, CUTWORM, LOOPER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chlorantraniliprole, MOA 28 (Coragen) 1.67 SC</td>
<td>3.5 to 7.5 fl oz</td>
<td>4 hrs</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>emamectin benzoate, MOA 6 (Proclain) 5 WDG</td>
<td>3.2 to 4.8 oz</td>
<td>12 hrs</td>
<td>7</td>
<td>Do not make more than two sequential applications without rotating to another product with a different mode of action.</td>
</tr>
<tr>
<td>cyclaniliprole, MOA 28 (Harvanta) 50 SL</td>
<td>10.9 to 16.4 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 2-20. INSECT CONTROL FOR SPINACH (cont’d)

<table>
<thead>
<tr>
<th>Insecticide, Mode of Action Code, and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Restricted Entry Interval (REI)</th>
<th>Pre harvest Interval (PHI) (Days)</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARMYWORMS, BEET WEBWORM, CORN EARWORM, CUTWORM, LOOPER (CONT’D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>indoxacarb, MOA 22B (Avaunt eVo) 30 SG</td>
<td>3.5 oz</td>
<td>12 hrs</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>methomyl, MOA 1A (Lannate) 90 SP (Lannate) 2.4 LV</td>
<td>0.5 to 1 lb, 1.5 to 3 pts</td>
<td>48 hrs</td>
<td>7</td>
<td>Air temperature should be well above 32°F. Do not apply to seedlings less than 3 in. in diameter.</td>
</tr>
<tr>
<td>methoxyfenozide, MOA 18 (Intrepid) 2 F</td>
<td>4 to 10 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td>Use low rates for early-season applications to young or small plants and 6 to 10 oz for mid- to late-season applications.</td>
</tr>
<tr>
<td>spinetoram, MOA 5 (Radiant) 1 SC</td>
<td>5 to 10 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>pyrethroid, MOA 3A</td>
<td>12 hrs</td>
<td></td>
<td></td>
<td>See Table 2-25 A for a list of registered pyrethroids and pre-harvest intervals.</td>
</tr>
<tr>
<td>viruses</td>
<td>4 hrs</td>
<td></td>
<td></td>
<td>See Table 2-26 for virus-based insecticides effective against specific insects. ORMl listed.</td>
</tr>
</tbody>
</table>

TABLE 2-21. INSECT CONTROL FOR SWEETPOTATO

<table>
<thead>
<tr>
<th>Insecticide, Mode of Action Code, and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Restricted Entry Interval (REI)</th>
<th>Pre harvest Interval (PHI) (Days)</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>APHIDS, LEAFHOPPER, WHITEFLY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>clothianidin, MOA 4A (Belay) 2.13 SC</td>
<td>9 to 12 oz</td>
<td>12 hrs</td>
<td>21</td>
<td>Soil application as an in-furrow or sidedress application. For sidedress applications, immediately cover with soil.</td>
</tr>
<tr>
<td>Soil treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foliar treatment</td>
<td>2 to 3 fl oz</td>
<td>12 hrs</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>folicamid, MOA 20D (Beleaf) 50 SG</td>
<td>2 to 2.8 oz</td>
<td>12 hrs</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>flupyradifurone, MOA 4D (Sivanto Prime) 1.67 SL</td>
<td>7.0 to 14.0 fl oz</td>
<td>4 hrs</td>
<td>7</td>
<td>For aphids and leafhopper use 7.0 to 10.5 fluid ounces, for whitefly use 10.5 to 14.0 fluid ounces.</td>
</tr>
<tr>
<td>imidacloprid, MOA 4A</td>
<td>1.2 fl oz, 3.5 fl oz</td>
<td>12 hrs</td>
<td>7</td>
<td>Two applications may be needed to control heavy populations. Allow 5 to 7 days between applications.</td>
</tr>
<tr>
<td>Foliar treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil treatment (Admire Pro) 4.6 F (various) 1.6 F</td>
<td>4.4 fl oz, 10.5 fl oz</td>
<td>12 hrs</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>pymetrozine, MOA 9B (Fulfill) 50 WDG</td>
<td>2.76 to 5.5 oz</td>
<td>12 hrs</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>pyrifluquinazon, MOA 9B (PQZ) 1.87 EC</td>
<td>2.4 to 3.2 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td>See label for rotational crop restrictions. Do not exceed 4.8 fl oz per acre per crop cycle.</td>
</tr>
<tr>
<td>thiamefoxam, MOA 4A (Actara) 25 WDG</td>
<td>3 oz</td>
<td>14</td>
<td></td>
<td>Two applications of Actara may be needed to control heavy populations. Allow 7 to 10 days between applications. Do not exceed a total of 6 ounces of Actara per crop per season.</td>
</tr>
</tbody>
</table>

ARMYWORMS, LOOPER, CORN EARWORM, HORNWORM

Damaging armwormy and earworm infestations may occur in August or September. If significant infestations are present on foliage during harvest, larvae may feed on exposed roots.

<table>
<thead>
<tr>
<th>Insecticide, Mode of Action Code, and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Restricted Entry Interval (REI)</th>
<th>Pre harvest Interval (PHI) (Days)</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>chlorantraniliprole, MOA 28 (Coragen) 1.67 SC</td>
<td>3.5 to 7.5 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td>Foliar application only on sweetpotato.</td>
</tr>
<tr>
<td>methoxyfenozide, MOA18 (Intrepid) 2 F</td>
<td>6 to 10 fl oz</td>
<td>4 hrs</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>novaluron, MOA 15 (Rimon) 0.83 EC</td>
<td>9 to 12 fl oz</td>
<td>12 hrs</td>
<td>14</td>
<td>Do not make more than 2 applications per crop per season.</td>
</tr>
<tr>
<td>spinetoram, MOA 5 (Radiant) 1 SC</td>
<td>6 to 8 fl oz</td>
<td>4 hrs</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>
Table 2-21. Insect Control for Sweetpotato (cont’d)

<table>
<thead>
<tr>
<th>Insecticide, Mode of Action Code, and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Restricted Entry Interval (REI)</th>
<th>Pre harvest Interval (PHI) (Days)</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARMYWORMS, LOOPER, CORN EARWORM, HORNWORM (CONT’D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>spinosad MOA 5 (Blackhawk)</td>
<td>2.25 to 3.5 oz</td>
<td>4 hrs</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>viruses</td>
<td></td>
<td></td>
<td></td>
<td>See Table 2-26 for virus-based insecticides effective against specific insects. ORMI listed.</td>
</tr>
<tr>
<td>CUCUMBER BEETLE (ADULTS), JAPANESE BEETLE (ADULTS), TORTOISE BEETLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cucumber beetle larvae (Diabrotica) are a serious pest of sweetpotato in LA and MS. Controlling adult cucumber beetles in areas with a history of Diabrotica damage can reduce damage to roots. Foliage feeding by beetles rarely causes economic loss, and control is not warranted unless defoliation is severe. Tortoise beetles are frequently present but rarely reach levels requiring treatment. Treat for tortoise beetles only if significant defoliation is observed.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>carbaryl, MOA 1A (Sevin) XLR Plus</td>
<td>2 qt</td>
<td>12 hrs</td>
<td>7</td>
<td>Treat for tortoise beetles only if significant defoliation is observed. Tortoise beetles are frequently present but rarely reach levels requiring treatment.</td>
</tr>
<tr>
<td>pyrethroids, MOA 3A</td>
<td></td>
<td>12 hrs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLEA BEETLE, WIREWORM, WHITE GRUB, CUCUMBER BEETLE LARVAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bifenthrin, MOA 3A (various) 2 EC</td>
<td>9.6 to 19.2 fl oz</td>
<td>12 hrs</td>
<td>21</td>
<td>Apply as broadcast, preplant application to the soil and incorporate 4 to 6 inches prior to bed formation. This use has been demonstrated to control overwintered wireworm populations and reduce damage to roots at harvest. Bifenthrin should be directed onto each side of the bed from the drill to the middle of the furrow and incorporated with cultivating equipment set to throw soil toward the drill. The objective is to provide a barrier of treated soil that covers the bed and furrows. Foliar sprays of various insecticides that target adults to prevent egg laying have not been shown to provide any reduction in damage to roots by wireworm larvae at harvest.</td>
</tr>
<tr>
<td>clothianidin MOA 4A (Belay) 2.13</td>
<td>12 fl oz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>imidacloprid (Admire Pro) 4.6 SC</td>
<td>10.5 fl oz or 0.75 fl oz per 1,000 ft</td>
<td>3 days</td>
<td>60 days (NC, LA Only) 125 days elsewhere</td>
<td></td>
</tr>
<tr>
<td>FRUIT FLY (VINEGAR FLY)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pyrethrins, MOA 3A (Pyreneone)</td>
<td>1 gal. 100,00 cu ft</td>
<td>12 hrs</td>
<td>—</td>
<td>Postharvest application in storage. Apply as a space fog with a mechanical or thermal generator. Do not make more than 10 applications.</td>
</tr>
<tr>
<td>SWEETPOTATO WEEVIL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pyrethroid, MOA 3A</td>
<td></td>
<td>12 hrs</td>
<td>See Table 2-25 A for a list of registered pyrethroids and pre-harvest intervals.</td>
<td></td>
</tr>
<tr>
<td>phosmet, MOA 1B (Imidan) 70 W</td>
<td>1.33 lb</td>
<td>5 days</td>
<td>7</td>
<td>Do not make more than five applications per season.</td>
</tr>
<tr>
<td>THRIPS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>spinetoram, MOA 5 (Radiant) 1 SC</td>
<td>6 to 8 fl oz</td>
<td>4 hrs</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>WHITEFRINGED BEETLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>phosmet, MOA 1B (Imidan) 70 W</td>
<td>1.33 lb</td>
<td>5 days</td>
<td>7</td>
<td>Do not make more than five applications per season. Whitefringed beetle adults are active in July and August. Do not plant in fields with a recent history of whitefringed beetles. Limited to mechanical harvest only.</td>
</tr>
</tbody>
</table>
From the World Market to the Farmer’s Market

HM.CLAUSE specializes in the breeding, production, and sale of vegetable seeds. From the world market to the farmer’s market, we collaborate with our customers to deliver successful solutions for the agricultural challenges of today and produce the highest quality Harris Moran branded vegetable seeds for the future.

Our team of experts and state-of-the-art research facilities enable us to work side-by-side with growers to provide the most regionally relevant and reliable vegetable seeds available.

To learn more, visit: www.hmclause.com
<table>
<thead>
<tr>
<th>Insecticide, Mode of Action Code, and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Restricted Entry Interval (REI)</th>
<th>Pre harvest Interval (PHI) (Days)</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>APHID, FLEA BEETLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>acetamiprid, MOA 4A (Assail) 30 SG</td>
<td>2 to 4 oz</td>
<td>12 hrs</td>
<td>7</td>
<td>Do not apply more than once every 7 days, and do not exceed 5 applications per season.</td>
</tr>
<tr>
<td>Aldicloprid, MOA 4A (Admire Pro) 4.6 F (various) 2 F</td>
<td>7 fl oz</td>
<td>12 hrs</td>
<td>21</td>
<td>For short-term protection at planting, apply Admire Pro transplants in the planthouse not more than 7 days before planting at the rate of 0.44 (4.6 F formulation) or 1 ounce (2 F formulation) per 10,000 plants. See label for instructions of greenhouse transplant and field soil applications.</td>
</tr>
<tr>
<td>clothianidin, MOA 4A (Belay) 50 WDG Soil treatment</td>
<td>4.8 to 6.4 oz</td>
<td>12 hrs</td>
<td>7</td>
<td>Soil applications at planting only.</td>
</tr>
<tr>
<td>clothianidin, MOA 4A (Belay) 50 WDG Foliar treatment</td>
<td>1.6 to 2.1 oz</td>
<td>12 hrs</td>
<td>7</td>
<td>Soil applications at planting only.</td>
</tr>
<tr>
<td>cyrantraniliprole, MOA 28 (Verimark) 1.67 SC (various) 2 F</td>
<td>6.75 to 13.5 fl oz</td>
<td>4</td>
<td>1</td>
<td>Soil applications at planting will control flea beetles and suppress aphids. See label for application options.</td>
</tr>
<tr>
<td>dimethoate 4 EC, MOA 1B Foliar treatment</td>
<td>0.5 to 1 pt</td>
<td>48 hrs</td>
<td>7</td>
<td>Do not exceed rate with dimethoate as leaf injury may result.</td>
</tr>
<tr>
<td>Foliclor, MOA 29 (Beleaf) 50 SG</td>
<td>2 to 4.8 oz</td>
<td>12 hrs</td>
<td>0</td>
<td>Foliclor or soil applications are permissible. Soil applications should be made via drip chemigation and within 21 days of transplanting. Will not control flea beetle.</td>
</tr>
<tr>
<td>imidacloprid, MOA 4A (Admire Pro) 4.6 F (various) 2 F</td>
<td>7 fl oz</td>
<td>12 hrs</td>
<td>21</td>
<td>For short-term protection at planting, apply Admire Pro transplants in the planthouse not more than 7 days before planting at the rate of 0.44 (4.6 F formulation) or 1 ounce (2 F formulation) per 10,000 plants. See label for instructions of greenhouse transplant and field soil applications.</td>
</tr>
<tr>
<td>imidacloprid, MOA 4A (Admire Pro) 4.6 F (various) 2 F</td>
<td>1.2 fl oz</td>
<td>12 hrs</td>
<td>0</td>
<td>Soil applications at planting only.</td>
</tr>
<tr>
<td>pymetrozine, MOA 9B (Fulfill) 50 WDG</td>
<td>2.75 oz</td>
<td>12 hrs</td>
<td>0</td>
<td>For aphids only.</td>
</tr>
<tr>
<td>pymetrozine, MOA 9B (Fulfill) 50 WDG</td>
<td>2.75 oz</td>
<td>12 hrs</td>
<td>0</td>
<td>For aphids only.</td>
</tr>
<tr>
<td>pyridafurin, MOA 4D (Sivanto Prime) 1.67 SL</td>
<td>7.0 to 14 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td>Will not control flea beetle.</td>
</tr>
<tr>
<td>pyridfluquinazon, MOA 9B (POZ) 1.87 EC</td>
<td>2.4 to 3.2 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td>See label for rotational crop restrictions. Do not exceed 4.8 fl oz per acre per crop cycle.</td>
</tr>
<tr>
<td>sulfoxaflor MOA 4C (Closer) 2 SC</td>
<td>1.5 to 2 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td>Soil applications at planting only for Colorado potato beetle.</td>
</tr>
<tr>
<td>thiamethoxam, MOA 4A (Platinum) 75 SG</td>
<td>1.66 to 3.67 oz</td>
<td>12 hrs</td>
<td>30</td>
<td>Platinum may be applied to direct-seeded crops in-furrow seeding or transplant depth, post seeding or transplant as a drench, or through drip irrigation. Do not exceed 11 ounces per acre per season of Platinum. Check label for plant-back restrictions for a number of crops.</td>
</tr>
<tr>
<td>COLORADO POTATO BEETLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>acetamiprid, MOA 4A (Assail) 30 SG</td>
<td>1.5 to 2.5 oz</td>
<td>12 hrs</td>
<td>7</td>
<td>Foliar or drip chemigation. Drip chemigation must be applied uniformly to the root zone. See label for instructions.</td>
</tr>
<tr>
<td>chlorantraniliprole, MOA 28 (Coragen) 1.67 SC</td>
<td>3.5 to 7.5 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td>See label for rotational crop restrictions. Do not exceed 4.8 fl oz per acre per crop cycle.</td>
</tr>
<tr>
<td>cyrantraniliprole, MOA 28 (Verimark) 1.67 SC</td>
<td>5 to 10 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td>Apply Verimark to soil via drip irrigation or soil injection.</td>
</tr>
<tr>
<td>Foliclor, MOA 29 (Beleaf) 50 SG</td>
<td>1.66 to 3.67 oz</td>
<td>12 hrs</td>
<td>30</td>
<td>Exirel is for foliar application.</td>
</tr>
<tr>
<td>dinofuran, MOA 4A (Venom) 70SG</td>
<td>5 to 7.5 oz (soil)</td>
<td>12 hrs</td>
<td>21</td>
<td>Soil application only for Colorado potato beetle.</td>
</tr>
<tr>
<td>imidacloprid, MOA 4A (Admire Pro) 4.6 F (various) 2 F</td>
<td>7 fl oz</td>
<td>12 hrs</td>
<td>21</td>
<td>See application instructions above under aphid/flea beetle.</td>
</tr>
<tr>
<td>spinetoram, MOA 5 (Radiant) 1 SC</td>
<td>5 to 10 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td>Foliar treatment (Actara) 25 WDG</td>
</tr>
</tbody>
</table>
TABLE 2-22. INSECT CONTROL FOR TOMATO (cont’d)

<table>
<thead>
<tr>
<th>Insecticide, Mode of Action Code, and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Restricted Entry Interval (REI)</th>
<th>Pre harvest Interval (PHI) (Days)</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>COLORADO POTATO BEETLE (CONT’D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>thiamethoxam, MOA 4A (Platinum) 75 SG (Actara) 25 WDG</td>
<td>1.66 to 3.67 oz</td>
<td>12 hrs</td>
<td>30</td>
<td>Platinum may be applied to direct-seeded crops in-furrow seeding or transplant depth, post seeding or transplant as a drench, or through drip irrigation. Do not exceed 11 oz per acre per season of Platinum. Check label for plant-back restrictions for a number of crops.</td>
</tr>
<tr>
<td>pyrethroid, MOA 3A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chlorantraniliprole, MOA 28 (Coragen) 1.67 SC</td>
<td>3.5 to 7.5 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td>Foliar or soil chemigation. Drip chemigation must be applied uniformly to the root zone. See label for instructions.</td>
</tr>
<tr>
<td>cyantraniliprole, MOA 28 Soil treatment (Verimark) 1.67 SC</td>
<td>5 to 10 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td>Verimark is for soil application only. Applications made at planting and/or via drip chemigation after planting. See label for application options.</td>
</tr>
<tr>
<td>Foliar treatment (Exirel) 0.83SE</td>
<td>7 to 13.5 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td>Exirel is for foliar application only.</td>
</tr>
<tr>
<td>emamectin benzoate, MOA 6 (Proclaim) 5 WDG</td>
<td>2.4 to 4.8 oz</td>
<td>12 hrs</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>inoxacarb, MOA 22B (Avaunt eVo) 30 WDG</td>
<td>3.5 to 6 oz</td>
<td>12 hrs</td>
<td>3</td>
<td>Do not apply more than 24 ounces of Avaunt (0.44 lbs a.i.) per acre per crop.</td>
</tr>
<tr>
<td>methomyl, MOA 1A (Lannate) 2.4 LV</td>
<td>1.5 to 3 pt</td>
<td>48 hrs</td>
<td>1</td>
<td>Methomyl may induce leafminer infestation.</td>
</tr>
<tr>
<td>methoxyfenozide, MOA 18 (Intrepid) 2 F</td>
<td>4 to 10 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td>Use low rates for early-season applications to young or small plants and 6 to 10 ounces for mid- and late-season applications. Intrepid provides suppression of pinworm only.</td>
</tr>
<tr>
<td>novaluron, MOA 15 (Rimon) 0.83 EC</td>
<td>9 to 12 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td>Do not make more than 3 applications per season.</td>
</tr>
<tr>
<td>spinetoram, MOA 5 (Radiant) 1 SC</td>
<td>5 to 10 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>viruses</td>
<td></td>
<td>4 hrs</td>
<td></td>
<td>See Table 2-26 for virus-based insecticides effective against specific insects. ORMI listed.</td>
</tr>
<tr>
<td>ARMYWORM, CABBAGE LOOPER, HORNWORM, TOMATO FRUITWORM, PINWORM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacillus thuringiensis, MOA 11A (Dipel) DF (Crymax) WDG</td>
<td>0.5 to 1 lb 0.5 to 1.5 lb</td>
<td>4 hrs</td>
<td>0</td>
<td>Tomato fruitworm resistance to Bts has become common in recent years.</td>
</tr>
<tr>
<td>pyrethroid, MOA 3A</td>
<td></td>
<td></td>
<td></td>
<td>See Table 2-25 A for a list of registered pyrethroids and pre- harvest intervals.</td>
</tr>
<tr>
<td>chlorantraniliprole, MOA 28 Soil treatment (Verimark) 1.67 SC</td>
<td>5 to 10 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td>Verimark is for soil application only. Applications made at planting and/or via drip chemigation after planting. See label for application options.</td>
</tr>
<tr>
<td>Foliar treatment (Exirel) 0.83SE</td>
<td>7 to 13.5 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td>Exirel is for foliar application only.</td>
</tr>
<tr>
<td>emamectin benzoate, MOA 6 (Proclaim) 5 WDG</td>
<td>2.4 to 4.8 oz</td>
<td>12 hrs</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>inoxacarb, MOA 22B (Avaunt eVo) 30 WDG</td>
<td>3.5 to 6 oz</td>
<td>12 hrs</td>
<td>3</td>
<td>Do not apply more than 24 ounces of Avaunt (0.44 lbs a.i.) per acre per crop.</td>
</tr>
<tr>
<td>methomyl, MOA 1A (Lannate) 2.4 LV</td>
<td>1.5 to 3 pt</td>
<td>48 hrs</td>
<td>1</td>
<td>Methomyl may induce leafminer infestation.</td>
</tr>
<tr>
<td>methoxyfenozide, MOA 18 (Intrepid) 2 F</td>
<td>4 to 10 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td>Use low rates for early-season applications to young or small plants and 6 to 10 ounces for mid- and late-season applications. Intrepid provides suppression of pinworm only.</td>
</tr>
<tr>
<td>novaluron, MOA 15 (Rimon) 0.83 EC</td>
<td>9 to 12 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td>Do not make more than 3 applications per season.</td>
</tr>
<tr>
<td>spinetoram, MOA 5 (Radiant) 1 SC</td>
<td>5 to 10 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td>Do not exceed 29 fl oz per acre per season.</td>
</tr>
<tr>
<td>CUTWORM</td>
<td></td>
<td></td>
<td></td>
<td>See Table 2-25 A for a list of registered pyrethroids and pre-harvest intervals.</td>
</tr>
<tr>
<td>pyrethroid, MOA 3A</td>
<td></td>
<td>12 hrs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEAFMINER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>abamectin, MOA 6 (Agri-Mek) 0.7 SC</td>
<td>1.75 to 3.5 fl oz</td>
<td>12 hrs</td>
<td>7</td>
<td>Do not exceed 48 fluid ounces per acre per season, or more than two sequential applications.</td>
</tr>
<tr>
<td>chlorantraniliprole, MOA 28 (Coragen) 1.67 SC</td>
<td>5 to 7.5 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td>Foliar or soil chemigation. Drip chemigation must be applied uniformly to the root zone. See label for soil application instructions.</td>
</tr>
<tr>
<td>cyclaniliprole, MOA 28 (Harvanta) 50 SL</td>
<td>10.9 to 16.4 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>cyromazine, MOA 17 (Trigard) 75 WP</td>
<td>2.66 oz</td>
<td>12 hrs</td>
<td>0</td>
<td>See label for plant-back restrictions.</td>
</tr>
<tr>
<td>spinetoram, MOA 5 (Radiant) 1 SC</td>
<td>5 to 10 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td>Do not make more than two sequential applications.</td>
</tr>
<tr>
<td>SPIDER MITE</td>
<td></td>
<td></td>
<td></td>
<td>See Table 2-25 A for a list of registered pyrethroids and pre-harvest intervals.</td>
</tr>
<tr>
<td>abamectin, MOA 6 (Agri-Mek) 0.7 SC</td>
<td>1.75 to 3.5 fl oz</td>
<td>12 hrs</td>
<td>7</td>
<td>Do not make more than two sequential applications.</td>
</tr>
<tr>
<td>acequinocyl, MOA 20B (Kanemite) 15 SC</td>
<td>31 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td>The use of a surfactant/adjuvant with Kanemite on tomatoes is prohibited.</td>
</tr>
<tr>
<td>bifenthrin, MOA 20D (Acracite) 15 SC</td>
<td>0.75 to 1.0 lb</td>
<td>12 hrs</td>
<td>3</td>
<td>Do not exceed 29 fl oz per acre per season.</td>
</tr>
</tbody>
</table>
TABLE 2-22. INSECT CONTROL FOR TOMATO (cont’d)

<table>
<thead>
<tr>
<th>Insecticide, Mode of Action Code, and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Restricted Entry Interval (REI)</th>
<th>Pre harvest Interval (PHI) (Days)</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPIDER MITE (CONT’D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cyflumetofen, MOA 25 (Nealta) 1.67 SC</td>
<td>13.7 fl oz</td>
<td>12 hrs</td>
<td>3</td>
<td>Do not make more than one application before using an effective miticide with a different mode of action.</td>
</tr>
<tr>
<td>fenazaquin, MOA 21A (Magister) 1.7SC</td>
<td>24 to 36 fl oz</td>
<td>12 hrs</td>
<td>3</td>
<td>Do not make more than one application per year.</td>
</tr>
<tr>
<td>fenpyroximate MOA 21 (Portal) 0.4EC</td>
<td>2 pts</td>
<td>12 hrs</td>
<td>1</td>
<td>Do not make more than two applications per season.</td>
</tr>
<tr>
<td>spiromesifen, MOA 23 (Oberon) 2 SG</td>
<td>7 to 8.5 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td>Do not exceed 3 applications per season.</td>
</tr>
<tr>
<td>STINK BUGS, LEAFFOOTED BUG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pyrethroid, MOA 3A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dinofuran, MOA 4A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foliar treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Venom) 70 SG</td>
<td>1 to 4 oz</td>
<td>12 hrs</td>
<td>1</td>
<td>Do not combine foliar with soil applications, use only one method. Soil applications of Venom or Scorpion may be made in a narrow band under the plant row as a post-transplant drench, as a soil-incorporated side-dress after plants are established, or in drip irrigation water. See label for instructions. Read pollinator protection restrictions on the label.</td>
</tr>
<tr>
<td>(Scorpion) 35 SL</td>
<td>2 to 7 oz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Venom) 70 SG</td>
<td>5 to 6 fl oz</td>
<td>12 hrs</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>(Scorpion) 35 SL</td>
<td>9 to 10.5 fl oz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>thiamethoxam, MOA 4A (Actara) 25 WDG</td>
<td>3 to 5.5 oz</td>
<td>12 hrs</td>
<td>0</td>
<td>Do not exceed 11 ounces Actara per acre per season.</td>
</tr>
<tr>
<td>THRIPS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dimethoate 4 EC, MOA 1B</td>
<td>0.5 to 1 pt</td>
<td>48 hrs</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>cyclaniliprole, MOA 28 (Harvanta) 50 SL</td>
<td>10.9 to 16.4 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td>Harvanta will help suppress western flower thrips when used in a rotational program.</td>
</tr>
<tr>
<td>fonicamid MOA 9C (Beleaf) 50 SG</td>
<td>2.4 to 4.8 fl oz</td>
<td>12 hrs</td>
<td>0</td>
<td>Foliar or soil applications are permissible. Soil applications should be made via drip chemigation and within 21 days of transplanting. Beleaf has shown excellent good activity against insecticide resistant western flower thrips.</td>
</tr>
<tr>
<td>imidacloprid, MOA 4A (Admire Pro) 4.6 SC</td>
<td>0.44 fl oz per 10,000 plants</td>
<td>12 hrs</td>
<td>—</td>
<td>For suppression of TSWV, treatment transplants in the planthouse not more than 7 days before planting in the field. Transplants should be treated with overhead irrigation immediately after planting to ensure movement of imidacloprid into the soil media. See label for instructions. Only effective against tobacco thrips.</td>
</tr>
<tr>
<td>For Planthouse treatment of transplants</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>methomyl, MOA 1A (Lannate) 2.4 LV</td>
<td>1.5 to 3 pt</td>
<td>48 hrs</td>
<td>1</td>
<td>On foliage as needed.</td>
</tr>
<tr>
<td>novaluron, MOA 15 (Rimon) 0.83 EC</td>
<td>9 to 12 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td>Do not make more than 3 applications per season.</td>
</tr>
<tr>
<td>spinetoram, MOA 5 (Radiant) 1 SC</td>
<td>6 to 10 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td>Will control thrips on foliage, not in flowers.</td>
</tr>
<tr>
<td>tolfenpyrad, MOA 21A (Torac) 1.29 EC</td>
<td>21 oz</td>
<td>12 hrs</td>
<td>1</td>
<td>Do not make more than 2 applications per crop cycle, and allow at least 14 days between applications.</td>
</tr>
<tr>
<td>WHITEFLY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For resistance management of whiteflies, do not follow a foliar application of a neonicotinoid (MOA group 4A) with a soil application of any neonicotinoid. Use only one application method.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>acetamiprid, MOA 4A (Assail) 30 SG</td>
<td>2.5 to 4 oz</td>
<td>12 hrs</td>
<td>7</td>
<td>Do not apply more than once every 7 days, and do not exceed 5 applications per season.</td>
</tr>
<tr>
<td>afidopyropen, MOA 9D (Sefina) DC</td>
<td>14 oz</td>
<td>12 hrs</td>
<td>0</td>
<td>Do not make more than 2 sequential applications before using a different mode of action.</td>
</tr>
<tr>
<td>buprofezin, MOA 16 (Courier) 40 SC</td>
<td>9 to 13.6 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td>Use sufficient water to ensure good coverage. Do not apply more than twice per crop cycle, and allow 28 days between applications.</td>
</tr>
<tr>
<td>chlorantraniliprole, MOA 28 (Coragen) 1.67 SC</td>
<td>5 to 7.5 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td>Foliar or soil application. Drip chemigation must be applied uniformly to the root zone. See label for soil application instructions.</td>
</tr>
<tr>
<td>cyrantraniliprole, MOA 28 (Verimark) 1.67 SC</td>
<td>6.75 to 13.5 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td>Apply Verimark to at planting and/or later via drip irrigation or soil injection. See label for application options.</td>
</tr>
<tr>
<td>Soil treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Verimark) 1.67 SC</td>
<td>12 hrs</td>
<td>1 Exirel is for foliar application.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foliar treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Exirel) 0.83SE</td>
<td>13.5 to 20.5 fl oz</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 2-22. INSECT CONTROL FOR TOMATO (cont’d)

<table>
<thead>
<tr>
<th>Insecticide, Mode of Action Code, and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Restricted Entry Interval (REI)</th>
<th>Pre harvest Interval (PHI) (Days)</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHITEFLY (CONT’D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dinotefuran, MOA 4A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil treatment (Venom) 70 SG (Scorpion) 35 SL</td>
<td>5 to 6 oz 9 to 10.5 fl oz</td>
<td>12 hrs</td>
<td>21</td>
<td>See soil application instructions above under stink bug. See the label for pollinator protection restrictions.</td>
</tr>
<tr>
<td>Foliar treatment (Venom) 70 SG (Scorpion) 35 SL</td>
<td>1 to 4 oz 2 to 7 fl oz</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>flupyridafurone, MOA 4D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Sivanto Prime) 1.67SL</td>
<td>21 to 28 fl oz</td>
<td>12 hrs</td>
<td>45</td>
<td>Soil applications may be made through drip irrigation, at planting or post-transplant drench.</td>
</tr>
<tr>
<td>imidacloprid, MOA 4A (Admire Pro) 4.8 F (various) 2 F</td>
<td>16 to 24 fl oz 7 to 10.5 fl oz</td>
<td>12 hrs</td>
<td>21</td>
<td>Apply through a drip irrigation system or as a transplant drench with sufficient water to reach root zone. As a sidedress, apply 2 to 4 inches to the side of the row and incorporate 1 inch or more. Residual activity will increase with increased rates. Use higher rate for late-season or continuous infestations. Trickles irrigation applications will also control aphids and suppress stinkbugs.</td>
</tr>
<tr>
<td>pyriproxyfen, MOA 7C (Knack) 0.86 EC</td>
<td>8 to 10 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td>Do not apply more than two applications per growing season, and do not make applications closer than 14 days.</td>
</tr>
<tr>
<td>pyrfluanidazon, MOA 9B (PQZ) 1.87 EC</td>
<td>2.4 to 3.2 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td>See label for rotational crop restrictions. Do not exceed 4.8 fl oz per acre per crop cycle.</td>
</tr>
<tr>
<td>spirooxfen, MOA 23 (Oberon) 2 SC</td>
<td>7 to 8.5 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td>Do not make more than 3 applications per season.</td>
</tr>
<tr>
<td>spirotetramat, MOA 23 (Movento) 2 SC</td>
<td>4 to 5 fl oz</td>
<td>24 hrs</td>
<td>1</td>
<td>Do not exceed 10 fluid ounces per season. Requires surfactant.</td>
</tr>
<tr>
<td>thiamethoxam, MOA 4A (Platinum) 75 SG</td>
<td>1.66 to 3.67 oz</td>
<td>12 hrs</td>
<td>30</td>
<td>Platinum may be applied to direct-seeded crops in-furrow at seeding or transplanting, post seeding or transplant as a drench, or through drip irrigation. Do not exceed 11 oz per acre per season of Platinum. Check label for plant-back restrictions for a number of crops.</td>
</tr>
<tr>
<td>(Actara) 25 WDG</td>
<td>3 to 5.5 oz</td>
<td>12 hrs</td>
<td>0</td>
<td>Actara is for foliar applications.</td>
</tr>
<tr>
<td>WIREWORM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>diazinon, MOA 1B (Diazinon) AG 500 or 50 WP</td>
<td>2 to 4 qt</td>
<td>48 hrs</td>
<td>—</td>
<td>Broadcast before planting and incorporate. Wireworms may be a problem in fields previously in pasture, corn, or soybean.</td>
</tr>
</tbody>
</table>

TABLE 2-23. INSECT CONTROL FOR TURNIP

<table>
<thead>
<tr>
<th>Insecticide, Mode of Action Code, and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Restricted Entry Interval (REI)</th>
<th>Pre harvest Interval (PHI) (Days)</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>APHID, FLEA BEETLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>afidopyropen, MOA 9D (Versys) DC</td>
<td>1.5 fl oz</td>
<td>12 hrs</td>
<td>0</td>
<td>Do not make more than 2 sequential applications before using a different mode of action.</td>
</tr>
<tr>
<td>clothianidin, MOA 4A (Belay) 50 WDG</td>
<td>4.8 to 6.4 oz</td>
<td>12 hrs</td>
<td>NA</td>
<td>Soil application as in-in-furrow, side dress application, seed, transplant drench, or chemigation. See label for application instructions.</td>
</tr>
<tr>
<td>Soil treatment (Belay) 50 WDG</td>
<td>1.6 to 2.1 oz</td>
<td>12 hrs</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Foliar treatment (Belay) 50 WDG</td>
<td>6.75 to 13.5 fl oz</td>
<td>4 hrs</td>
<td>4</td>
<td>Verimark is for greens only, not root turnips. Verimark is for soil application only. Applications can be made at planting and/or later via drip chemigation. See label for application options.</td>
</tr>
<tr>
<td>cyrantraniliprole, MOA 28 (Verimark) 1.67 SC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dimethoate 4 EC, MOA 1B</td>
<td>0.5 pt</td>
<td>48 hrs</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>flonicamid, MOA 20D (Beleaf) 50 SG</td>
<td>2 to 2.8 oz</td>
<td>12 hrs</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>flupyridafurone, MOA 4D (Sivanto Prime) 1.67 SL</td>
<td>7 to 14 fl oz</td>
<td>4 hrs</td>
<td>7</td>
<td>For aphids only, will not control flea beetle</td>
</tr>
</tbody>
</table>

2022 Vegetable Crop Handbook for Southeastern United States 195
TABLE 2-23. INSECT CONTROL FOR TURNIP (cont’d)

<table>
<thead>
<tr>
<th>Insecticide, Mode of Action Code, and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Restricted Entry Interval (REI)</th>
<th>Pre harvest Interval (PHI) (Days)</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>APHID, FLEA BEETLE (CONT’D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>imidacloprid, MOA 4A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil treatment (Admire Pro) 4.6 F (various) 2 F</td>
<td>4.4 to 10.5 fl oz 10 to 24 fl oz</td>
<td>12 hrs</td>
<td>21</td>
<td>See label for soil application instructions.</td>
</tr>
<tr>
<td>Foliar treatment (Admire Pro) 4.6 F (various) 2 F</td>
<td>1.2 fl oz 3.8 fl oz</td>
<td>12 hrs</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>pymetrozine, MOA 9B (Fulfill) 50 WDG</td>
<td>2.75 oz</td>
<td>12 hrs</td>
<td>7</td>
<td>Will not control flea beetle.</td>
</tr>
<tr>
<td>pymefluquinazon, MOA 9B (POZ) 1.87 EC</td>
<td>2.4 to 3.2 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td>See label for rotational crop restrictions. Do not exceed 4.8 fl oz per acre per crop cycle.</td>
</tr>
<tr>
<td>thiamethoxam, MOA 4A (Platinum) 75 SG</td>
<td>1.7 to 4.01 oz</td>
<td>12 hrs</td>
<td>NA</td>
<td>Platinum is for soil application and Actara for foliar application.</td>
</tr>
<tr>
<td>(Actara) 25 WDG</td>
<td>1.5 to 3 oz</td>
<td>12 hrs</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>HARLEQUIN BUG, VEGETABLE WEEVIL, YELLOWMARGINED LEAF BEETLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>clothianidin, MOA 4A (Belay) 50 WDG</td>
<td>4.8 to 6.4 oz</td>
<td>12 hrs</td>
<td>NA</td>
<td>Soil application as in in-furrow, side dress application, seed, transplant drench, or chemigation. See label for application instructions.</td>
</tr>
<tr>
<td>Soil treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foliar treatment (Venom) 70 SG</td>
<td>1.6 to 2.1 oz</td>
<td>12 hrs</td>
<td>7</td>
<td>For use on turnip greens only, not turnips roots.</td>
</tr>
<tr>
<td>dinofeturan MOA 4A (Venom) 70 SG</td>
<td>2 to 3 oz</td>
<td>12 hrs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>thiamethoxam, MOA 4A (Platinum) 75 SG</td>
<td>1.7 to 4.0 oz</td>
<td>12 hrs</td>
<td>NA</td>
<td>Platinum is for soil application and Actara for foliar application.</td>
</tr>
<tr>
<td>Soil treatment (Platinum) 75 SG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foliar treatment (Actara) 25 WDG</td>
<td>1.5 to 3 oz</td>
<td>12 hrs</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>thiamethoxam, MOA 4A (Actara) 25 WDG</td>
<td>1.2 fl oz 2.4 fl oz</td>
<td>12 hrs</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>CABBAGE LOOPER, DIAMONDBACK MOTH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insecticide-resistant diamondback moth populations, widespread in the Southeast, may not be controlled with some registered insecticides. To manage resistance, avoid transplants from Georgia and Florida, where resistance is common, and avoid the repeated use of the same materials for extended periods. Repeated use of pyrethroid insecticides often aggravates diamondback moth problems. Do not allow populations to increase to large densities before treatments are initiated.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacillus thuringiensis, MOA 11A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Crymax) WDG (Dipel) DF (Xentari) DF</td>
<td>0.5 to 1.5 lb 0.5 to 2 lb 0.5 to 2 lb</td>
<td>4 hrs</td>
<td>0</td>
<td>Apply when larvae are young before crop damage occurs. Applications may be repeated at 3 to 14 days to maintain control.</td>
</tr>
<tr>
<td>chlorantraniliprole, MOA 28 (Coragen)</td>
<td>3.5 to 7.5.0 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td>For turnip greens or root turnips.</td>
</tr>
<tr>
<td>cyantraniliprole, MOA 28 (Verimark) 1.67 SC</td>
<td>5 to 10 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td>Verimark and Exirel are for greens only, not root turnips. Verimark is for soil application only. Applications can be made at planting and/or later via drip chemigation. See label for application options. Exirel is for foliar application only</td>
</tr>
<tr>
<td>Soil treatment (Verimark) 1.67 SC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foliar treatment (Exirel) 0.83SE</td>
<td>7 to 17 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>cyclaniliprole, MOA 28 (Harvanta) 50 SL</td>
<td>10.9 to 16.4 fl oz</td>
<td>4 hrs</td>
<td>1</td>
<td>Harvanta is for foliar application only.</td>
</tr>
<tr>
<td>emamectin benzoate, MOA 6 (Proclaim) 5 WDG</td>
<td>2.4 to 4.8 oz</td>
<td>12 hrs</td>
<td>14</td>
<td>Proclaim is for use on turnip greens only. Do not make more than two sequential applications.</td>
</tr>
<tr>
<td>viruses</td>
<td></td>
<td></td>
<td>4 hrs</td>
<td>See Table 2-26 for virus-based insecticides effective against specific insects. ORMIL listed.</td>
</tr>
</tbody>
</table>
TABLE 2-23. INSECT CONTROL FOR TURNIP (cont’d)

<table>
<thead>
<tr>
<th>Insecticide, Mode of Action Code, and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Restricted Entry Interval (REI)</th>
<th>Pre harvest Interval (PHI) (Days)</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>CABBAGE LOOPER, DIAMONDBACK MOTH (cont’d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>indoxacarb, MOA 22B (Avaunt eVo) 30 WDG</td>
<td>2.5 to 3.5 oz</td>
<td>12 hrs</td>
<td>3</td>
<td>Avaunt may be applied only to turnip greens, not root turnips.</td>
</tr>
<tr>
<td>spinetoram, MOA 5 (Radiant) 1 SC</td>
<td>5 to 10 fl oz</td>
<td>4 hrs</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ROOT MAGGOT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tolfenpyrad, MOA 21A (Torac)</td>
<td>21 fl oz</td>
<td>12 hrs</td>
<td>1</td>
<td>Read soil application guidelines on label.</td>
</tr>
<tr>
<td>cyantraniliprole, MOA 28 (Verimark)</td>
<td>10 to 13.5 fl oz</td>
<td>4 hrs</td>
<td>At-planting only</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 2-24. FIRE ANT MANAGEMENT IN COMMERCIAL VEGETABLE FIELDS

<table>
<thead>
<tr>
<th>Active Ingredient (Brand Name)</th>
<th>Amount of Formulation Per acre</th>
<th>Restricted Entry Interval (REI)</th>
<th>Preharvest Interval (PHI) (Days)</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-methoprene (0.5%) (Extinguish Professional Fire Ant Bait)*</td>
<td>1.0 to 1.5 lbs</td>
<td>4 hrs</td>
<td>0</td>
<td>Bait. Broadcast when ants are actively foraging. Slow acting.</td>
</tr>
<tr>
<td>pyriproxifen (0.5%) (Esteem)</td>
<td>1.5 to 2.0 lbs</td>
<td>12 hrs</td>
<td>1 day</td>
<td>Bait. Broadcast when ants are actively foraging. Do not overhead water treated area for 24 hours after application. Slow acting. Esteem is labeled on most, but not all fruits and vegetables. Check label before using.</td>
</tr>
</tbody>
</table>

* Do not use Extinguish Plus in vegetable crops. This product contains methoprene + hydramethylnon and is not approved for use in vegetable crops.

Timing Bait Applications

Fire ant baits can be applied anytime during the growing season, but spring is the best time. Baits should be applied when ants are active and foraging. Fire ants are generally active on sunny days above 65°F. Foraging activity can be verified by spreading a few potato chips (fried, not baked) on the ground and checking in 20-30 minutes to see if they’ve found them.

Apply when rain is not expected for 1 to 2 days. Do not apply when leaves or soil are wet and reapply if rain falls within 6-12 hrs of application. A single bait treatment in the spring will reduce fire ant numbers by about 80%. For improved control subsequent applications in mid-summer and/or fall can be made. Fall treatments help reduce the number of mounds the following spring.

Insect Growth Regulator (IGR) baits (MOA 7) are slow acting and take up to two months to have their full impact. Hence, consider harvest timing when planning applications. For short season crops apply baits shortly after planting. For perennial or “U-Pick” crops, treat preventively in the fall and follow up with a spring application.

Applying Baits Properly

Rates for most granular fire ant baits range from only 1 to 2 pounds per acre, which can be easy to over-apply. Avoid using fertilizer spreaders, instead use hand-operated spreaders sold to apply fire ant baits to home lawns. Hand seeders designed to spread small seeds will also work if calibrated properly. Use a power-operated spreader for large acreages. Herd Seeder Company and Spyker Spreaders both make spreaders driven by small electric motors that can be mounted on a tractor, ATV, or other vehicle. Be sure to treat turn rows and field borders, because fire ants are often highest in untilled areas around field edges and from where they move into fields.
TABLE 2-25. RELATIVE EFFECTIVENESS OF INSECTICIDES AND MITICIDES
FOR INSECT AND MITE CONTROL ON FIELD-GROWN VEGETABLES (cont’d)
Not all insecticides listed below are registered on all vegetable crops. Refer to label before applying to specific crop.
Ratings are based on consensus of vegetable entomologists in the SE United States.

Leafminer

Maggots

Whiteflies*

Cutworms

Wireworms

White grubs

Spider mites*

Broad mites

G

F

F

G

F

F

−

−

−

−

F

−

−

−

−

F

−

−

−

−

G

G

G

G

G

G

−

F

G

G

F

E

G

F

−

−

−

−

−

−

−

oxamyl

Vydate

F

F

F

−

−

−

−

−

−

−

−

F

F

G

G

−

−

−

−

−

−

−

−

−

malathion

Malathion

G

F

G

F

F

F

F

G

F

F

-

F

F

F

F

−

−

F

−

F

−

−

−

−

acephate

Orthene

−

−

−

F

E

G

F

G

−

−

−

−

−

G

G

−

F

-

−

G

−

−

-

-

diazinon

Diazinon

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

G

−

F

G

F

-

-

dimethoate

Dimethoate

G

−

F

−

−

−

−

−

−

−

−

G

F

E

E

G

G

−

−

−

−

−

−

−

Western Flower Thrips*

Squash vine borer

F

−

Thrips

Diamondback moth*

G

−

Aphids*

Imported cabbageworm

F

F

Squash bug

Cabbage looper

E

Lannate

Stinkbugs
/Harlequin bug

European corn borer

Sevin

methomyl

Beet armyworm*

Corn earworm*

carbaryl

Common name

Fall armyworm

Cucumber beetles

INSECT CONTROL

1B

Colorado potato beetle*

1A

Example Product

Flea Beetle

Chemical class (IRAC)

Key: “E” Excellent; “G” Good; “F” Fair; “-” ineffective or insufficient data

permethrin

Pounce

G

F

G

G

G

F

G

E

F

E

−

F

G

F

F

−

F

−

−

G

−

−

−

−

alpha cypermethrin

Fastac

G

F

G

G

G

G

G

E

F

E

−

G

G

F

F

−

F

−

−

G

−

−

−

−

zeta cypermethrin

Mustang Maxx

E

F

E

G

E

G

G

E

F

E

−

G

E

F

F

−

F

−

−

E

−

−

−

−

cyfluthrin

Tombstone

E

F

E

G

E

F

G

E

F

E

−

G

E

F

F

−

F

−

−

E

−

−

−

−

beta cyfluthrin

Baythroid XL

E

F

E

G

E

F

G

E

F

E

−

G

E

F

F

−

F

−

−

E

−

−

−

−

lambda cyhalothrin

Karate, Warrior

E

F

E

G

E

G

G

E

F

E

−

G

E

F

F

−

F

−

−

E

−

−

F

−

esfenvalerate

Asana XL

G

G

G

G

G

F

G

E

F

G

−

F

G

F

F

−

F

−

−

G

−

−

−

−

gamma cyhalothrin

Proaxis

E

F

E

G

E

G

G

E

F

E

−

E

E

F

F

−

F

−

−

E

−

−

−

−

fenpropathrin

Danitol

G

−

G

G

G

F

F

E

F

G

−

E

E

F

F

−

F

−

−

G

−

−

F

−

bifenthrin

Brigade

E

F

E

G

G

F

F

E

F

E

−

E

E

F

F

−

F

F

−

E

G

F

F

−

imidacloprid

Admire

F

G

E

−

−

−

−

−

−

−

−

F

G

E

G

−

−

G

G

−

F

G

−

−

acetamiprid

Assail

G

E

G

−

−

−

−

−

−

F

−

F

G

E

G

−

−

−

E

−

−

−

−

−

clothianidin

Belay

E

E

G

−

−

−

−

−

−

−

−

G

G

G

−

−

F

G

F

−

F

G

−

−

thiamethoxam

Platinum/Actara

E

G

G

−

−

−

−

−

−

−

−

G

G

E

F

−

F

G

E

−

F

F

−

−

dinotefuran

Venom/Scorpion

E

E

G

−

−

−

−

−

−

−

−

E

E

F

G

−

F

−

E

−

−

−

−

−

4C

sulfoxaflor

Closer, Transform

−

−

−

−

−

−

−

−

−

−

−

F

−

E

−

−

−

−

F

−

−

−

−

−

4D

flupyradifurone

Sivanto

−

−

−

−

−

−

−

−

−

−

−

−

G

E

−

−

−

−

E

−

−

−

3

4A

spinosad

Blackhawk/Entrust

−

E

−

G

G

G

G

E

G

G

G

−

−

−

G

G

E

−

−

F

−

−

−

−

spinetoram

Radiant

−

E

−

E

E

G

G

E

G

G

G

−

−

−

E

G

E

−

−

F

−

−

−

−

emamectin benzoate

Proclaim

−

−

−

G

G

G

E

E

E

G

E

−

−

−

−

−

F

−

−

F

−

−

−

−

abamectin

Agri-Mek

−

E

−

−

−

−

−

−

−

−

−

−

−

−

G

F

E

−

−

−

−

−

E

E

7C

pyriproxyfen

Knack/Distance

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

E

−

−

−

−

−

9A

pyrifluquinazon

PQZ

−

−

−

−

−

−

−

−

−

−

−

−

−

E

−

−

−

−

G

−

−

−

−

−

9B

pymetrozine

Fulfill

−

−

−

−

−

−

−

−

−

−

−

−

−

E

−

−

−

−

F

−

−

−

−

−

9D

afidopyropen

Sefina, Versys

−

−

−

−

−

−

−

−

−

−

−

−

−

E

−

−

−

−

F

−

−

−

−

−

10B

etoxazole

Zeal

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

G

−

11A

Bt

Dipel, various

−

−

−

F

F

F

G

E

G

F

F

−

−

−

−

−

−

−

−

−

−

−

−

−

15

novaluron

Rimon

−

E

−

E

E

E

G

E

F

G

E

F

F

−

G

G

G

−

F

−

−

−

−

−

16

buprofezin

Courier

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

G

−

−

−

−

−

17

cyromazine

Trigard

−

G

−

−

−

−

−

−

−

−

−

−

−

−

−

−

E

−

-

−

−

−

−

−

18

methoxyfenozide

Intrepid

−

−

−

G

G

E

E

E

F

G

E

−

−

−

−

−

−

−

−

−

−

−

−

−

20B

acequinocyl

Kanemite

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

E

E

5
6

20D
21A
22A

bifenazate

Acramite/Floramite

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

E

−

fenazaquin

Magister

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

F

−

−

−

G

G

fenpyroximate

Portal

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

F

−

−

−

G

G

tolfenpyrad

Torac

G

−

−

F

F

F

F

G

g

−

F

−

−

G

G

F

−

−

F

−

−

−

−

G

indoxacarb

Avaunt eVo

F

G

F

E

G

G

E

E

G

G

E

−

−

−

−

−

F

−

−

F

−

−

−

−

* Denotes that insecticide-resistant populations may occur in some areas and can affect the performance of insecticides.

198

2022 Vegetable Crop Handbook for Southeastern United States


TABLE 2-25. RELATIVE EFFECTIVENESS OF INSECTICIDES AND MITICIDES FOR INSECT AND MITE CONTROL ON FIELD-GROWN VEGETABLES (cont’d)

Not all insecticides listed below are registered on all vegetable crops. Refer to label before applying to specific crop. Ratings are based on consensus of vegetable entomologists in the SE United States.

Key: "E" Excellent; "G" Good; "F" Fair; "." ineffective or insufficient data

<table>
<thead>
<tr>
<th>Chemical class (IRAC)</th>
<th>Common name</th>
<th>Example Product</th>
<th>Pea Beetle</th>
<th>Colorado potato beetle*</th>
<th>Cucumber beetles</th>
<th>Corn earworm</th>
<th>European corn borer</th>
<th>Fall armyworm</th>
<th>Cabbage looper</th>
<th>Imported cabbage worm*</th>
<th>Diamondback moth*</th>
<th>Squash vine borer</th>
<th>Bean armyworm*</th>
<th>Squash bug</th>
<th>Stinkbug</th>
<th>Harlequin bug</th>
<th>Aphids*</th>
<th>Thrips</th>
<th>Western Flower Thrips*</th>
<th>Leafminer</th>
<th>Maggots</th>
<th>Whiteflies*</th>
<th>Spider mites*</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>spiromesifen</td>
<td>Oberon</td>
<td>–</td>
</tr>
<tr>
<td>25</td>
<td>cyfluthrin</td>
<td>Nealta</td>
<td>–</td>
</tr>
<tr>
<td>28</td>
<td>chlorantraniliprole</td>
<td>Coragen</td>
<td>–</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>–</td>
</tr>
<tr>
<td>29</td>
<td>flonicamid</td>
<td>Beleaf</td>
<td>–</td>
</tr>
</tbody>
</table>

* Denotes that insecticide-resistant populations may occur in some areas and can affect the performance of insecticides.

TABLE 2-25 A. PREHARVEST INTERVALS (IN DAYS) FOR PYRETHROID INSECTICIDES IN VEGETABLE CROPS

See TABLE 2-25 to compare relative efficacy of these products against specific insect pests. Read the pesticide label for specific rates and application instructions.

<table>
<thead>
<tr>
<th>Common Name/Example Product (Restricted Entry Interval – REI)</th>
<th>alpha cypermethrin 12 hrs</th>
<th>Bifenthrin 12 hrs</th>
<th>Cyfluthrin 12 hrs</th>
<th>Cypermethrin (various names) 12 hrs</th>
<th>Cyphenothrin 12 hrs</th>
<th>Etoxazole 12 hrs</th>
<th>Asana XL (12 hrs)</th>
<th>Fenpropathrin 24 hrs</th>
<th>Gamma cyhalothrin 24 hrs</th>
<th>Lambda Cyhalothrin 24 hrs</th>
<th>Karathane 24 hrs</th>
<th>Lambda Pyramethrin 24 hrs</th>
<th>Pounce 12 hrs</th>
<th>zeta Cypermethrin 12 hrs</th>
<th>Mustang Maxx 12 hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asparagus</td>
<td>NR</td>
</tr>
<tr>
<td>Bulb Vegetables</td>
<td></td>
</tr>
<tr>
<td>Onions, Green</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>7</td>
<td>NR</td>
</tr>
<tr>
<td>Onions, Dry Bulb</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>7</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>14</td>
<td>14</td>
<td>15</td>
<td>7</td>
<td>7</td>
<td>1</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Brassica Leafy Vegetables</td>
<td></td>
</tr>
<tr>
<td>Broccoli, Brussels Sprout, Cabbage, Cauliflower, Kohlrabi</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>7</td>
<td>1</td>
<td>7</td>
<td>1</td>
<td>7</td>
<td>1</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Collard, Mustard Green</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>7</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Corn</td>
<td></td>
</tr>
<tr>
<td>Sweet Corn</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>NR</td>
<td>0</td>
<td>1</td>
<td>NR</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Cucurbits</td>
<td></td>
</tr>
<tr>
<td>Cantaloupe, Watermelon</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>NR</td>
<td>0</td>
<td>3</td>
<td>NR</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Cucumber, Pumpkin, Summer Squash, Winter Squash</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>NR</td>
<td>0</td>
<td>3</td>
<td>7</td>
<td>NR</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Fruiting Vegetables</td>
<td></td>
</tr>
<tr>
<td>Eggplant, Pepper</td>
<td>1</td>
<td>7</td>
<td>7</td>
<td>NR</td>
<td>0</td>
<td>7</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Tomato</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>NR</td>
<td>7</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Okra</td>
<td>1</td>
<td>NR</td>
<td>7</td>
<td>NR</td>
</tr>
<tr>
<td>Legumes</td>
<td></td>
</tr>
<tr>
<td>Edible-podded</td>
<td>1</td>
<td>NR</td>
<td>3</td>
<td>NR</td>
<td>3</td>
<td>NR</td>
<td>3</td>
<td>NR</td>
<td>7</td>
<td>7</td>
<td>NR</td>
<td>7</td>
<td>NR</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Succulent Shelled Pea and Bean</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>NR</td>
<td>3</td>
<td>3</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>NR</td>
<td>7</td>
<td>NR</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Dried Shelled Pea and Bean</td>
<td>21</td>
<td>7</td>
<td>14</td>
<td>NR</td>
<td>7</td>
<td>21</td>
<td>NR</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>NR</td>
<td>21</td>
<td>NR</td>
<td>21</td>
<td>NR</td>
</tr>
<tr>
<td>Leafy Vegetables, Except Brassicas</td>
<td></td>
</tr>
<tr>
<td>Head and Leaf Lettuce</td>
<td>1</td>
<td>0</td>
<td>7</td>
<td>5*</td>
<td>0</td>
<td>7A</td>
<td>NR</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Spinach</td>
<td>1</td>
<td>0</td>
<td>40</td>
<td>NR</td>
<td>0</td>
<td>NR</td>
</tr>
<tr>
<td>Celery</td>
<td>1</td>
<td>0</td>
<td>NR</td>
<td>0</td>
<td>NR</td>
</tr>
<tr>
<td>Root and Tuber Vegetables</td>
<td></td>
</tr>
<tr>
<td>Beet, Carrot, Radish, Turnip</td>
<td>1</td>
<td>0</td>
<td>21</td>
<td>NR</td>
<td>0</td>
<td>7</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Potato</td>
<td>1</td>
<td>0</td>
<td>21</td>
<td>NR</td>
<td>0</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>7</td>
<td>14</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>Sweetpotato</td>
<td>1</td>
<td>0</td>
<td>21</td>
<td>NR</td>
<td>0</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>7</td>
<td>NR</td>
<td>1</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

NR - Not registered.

* Head lettuce only.
TABLE 2-26. VIRUS-BASED INSECTICIDES AND LEPIDOPTERAN LARVAE CONTROLLED

<table>
<thead>
<tr>
<th>Product</th>
<th>Company</th>
<th>Virus</th>
<th>Fruitworm, Budworm</th>
<th>Cabbage Looper</th>
<th>Soybean Looper</th>
<th>Fall Armyworm</th>
<th>Beet Armyworm</th>
<th>Tomato Leafminer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fawligen</td>
<td>AgBitech</td>
<td>SfMNPV</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Gemstar</td>
<td>Certis</td>
<td>SfMNPV</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Helicovex</td>
<td>Andermatt</td>
<td>HearNPV</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Heligen</td>
<td>AgBitech</td>
<td>HearNPV</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Littovir</td>
<td>Andermatt</td>
<td>SpliNPV</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Loopex</td>
<td>Andermatt</td>
<td>AcMNPV</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Loopovir</td>
<td>Andermatt</td>
<td>ChinNPV</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Spexit</td>
<td>Andermatt</td>
<td>SeNPV</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Spodovir Plus</td>
<td>Andermatt</td>
<td>SfMNPV</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Spod-X</td>
<td>Certis</td>
<td>SeNPV</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Surtivo</td>
<td>AgBitech</td>
<td>ChinNPV</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Tutavir</td>
<td>Andermatt</td>
<td>PhopGV</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

*Most virus-based insecticides need to be applied when eggs or small larvae are observed; rarely are large larvae controlled when at high populations levels. DO NOT apply when most observed caterpillars are large (over ½ inch).

TABLE 2-27. LIST OF GENERIC INSECTICIDES BY ACTIVE INGREDIENT

<table>
<thead>
<tr>
<th>Active Ingredient</th>
<th>Original Product and Formulation (Manufacturer)</th>
<th>Generics and Formulation (Manufacturer)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abamectin</td>
<td>Agri-Mek 0.15 EC (Syngenta)</td>
<td>Abamectin 0.15EC (NuFarm)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Abamectin 15EC (Adama)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Abamectin Ultra 0.3 EC (Makhteshim)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Agmechin 0.15EC (Tide)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Agri-Mek 0.7EC (Syngenta)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Averland 0.7 EC (Vive)</td>
</tr>
<tr>
<td>Acetamiprid</td>
<td>Assail 30 SG (UPL)</td>
<td>Anarchy 30 SG (Loveland)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Anniston 30 SG, 70 WP (Tacoma Ag)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ArVida 30 SG, 70 WP (Atticus)</td>
</tr>
<tr>
<td>Acephate</td>
<td>Orthene 90 SP (Valent)</td>
<td>Acephate 90 Prill (Adama)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Acephate 90 WDG (Loveland)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Acephate 90 WSP (Loveland)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Acephate 97 UPL (UPL)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Acephate 97 WDG (Adama)</td>
</tr>
<tr>
<td>Bifenazate</td>
<td>Acramite (Arysta)</td>
<td>Actuate 2 SC (Atticus)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Banter 50 WDG, 4 SC (UpL)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bifenamite 50 WDG, 4 SC (Agr Star)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bifenazo 50 WDG, 4 SC (Tacoma, Willowood)</td>
</tr>
<tr>
<td>Bifenthrin</td>
<td>Brigade 2 EC, Capture 2 EC (FMC)</td>
<td>Battalion 2 EC, 10 WSP, LFC (Atticus)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bi-Dash 2E (Sharda)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bifen 2 AG Gold (Direct AG Source)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bifen 25% EC (Tacoma)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bifender FC (Vive)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bifenthrin 2 EC (Aceto)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bifenture 2 EC, LFC (UPL)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Discipline 2 EC (Amvac)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fanfare 2 EC, ES (Adama)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Frenzy Veloz (Real Farm)</td>
</tr>
<tr>
<td>Carbaryl</td>
<td>Sevin 50 WP 4 L, 80 S, SL, XLR (Bayer)</td>
<td>Carbayl 4 L (Drexel, Loveland)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prokoz Sevin SL (Prokoz)</td>
</tr>
<tr>
<td>Cyfluthrin & beta-cyfluthrin</td>
<td>Baythroid 1 EC (Bayer)</td>
<td>Sultrus 1 E (Helena)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tombstone 2 E (Loveland)</td>
</tr>
<tr>
<td>Cypermethrin</td>
<td>Ammo (discontinued)</td>
<td>Holster (Loveland)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Up-Cyde 2.5EC (UPL)</td>
</tr>
<tr>
<td>Dinofuran</td>
<td>Venom 70 SG (Valent)</td>
<td>Certador (BASF)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scorpion 35 SL (Gowan)</td>
</tr>
<tr>
<td>Esfenvalerate</td>
<td>Asana XL 0.66 EC (DuPont)</td>
<td>S-FenvaloStar 0.66 EC (LG Life Sciences)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zylare (Rotam)</td>
</tr>
<tr>
<td>Gamma-cyhalothrin</td>
<td>Proaxis 0.5 EC (Loveland)</td>
<td>Declare Insecticide 0.5 EC (Cheminova)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Proaxis Insecticide 0.5 EC (Cheminova)</td>
</tr>
<tr>
<td>Hexithiazox</td>
<td>Hexygon, Savey, Onager (Gowan)</td>
<td>Hexamine 1 E (Albaugh)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hexcel 50 DF (Atticus)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hexy 2E (Sharda)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Huang 1 EC (Atticus)</td>
</tr>
</tbody>
</table>
TABLE 2-27. LIST OF GENERIC INSECTICIDES BY ACTIVE INGREDIENT (cont’d)

<table>
<thead>
<tr>
<th>Active Ingredient</th>
<th>Original Product and Formulation (Manufacturer)</th>
<th>Generics and Formulation (Manufacturer)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imidacloprid</td>
<td>Admire 2 F, Pro 4.6 F, Provado 1.6 F (Bayer)</td>
<td>NuPrid 2 SC, 4 F Max, 4.6 F (Nufarm)</td>
</tr>
<tr>
<td></td>
<td>Advise 2 FL, Four (Winfield)</td>
<td>Omni Brand Imidacloprid 2 F, 4 F</td>
</tr>
<tr>
<td></td>
<td>Alias 2 F, 4 F (Adama)</td>
<td>(Helena)</td>
</tr>
<tr>
<td></td>
<td>Imidashot 1 F (Sulfur Mills Limited)</td>
<td>Pasada 1.6 F (Adama)</td>
</tr>
<tr>
<td></td>
<td>Lada 2 F (Rotam)</td>
<td>Prey 1.6 F (Loveland)</td>
</tr>
<tr>
<td></td>
<td>Macho 2 FL, 4 F (Albaugh)</td>
<td>Provoke 4 F (Innivictis)</td>
</tr>
<tr>
<td></td>
<td>Malice 2 F, 75 WSP (Loveland)</td>
<td>Sherpa 1.6 F (Loveland)</td>
</tr>
<tr>
<td></td>
<td>Midash 2 SC, Forte (Sharda USA)</td>
<td>Widow 2 F (Loveland)</td>
</tr>
<tr>
<td></td>
<td>Montana 2 F, 4 F (Rotam NA)</td>
<td>Willowood Imidacloprid 2 SC, 4 SC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Willowood Wrangler 4 FL (Loveland)</td>
</tr>
<tr>
<td>Lambda-cyhalothrin</td>
<td>Karate 2 ME, Warrior 2 ME (Syngenta)</td>
<td>LambdaStar 1 EC, 1 CS (LG Life Sciences)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lamcap II 2.08 CS (Syngenta)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Paradigm 1 EC (Adama, Winfield United)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Province 1 SC (TENKOZ)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ravage 1 EC (Innivictis)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Serpent 1 EC (Atticus)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Silencer 1 EC, VKN (Adama)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Willowood Lambda-Cy 1 EC (Willowood)</td>
</tr>
<tr>
<td>Methomyl</td>
<td>Lannate (DuPont)</td>
<td>NuDrin SP, LV (Rotam)</td>
</tr>
<tr>
<td>Methoxyfenozide</td>
<td>Intrepid (Dow Agro)</td>
<td>TurnStyle 2 F (UPL)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vexer 2 F (Innivictis)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zylo 2 F (UPL)</td>
</tr>
<tr>
<td>Permethrin</td>
<td>Pounce 3.2 EC (FMC)</td>
<td>Permethrin 3.2 EC (Loveland, Winfield, Tenkoz)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stelletto (Wilbur-Ellis)</td>
</tr>
<tr>
<td>Pyriproxyfen</td>
<td>Distance, Knack 0.86 EC (Valent)</td>
<td>Reemit 0.86EC (Atticus)</td>
</tr>
</tbody>
</table>

TABLE 2-28. COMPONENTS OF INSECTICIDE MIXTURES*

<table>
<thead>
<tr>
<th>Premix Trade Name</th>
<th>Components (Legacy trade name)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acenthrin</td>
<td>acephate (Orthene) + bifenthrin (Brigade)</td>
</tr>
<tr>
<td>Athena</td>
<td>abamectin (Agri-Mek) + bifenthrin (Brigade)</td>
</tr>
<tr>
<td>Agri-Flex</td>
<td>abamectin (Agri-Mek) + thiamethoxam (Actara)</td>
</tr>
<tr>
<td>Avenger, Brigadier, IMAX Plus, Swagger, Skyrainder, Tempest</td>
<td>bifenthrin (Brigade) + imidacloprid (Admire)</td>
</tr>
<tr>
<td>Besiege</td>
<td>chlorantraniliprole (Coragen) + lambda-cyhalothrin (Warrior)</td>
</tr>
<tr>
<td>Cormoran</td>
<td>acetamiprid (Assail) + novaluron (Rimon)</td>
</tr>
<tr>
<td>Elevest</td>
<td>bifenthrin (Brigade) + chlorantraniliprole (Coragen)</td>
</tr>
<tr>
<td>Enkounter</td>
<td>acetamiprid (Assail) + methoxyfenozide (Intrepid)</td>
</tr>
<tr>
<td>Endigo ZC</td>
<td>lambda-cyhalothrin (Warrior, Karate) + thiamethoxam (Actara)</td>
</tr>
<tr>
<td>Durivo, Voliam Flexi</td>
<td>chlorantraniliprole (Coragen) + thiamethoxam (Actara, Platinum)</td>
</tr>
<tr>
<td>Gladiator</td>
<td>avermectin B1 (Agri-Mek) + zeta-cypermethrin (Mustang Maxx)</td>
</tr>
<tr>
<td>Hero, Steed</td>
<td>bifenthrin (Brigade) + zeta-cypermethrin (Mustang Maxx)</td>
</tr>
<tr>
<td>Intrepid Edge</td>
<td>methoxyfenozide (Intrepid) + spinetoram (Radiant)</td>
</tr>
<tr>
<td>Killer</td>
<td>imidacloprid (Admire) + lambda-cyhalothrin (Warrior, Karate)</td>
</tr>
<tr>
<td>Leverage 360</td>
<td>imidacloprid (Admire) + beta-cyfluthrin (Baythroid XL)</td>
</tr>
<tr>
<td>Leverage 2.7</td>
<td>imidacloprid (Admire) + cyfluthrin (Baythroid)</td>
</tr>
<tr>
<td>Minecto Pro</td>
<td>cyantraniliprole (Exirel) + abamectin (Agri-Mek)</td>
</tr>
<tr>
<td>Obelisk</td>
<td>abamectin (Agri-Mek) + imidacloprid (Admire)</td>
</tr>
<tr>
<td>Savoy EC</td>
<td>acetamiprid (Assail) + bifenthrin (Brigade)</td>
</tr>
<tr>
<td>Senstar</td>
<td>spirotetramat (Movento) + pyriproxyfen (Knack)</td>
</tr>
</tbody>
</table>

* Insecticide pre-mixes usually control a wider range of insect pests than a single active ingredient and may be less costly than purchasing equivalent amounts of the pre-mix components separately. However, pre-mixes can also have disadvantages, including unnecessary use of individual active ingredients, unnecessary selection for resistance, and application of rates that are too low or too high for particular target pests. Growers who need to apply a combination of insecticides also have the option of purchasing active ingredients separately and tank-mixing to achieve rates that are appropriate for the need. Having active ingredients available for use separately often provides greater pest management flexibility than having the same active ingredients available only as a pre-mix.
INSECT CONTROL FOR GREENHOUSE VEGETABLES

Sound cultural practices, such as sanitation and insect-free transplants, help prevent insect establishment and subsequent damage. Separate plant production houses, use of yellow sticky traps, and timely sprays will help prevent whitefly buildup. Use of Encarsia parasites for whitefly and other biological control agents in conjunction with use of pesticides is encouraged. Unless a pesticide label specifically states that, a product cannot be used in a greenhouse vegetable crop, the product can be used on those crops for which it is registered. However, pesticides behave differently in the field and the greenhouse, and for many products, information is not available on greenhouse crop phytotoxicity and residue retention. If unsure of the safety of a product to a crop, apply to a small area before treating the entire crop.

TABLE 2-29. INSECT CONTROL FOR GREENHOUSE VEGETABLES

<table>
<thead>
<tr>
<th>Insecticide and Formulation</th>
<th>Amount of Formulation</th>
<th>Re Entry Interval</th>
<th>Pre Harvest Interval (PHI) (Days)</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aphid</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fonicamid, MOA 29 (Beleaf) 50 SG</td>
<td>0.065 to 0.1 oz per 1000 sq ft</td>
<td>12 hrs</td>
<td>0</td>
<td>May be applied either to the soil as a drench or drip irrigation for preventive control, or sprayed onto plants as a rescue treatment.</td>
</tr>
<tr>
<td>flupyradifurone, MOA 4D (Altus) 1.67 SL</td>
<td>7 to 14 fl oz per 50 gal</td>
<td>12 hrs</td>
<td>1</td>
<td>Spray crop to wet, not to drip. Through, uniform coverage is required for good control. Use higher rates for whiteflies.</td>
</tr>
<tr>
<td>Soil treatment</td>
<td>1.4 to 1.9 fl oz per 50 gal</td>
<td>12 hrs</td>
<td>1</td>
<td>Apply as a soil drench using micro-irrigation, drip irrigation, overhead irrigation, or hand-held motorized calibrated equipment. Use sufficient volume to wet potting medium without loss of liquid from the bottom of the container. Irrigate carefully during the next 10 days to avoid loss of product due to leaching.</td>
</tr>
<tr>
<td>imidacloprid, MOA 4A (Admire Pro) 4.6 F</td>
<td>0.6 fl oz/1,000 plants</td>
<td>12 hrs</td>
<td>0</td>
<td>Apply in a minimum of 21 gallons water using soil drenches, microirrigation, or drip irrigation. Do not apply to immature plants as phytotoxicity may occur. Make only one application per crop per season.</td>
</tr>
<tr>
<td>insecticidal soap (M-Pede) 49 EC</td>
<td>2 tbsp/gal water</td>
<td>12 hrs</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cabbage looper</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacillus thuringiensis, MOA 11 (various)</td>
<td>0.5 to 1 lb OR 3 pt/100 gal water</td>
<td>4 hrs</td>
<td>—</td>
<td>Most formulations are OMRI listed</td>
</tr>
<tr>
<td>spinosad, MOA 5 (Entrust) SC</td>
<td>3 fl oz/100 gal</td>
<td>4 hrs</td>
<td>1</td>
<td>Do not make more than two consecutive applications. OMRI listed.</td>
</tr>
<tr>
<td>Spider mite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>insecticidal soap (M-Pede) 49 EC</td>
<td>2 tbsp/gal water</td>
<td>12 hrs</td>
<td>—</td>
<td>Use predatory mites. OMRI Listed.</td>
</tr>
<tr>
<td>mineral oil (TriTek)</td>
<td>1 to 2 gal/100 gal</td>
<td>4 hrs</td>
<td>0</td>
<td>Begin applications when mite populations are low, and repeat at weekly intervals.</td>
</tr>
<tr>
<td>Acequinocyl, MOA 20B (Kanemite) 15SC (Shuttle O) 1.25SC</td>
<td>31 fl oz per 43,560 sq ft, or per 100 gal</td>
<td>12 hrs</td>
<td>1</td>
<td>Will control spider mites and broadmotes.</td>
</tr>
<tr>
<td>fenpyroximate, MOA 21A (Akari) 5 SC</td>
<td>1 to 2 pts per 100 gal</td>
<td>12 hrs</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>chlorfenapyr, MOA 13 (Pylon) 2SC</td>
<td>9.8 to 13 fl oz/100 gal water or per acre area</td>
<td>12 hrs</td>
<td>0</td>
<td>Do not make more than two applications at 5 to 10 day intervals before rotating to an insecticide with a different mode of action.</td>
</tr>
<tr>
<td>Whitefly, Leafminer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>acetamiprid, MOA 4A (Assail) 30 SG</td>
<td>0.1 oz per 1000 sq ft</td>
<td>12 hrs</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cyantraniliprole MOA 28 (Exirel) SE</td>
<td>13.5 to 20.5 fl oz per acre or per 100 gal</td>
<td>12 hrs</td>
<td>0</td>
<td>For best performance, use an effective adjuvant.</td>
</tr>
<tr>
<td>fonicamid, MOA 20 (Beleaf) 30 SG</td>
<td>0.065 to 0.1 oz per 1000 sq ft</td>
<td>12 hrs</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Flupyradifurone, MOA 4D (Altus) 1.67 SL</td>
<td>—</td>
<td>—</td>
<td>1</td>
<td>See rates and application instructions under aphids.</td>
</tr>
</tbody>
</table>
TABLE 2-29. INSECT CONTROL FOR GREENHOUSE VEGETABLES (cont’d)

<table>
<thead>
<tr>
<th>Insecticide and Formulation</th>
<th>Amount of Formulation</th>
<th>Re Entry Interval (PHI) (Days)</th>
<th>Pre Harvest Interval (PHI) (Days)</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSECT CONTROL FOR CUCUMBER (CONT’D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whitefly, Leafminer (cont’d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>imidacloprid, MOA 4A (Admire Pro) 4.6 F</td>
<td>0.6 fl oz/1,000 plants</td>
<td>12 hrs</td>
<td>0</td>
<td>Apply in a minimum of 21 gallons water using soil drenches, microirrigation, or drip irrigation. Do not apply to immature plants as phytotoxicity may occur. Make only one application per crop per season.</td>
</tr>
<tr>
<td>insecticidal soap (M-Pede) 49 EC</td>
<td>2 tbsp/gal water</td>
<td>12 hrs</td>
<td>0</td>
<td>May be used alone or in combination. Acts as an exciter. OMRI Listed.</td>
</tr>
<tr>
<td>Beauveria bassiana (Mycotrol WP)</td>
<td>0.25 lb/20 gal water</td>
<td></td>
<td></td>
<td>Apply when whiteflies observed. Repeat in 4- to 5-day intervals. OMRI Listed.</td>
</tr>
<tr>
<td>INSECT CONTROL FOR LETTUCE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aphid, Leafminer, Whitefly</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>flupyradifurone, MOA 4D (Altus) 1.67 SL</td>
<td></td>
<td></td>
<td></td>
<td>Spray crop to wet, not to drip. Through, uniform coverage is required for good control. Use higher rates for whiteflies.</td>
</tr>
<tr>
<td>Foliar treatment</td>
<td>7 to 14 fl oz per 50 gal</td>
<td>12 hrs</td>
<td>1</td>
<td>Apply as a soil drench using micro-irrigation, drip irrigation, overhead irrigation, or hand-held motorized calibrated equipment. Use sufficient volume to wet potting medium without loss of liquid from the bottom of the container. Irrigate carefully during the next 10 days to avoid loss of product due to leaching.</td>
</tr>
<tr>
<td>Soil treatment</td>
<td>1.4 to 1.9 fl oz per 50 gal</td>
<td></td>
<td></td>
<td>May be used alone or tank mixed with a companion insecticide (see label for details). OMRI listed.</td>
</tr>
<tr>
<td>pymetrozine, MOA 9B (Fulfil) 50 WG</td>
<td>0.063 oz per 1000 sq ft</td>
<td>12 hrs</td>
<td>0</td>
<td>Will not control leafminer.</td>
</tr>
<tr>
<td>pyrethrins, MOA 3A (Pyganic) 5 EC</td>
<td>0.25 to 0.5 fl oz per gal water</td>
<td>12 hrs</td>
<td>0</td>
<td>Will not control whitefly</td>
</tr>
<tr>
<td>malathion, MOA 1B (various) 57 EC</td>
<td>1qt/100 gal water</td>
<td>24 hrs</td>
<td>14</td>
<td>Will not control whitefly</td>
</tr>
<tr>
<td>25 WP</td>
<td>4 lb/100 gal water</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>insecticidal soap (M-Pede) 49 EC</td>
<td>2 tbsp/gal water</td>
<td>12 hrs</td>
<td>0</td>
<td>May be used alone or in combination. Acts as an exciter. Insecticidal soaps can cause phytotoxicity under high temperatures or slow drying conditions. If unsure, apply to a small area before treating the entire crop. OMRI listed.</td>
</tr>
<tr>
<td>Beauveria bassiana (BotaniGard) 22 WP (Mycotrol WP)</td>
<td>1 lb/100 gal water</td>
<td>4 hrs</td>
<td>0</td>
<td>Under high aphid or whitefly pressure, apply at 2 to 5 day intervals. OMRI listed.</td>
</tr>
<tr>
<td>Cabbage looper</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacillus thuringiensis, MOA11 (Javelin) WG</td>
<td>0.5 to 1.25/100 gal water</td>
<td>4 hrs</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cyantraniliprole MOA 28 (Exirel) SE</td>
<td>10 to 20.5 fl oz per acre or per 100 gal</td>
<td>12 hrs</td>
<td>0</td>
<td>For best performance, use an effective adjuvant.</td>
</tr>
<tr>
<td>spinosad, MOA 5 (Entrust) SC</td>
<td>3 fl oz/100 gal</td>
<td>4 hrs</td>
<td>1</td>
<td>Do not make more than two consecutive applications.</td>
</tr>
<tr>
<td>Slugs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>iron phosphate (Sluggo)</td>
<td>0.5 to 1 lb/1,000 sq ft</td>
<td>4 hrs</td>
<td>1</td>
<td>Scatter the bait around the perimeter of the greenhouse to provide a protective barrier. If slugs are within the crop, then scatter the bait on the ground around the plants. Do not make more than 3 applications within 21 days. Sluggo will control slugs and snails, while Bug-N-Sluggo will also control earwigs, cutworms, sowbugs, and pillbugs. Sluggo is OMRI listed.</td>
</tr>
<tr>
<td>iron phosphate + spinosad (Bug-N-Sluggo)</td>
<td>0.5 to 1 lb/1,000 sq ft</td>
<td>4 hrs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Spider mite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>insecticidal soap (M-Pede) 49 EC</td>
<td>2 tbsp/gal water</td>
<td>12 hrs</td>
<td>0</td>
<td>Begin applications when mite populations are low, and repeat at weekly intervals.</td>
</tr>
<tr>
<td>mineral oil (TriTek)</td>
<td>1 to 2 gal/100 gal</td>
<td>4 hrs</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>INSECT CONTROL FOR TOMATO AND PEPPER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aphid</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>flonicamid, MOA 20 (Beleaf) 50 SG</td>
<td>0.1 oz per 1000 sq ft</td>
<td>12 hrs</td>
<td>0</td>
<td>May be applied to the soil as a drench or drip irrigation for preventive control, or as a spray for rescue treatments. Will also control whiteflies.</td>
</tr>
</tbody>
</table>
INSECT CONTROL FOR GREENHOUSE VEGETABLES (cont’d)

<table>
<thead>
<tr>
<th>Insecticide and Formulation</th>
<th>Amount of Formulation</th>
<th>Re Entry Interval</th>
<th>Pre Harvest Interval (PHI) (Days)</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
</table>

INSECT CONTROL FOR TOMATO AND PEPPER (CONT’D)

Aphid (cont’d)

<table>
<thead>
<tr>
<th>Insecticide and Formulation</th>
<th>Amount of Formulation</th>
<th>Re Entry Interval</th>
<th>Pre Harvest Interval (PHI) (Days)</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>flupyradifurone, MOA 4D (Altus) 1.67 SL Foliar treatment</td>
<td>7 to 14 fl oz per 50 gal</td>
<td>12 hrs</td>
<td>1 (tomato) 3 (pepper)</td>
<td>Spray crop to wet, not to drip. Through, uniform coverage is required for good control. Use higher rates for whiteflies.</td>
</tr>
<tr>
<td>Soil treatment</td>
<td>1.4 to 1.9 fl oz per 50 gal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>imidacloprid, MOA 4A (Admire Pro) 4.6</td>
<td>0.6 fl oz/1,000 plants</td>
<td>12 hrs</td>
<td>0</td>
<td>Apply in a minimum of 16 gallons water. Apply only to plants grown in field-type soils, potting media, or mixtures thereof. Do not apply to plants grown in non-soil medias such as perlite, vermiculite, rock wool, or other soil-less media, or plants growing hydroponically. Do not apply to peppers. Do not exceed one application per crop. Also controls whiteflies.</td>
</tr>
<tr>
<td>malathion, MOA 1B (various) 10A 57 EC 25 WP</td>
<td>1 lb/50,000 cu ft 1qt/100 gal water 4 lb/100 gal water</td>
<td>12 hrs</td>
<td>15 hrs 1 1</td>
<td></td>
</tr>
<tr>
<td>insecticidal soap (M-Pede) 49 EC</td>
<td>2 tbsp/gal water</td>
<td>12 hrs</td>
<td>0</td>
<td>May be used alone or in combination. Acts as an exciter.</td>
</tr>
<tr>
<td>Beauveria bassiana (Mycotrol WP)</td>
<td>0.25 lb/20 gal water</td>
<td></td>
<td>0</td>
<td>Apply when whiteflies are observed. Repeat in 4-to 5-day intervals.</td>
</tr>
</tbody>
</table>

Armyworm, Fruitworm, Cabbage looper, Pinworm

<table>
<thead>
<tr>
<th>Insecticide and Formulation</th>
<th>Amount of Formulation</th>
<th>Re Entry Interval</th>
<th>Pre Harvest Interval (PHI) (Days)</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacillus thuringiensis, MOA 11 (Javelin) WG (Agree) WP (Dipel) DF (Xentari) DF</td>
<td>0.5 lb to 1.25 lb/100 gal water 1 to 2 lb 0.5 to 1.25 lb 0.5 to 1.5 lb</td>
<td>4 hrs</td>
<td>0</td>
<td>Do not make more than two applications at 5- to 10-day intervals before rotating to an insecticide with a different mode of action</td>
</tr>
<tr>
<td>chlorfenapyr, MOA 13 (Pylon) 2 SC</td>
<td>6.5 to 13 fl oz/100 gal water, or per acre area</td>
<td>12 hrs</td>
<td>0</td>
<td>Do not make more than two applications at 5- to 10-day intervals before rotating to an insecticide with a different mode of action</td>
</tr>
<tr>
<td>cyantraniliprole, MOA 28 (Exirel) SE</td>
<td>7 to 13.5 fl oz per acre, or per 100 gal</td>
<td>12 hrs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>spinosad, MOA 5 (Entrust) SC</td>
<td>3 fl oz/100 gal</td>
<td>4 hrs</td>
<td>1</td>
<td>Do not make more than two consecutive applications. Do not apply to seedling tomatoes or peppers grown for transplants.</td>
</tr>
</tbody>
</table>

Leafminer

<table>
<thead>
<tr>
<th>Insecticide and Formulation</th>
<th>Amount of Formulation</th>
<th>Re Entry Interval</th>
<th>Pre Harvest Interval (PHI) (Days)</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>cyantraniliprole, MOA 28 (Exirel) SE</td>
<td>13.5 to 20.5 fl oz/acre or per 100 gal</td>
<td>12 hrs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>chlorfenapyr, MOA 13 (Pylon) 2SC</td>
<td>9.8 to 13 fl oz/100 gal water or per acre</td>
<td>12 hrs</td>
<td>0</td>
<td>Do not make more than two applications at 5- to 10-day intervals before rotating to a different mode of action.</td>
</tr>
<tr>
<td>spinosad, MOA 5 (Entrust) SC</td>
<td>10 fl oz/100 gal</td>
<td>4 hrs</td>
<td>1</td>
<td>Do not apply to seedlings grown for transplants</td>
</tr>
</tbody>
</table>

Slug

<table>
<thead>
<tr>
<th>Insecticide and Formulation</th>
<th>Amount of Formulation</th>
<th>Re Entry Interval</th>
<th>Pre Harvest Interval (PHI) (Days)</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>metaldehyde (various) bait</td>
<td>Follow label directions</td>
<td>12 hrs</td>
<td></td>
<td>Apply to soil surface around plants. Do not contaminate fruit.</td>
</tr>
<tr>
<td>iron phosphate (Sluggo)</td>
<td>½ teaspoon per 9-inch pot</td>
<td></td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Spider mite, Broad mite, Rust mite

<table>
<thead>
<tr>
<th>Insecticide and Formulation</th>
<th>Amount of Formulation</th>
<th>Re Entry Interval</th>
<th>Pre Harvest Interval (PHI) (Days)</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>acequinocyl, MOA 20B (Kanemite) 15 SC (Shuttle O) 1.25SC</td>
<td>3 fl oz per 43,560 sq ft or per 100 gal water</td>
<td>12 hrs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Insecticide and Formulation</td>
<td>Amount of Formulation</td>
<td>Re Entry Interval</td>
<td>Pre Harvest Interval (PHI) (Days)</td>
<td>Precautions and Remarks</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>-------------------</td>
<td>----------------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>SPIDER MITE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bifenazate, MOA 25</td>
<td>4 to 8 fl oz/100 gal water (1/4 to 1/2 tsp/gal)</td>
<td>12 hr</td>
<td>3</td>
<td>For use on tomatoes more than 1 inch in diameter at maturity. Not registered on pepper. Not for Rust mite.</td>
</tr>
<tr>
<td>mineral oil (TnTek)</td>
<td>1 to 2 gal/100 gal</td>
<td></td>
<td>0</td>
<td>Begin applications when mite populations are low, and repeat at weekly intervals.</td>
</tr>
<tr>
<td>chlorfenapyr, MOA 13</td>
<td>9.8 to 13 fl oz/100 gal water or per acre area</td>
<td>12 hrs</td>
<td>1</td>
<td>Do not make more than two applications at 5- to 10-day intervals before rotating to an insecticide with a different mode of action.</td>
</tr>
<tr>
<td>cyflumetofen, MOA 25</td>
<td>13.7 fl oz/100 gal</td>
<td></td>
<td>12 hrs</td>
<td></td>
</tr>
<tr>
<td>fenpyroximate, MOA 21A</td>
<td>1 to 2 pts per 100 gal</td>
<td>12 hrs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>insecticidal soap</td>
<td>2 tbsp/gal water</td>
<td></td>
<td>12 hrs</td>
<td></td>
</tr>
<tr>
<td>THRIPS, INCLUDING WESTERN FLOWER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beauveria bassiana (Mycotrol WP)</td>
<td>0.25 lb/20 gal water</td>
<td>0</td>
<td>Use screens on intake vents. Apply when whiteflies observed. Repeat in 4- to 5-day intervals.</td>
<td></td>
</tr>
<tr>
<td>cyantraniliprole, MOA 28</td>
<td>13.5 to 20.5 fl oz per acre or per 100 gal</td>
<td>12 hrs</td>
<td>1</td>
<td>For foliage-feeding thrips only, not those in flowers.</td>
</tr>
<tr>
<td>flonicamid, MOA 29 (Beleaf) 50 SG</td>
<td>0.1 oz per 1000 sq ft</td>
<td>12 hrs</td>
<td>1</td>
<td>For use on tomato only.</td>
</tr>
<tr>
<td>spinosad, MOA 5 (Entrust) SC</td>
<td>5.5 fl oz/100 gal</td>
<td></td>
<td>4 hrs</td>
<td>Do not make more than two consecutive applications, and do not apply more than 6 times in a 12-month period against thrips. Do not apply to seedlings grown from transplants.</td>
</tr>
<tr>
<td>WHITEFLY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>imidacloprid, MOA 4A</td>
<td>0.6 fl oz/1,000 plants</td>
<td>12 hrs</td>
<td>0</td>
<td>Apply in a minimum of 16 gal of water. Apply only to plants grown in field-type soils, potting media, or mixtures thereof. Do not apply to plants grown in non-soil media such as perlite, vermiculite, rock wool, or other soil-less media, or plants growing hydroponically. Do not apply to peppers. Do not exceed one application per crop. Also controls aphids.</td>
</tr>
<tr>
<td>acetamiprid, MOA 4A (Tristar) 8.5 SL</td>
<td>1.25 fl oz/1000 plants</td>
<td>12 hrs</td>
<td>1</td>
<td>Apply only to plants growing in rock wool, perlite, or other soil-less growing media. Do not apply to crops that have already been treated with imidacloprid, dinofuran, or another neonicotinoid.</td>
</tr>
<tr>
<td>cyantraniliprole, MOA 28</td>
<td>13.5 to 20.5 fl oz per acre or per 100 gal</td>
<td>12 hrs</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>flonicamid, MOA 29 (Beleaf) 50 SG</td>
<td>0.1 oz per 1000 sq ft</td>
<td>12 hrs</td>
<td>0</td>
<td>For use on tomato only.</td>
</tr>
<tr>
<td>flupyradifurone, MOA 4D (Alitus) 1.67 SL</td>
<td>—</td>
<td>—</td>
<td>1 (tomato) 3 (pepper)</td>
<td>See rates and application instructions under aphids.</td>
</tr>
<tr>
<td>insecticidal soap (M-Pede) 49 EC</td>
<td>2 tbsp/gal water</td>
<td>12 hrs</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>pyrethrins and PBO, MOA 3</td>
<td>0.25 to 0.5 fl oz per gal</td>
<td>12 hrs</td>
<td>0</td>
<td>May be used alone or tank mixed with a companion insecticide. (See label for details).</td>
</tr>
<tr>
<td>Beauveria bassiana (Mycotrol WP)</td>
<td>0.25 lb/20 gal water</td>
<td>4 hrs</td>
<td>0</td>
<td>Apply when whiteflies are observed. Repeat in 4- to 5-day intervals. OMRI listed.</td>
</tr>
<tr>
<td>buprofezin, MOA 16 (Talus) 40 SC</td>
<td>9 to 13.6 fl oz/100 gal water or per acre area</td>
<td>12 hrs</td>
<td>1</td>
<td>Insect growth regulator that affects immature stages of whiteflies. Will not kill adults. For use on tomatoes only.</td>
</tr>
<tr>
<td>pyriproxyfen, MOA 7C (Distance) 0.8 EC</td>
<td>6 fl oz/100 gal water</td>
<td>12 hrs</td>
<td><1</td>
<td>Do not use on tomatoes less than 1 inch in diameter. Insect growth regulator that affects immature stages of whiteflies. Will not kill adults. Do not use on tomatoes more than 1 inch in diameter. Do not apply on non-bell peppers</td>
</tr>
</tbody>
</table>
TABLE 2-30. ALTERNATIVE IPM & BIOINSECTICIDE RECOMMENDATIONS IN VEGETABLE CROPS

NOTE: Many organic insecticides have not been tested thoroughly in the commercial vegetable production systems. Use systems-based and pest exclusion practices to reduce the overall infestation levels before using approved insecticides in organic farming systems. Targeted insecticide applications at correct rate can protect natural enemies. Always read the insecticide label before application and purchase bioinsecticides from reliable sources.

<table>
<thead>
<tr>
<th>Target Pest</th>
<th>Cropping System</th>
<th>Systems-based Practices (for pest prevention)</th>
<th>Mechanical tactics (for pest prevention)</th>
<th>Biocontrol Insecticides<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Aphid</td>
<td>Multiple crops</td>
<td>Timely planting and harvest reduces water stress on crops. Use appropriate plant spacing to reduce spread and improve air movement.</td>
<td>Use of reflective mulches to protect transplants or use insect barrier fabric immediately after transplanting.</td>
<td>Insecticidal soap, oil blends (Pyola & others), paraffinic oil, pyrethin, Chromobacterium (Grandeo), Azera (insecticide premix). Do not spray oils in high heat!</td>
</tr>
<tr>
<td>Armyworms</td>
<td>Multiple crops</td>
<td>Weed control, field sanitation, control soil organic residue (larvae hide under thick organic residue), timely planting & harvest to avoid late-season infestation</td>
<td>Remove & destroy egg masses, Insect netting for gardens or short rows*. High tunnel pest exclusion system for commercial producers<sup>b</sup></td>
<td>Bacillus thuringiensis (Xentari, Dipel, or premix), Insecticidal soap & oil, Spinosad, Neem, Chromobacterium (Grandeo), Leap (insecticide premix), Spear-Lep (Synergist)</td>
</tr>
<tr>
<td>Bean leaf beetle</td>
<td>Snap, lima pole beans</td>
<td>Sanitation (removal of crop debris), timely</td>
<td>Row cover or pest exclusion system (Super Light Insect Barrier, AgroFabric).</td>
<td>Pyrethrins (single a.i. or premix), Spinosad</td>
</tr>
<tr>
<td>Blister beetle</td>
<td>Multiple crops</td>
<td>—</td>
<td>Row cover or pest exclusion system (Super Light Insect Barrier, AgroFabric).</td>
<td>Spinosad, Pyrethrin (single a.i. or premix)</td>
</tr>
<tr>
<td>Cabbage looper (small caterpillars)</td>
<td>Multiple crops</td>
<td>Remove alternate host plants (wild mustard, shepherd’s purse), sanitation</td>
<td>Insect netting for gardens or short rows. High tunnel pest exclusion system for commercial producers<sup>b</sup></td>
<td>Bacillus thuringiensis (single a.i. or premix), Insecticidal soap, Neem, Pyrethrin (single a.i. or premix), Spinosad, Chromobacterium (Grandeo), Spear-Lep (Synergist)</td>
</tr>
<tr>
<td>Colorado potato beetle</td>
<td>Multiple crops</td>
<td>Crop rotation, planting tolerant varieties</td>
<td>Insect netting for gardens or short rows* Hand removal of larvae & adults</td>
<td>Neem, Pyrethrin (use for larval control), Spinosad (watch for insecticide resistance)</td>
</tr>
<tr>
<td>Corn earworm/Tomato fruitworm</td>
<td>Multiple crops</td>
<td>Field sanitation, removal of weedy hosts. Use pheromone traps for monitoring moth activity</td>
<td>Insect netting for gardens or short rows*. High tunnel pest exclusion system for commercial producers<sup>b</sup></td>
<td>Bacillus thuringiensis (single a.i. or premix), Insecticidal soap & oil, Spinosad, Neem, Chromobacterium (Grandeo), Spear-Lep (tank-mix with Bt, not OMRI approved)</td>
</tr>
<tr>
<td>Cowpea curculio</td>
<td>Cowpeas, Snap, Lima, Pole beans</td>
<td>Crop rotation, sanitation, early harvest of crop, tillage in fall or early spring</td>
<td>Row cover or pest exclusion system (Super Light Insect Barrier, AgroFabric).</td>
<td>Pyrethrins (single a.i. or premix), Spinosad (adults are difficult to kill due to insecticide resistance)</td>
</tr>
<tr>
<td>Cucumber beetle</td>
<td>Multiple crops</td>
<td>Perimeter trap cropping with Hubbard squash is highly effective. Use organic insecticides on trap crops.</td>
<td>Row cover or pest exclusion system (Super Light Insect Barrier, AgroFabric) for early season protection.</td>
<td>Pyrethrins (single a.i. or premix), Neem, Parasitic nematodes (weekly soil drench for caterpillars) as needed.</td>
</tr>
<tr>
<td>Cutworm</td>
<td>Multiple crops</td>
<td>Need-based soil tillage and organic matter management</td>
<td>Row cover or pest exclusion system (Super Light Insect Barrier, AgroFabric Pro) for early season protection.</td>
<td>Bacillus thuringiensis (single a.i. or premix with directed spray at plant base); Spinosad folar and stem spray; spinosad-based bait (Seduce, Bug-N-Sluggo)</td>
</tr>
<tr>
<td>Diamondback moth & Imported cabbage worm</td>
<td>Collard & Mustard greens</td>
<td>Use pheromone traps to monitor moths. Collards and Yellow Rocket can be used as trap crop (planted before main crop)</td>
<td>Insect netting over short rows to block moths* (soon after transplanting), destroy caterpillar clusters on leaves before dispersal</td>
<td>Bacillus thuringiensis (single a.i. or premix), Insecticidal soap (for small caterpillars), Neem, Pyrethrin (single a.i. or premix), Azera (insecticide premix), Spear-Lep (tank-mix with Bt, not OMRI approved)</td>
</tr>
<tr>
<td>European corn borer</td>
<td>Multiple crops</td>
<td>Use tolerant cultivars when possible</td>
<td>Remove plant stalks</td>
<td>Bacillus thuringiensis (single a.i. or premix), Insecticidal soap, Neem, Pyrethrin</td>
</tr>
<tr>
<td>Flea beetle</td>
<td>Multiple crops</td>
<td>Timely planting of crops, Perimeter trap cropping with eggplants</td>
<td>Insect netting (Super Light Insect Barrier or AgroFabric) immediately after trans-planting*</td>
<td>Spinosad, Parasitic nematodes (drench in soil), Pyrethrins (single a.i. or premix), Azera (premix insecticide)</td>
</tr>
<tr>
<td>Grasshopper</td>
<td>Multiple crops</td>
<td>Maintain a grassy patch (non-crop habitat) and use nematode insecticidal bait</td>
<td>Row cover or pest exclusion system (Super Light Insect Barrier, AgroFabric).</td>
<td>Pyrethrins or Spinosad (multiple applications needed), Nolo Bait (Nosema locustae) for use in grassy areas or near fences (undisturbed non-crop areas)</td>
</tr>
<tr>
<td>Hornworm</td>
<td>Tomato</td>
<td>Timely harvesting of fruits, remove crop debris. Cotesia parasitizes caterpillars naturally.</td>
<td>Row cover or pest exclusion system (Super Light Insect Barrier, AgroFabric).</td>
<td>Spinosad, Bacillus thuringiensis, Pyrethrins (single a.i. or premix), Neem, Spear-Lep (tank-mix with Bt, not OMRI approved)</td>
</tr>
<tr>
<td>Japanese beetle</td>
<td>Multiple crops</td>
<td>Sunflower and sorghum trap crops may deter feeding on main crop</td>
<td>Row cover or pest exclusion system (Super Light Insect Barrier, AgroFabric).</td>
<td>Pyrethrins (single a.i. or premix), Neem (multiple sprays), Milky spore disease, Bacillus thuringiensis subsp. galleriae (beetleJUS!)</td>
</tr>
<tr>
<td>Leaf-footed bug</td>
<td>Fruiting vegetables (tomato, okra, eggplant)</td>
<td>Trap cropping with Peredovik sunflower & NK300 sorghum provides significant reduction. Plant extra rows of trap crop in drought year. Plant okra away from other susceptible crops.</td>
<td>High tunnel pest exclusion system for commercial producers<sup>a</sup></td>
<td>Pyrethrins and Spinosad for killing nymphs in trap crops (adults are difficult to control). Kaolin clay may be effective temporarily (reapply after rainfall).</td>
</tr>
</tbody>
</table>

^a High tunnel pest exclusion (permanent system) using 50 percent woven shade cloth on side- and end-walls can exclude large moths and reduce caterpillar pressure. Details at http://www.southernare.org/News-and-Media/SSARE-Bulletins/High-Tunnel-Pest-Exclusion-System-HTPE.

^b Organic insecticides are currently available as single active ingredient (AI) or in the form of premixes, such as Azera (neem + pyrethrins), Leap (BT + methyl salicylate), and BotaniGard Maxx (pyrethrins + Beauveria bassiana).

^c Relatively low-cost, temporary insect netting products include the Super-Light Insect Barrier (GardensAlive.com), AgroFabric Pro 19 (https://www.7springsfarm.com) or other lightweight exclusion material are suitable for early season pest prevention.
TABLE 2-30. ALTERNATIVE IPM & BIOINSECTICIDE RECOMMENDATIONS IN VEGETABLE CROPS (cont’d)

NOTE: Many organic insecticides have not been tested thoroughly in the commercial vegetable production systems. Use systems-based and pest exclusion practices to reduce the overall infestation levels before using approved insecticides in organic farming systems. Targeted insecticide applications at correct times can protect natural enemies. Always read the insecticide label before application and purchase bioinsecticides from reliable sources.

<table>
<thead>
<tr>
<th>Target Pest</th>
<th>Cropping System</th>
<th>Systems-based Practices (for pest prevention)</th>
<th>Mechanical tactics (for pest prevention)</th>
<th>Biorational Insecticides†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leafhopper</td>
<td>Multiple crops</td>
<td>Use varieties tolerant to the insect feeding</td>
<td>Row cover or pest exclusion system (Super Light Insect Barrier, AgroFabric).</td>
<td>Insecticidal soap, Pyrethrins (single a.i. or premix), Neem</td>
</tr>
<tr>
<td>Leafminer</td>
<td>Multiple crops</td>
<td>Select vigorous hybrid plant varieties</td>
<td>Pick and destroy mined leaves</td>
<td>Neem with azadirachtin, Spinosad</td>
</tr>
<tr>
<td>Onion maggot, seed corn maggot</td>
<td>Multiple crops</td>
<td>Use well-composted manure, soil tillage exposes maggots to natural enemies, field preparation ahead of planting</td>
<td>Soil tillage may expose maggots to predators</td>
<td>Spinosad-based insecticides (Seduce, Bug-N-Sluggo) may help reduce maggot buildup</td>
</tr>
<tr>
<td>Pepper & vegetable weevil</td>
<td>Pepper</td>
<td>Crop rotation, sanitation</td>
<td>Hand-pick insects, Insect netting (Super Light Insect Barrier) for small areas</td>
<td>Pyrethrins (single a.i. or premix), Parasitic nematodes (drench in soil weekly), Bacillus thuringiensis subsp. galleriae (beetleJUS!). Diatomaceous earth (DE) as abrasive & deterrent.</td>
</tr>
<tr>
<td>Spider mite</td>
<td>Multiple crops</td>
<td>Plant and harvest timely; provide irrigation to plants; problem could be severe in drought years; excessive use of pyrethroid insecticides can cause spider mite outbreaks; release predatory mites before an outbreak.</td>
<td>Reduce traffic in infested crops to prevent spreading to new areas.</td>
<td>Paraffinic oil, Neem oil, Sulfur dust or spray (check label before use), Chenopodium Terpen Extract (Requiem), Isaria fumosoroseus (PFR97), Soluble silica (Sil-Matrix). Many oil blends are available in the market; use with caution to avoid crop burn in hot dry weather. Do not use pyrethrins to protect beneficial mites.</td>
</tr>
<tr>
<td>Squash vine borer (SVB), Pickleworms (PW)</td>
<td>Pumpkin, squash</td>
<td>Plant & harvest cucurbit crops timely, trap cropping with Hubbard squash (Baby Blue and New England) may reduce SVB but not PW, sanitation or removing crop debris reduces build-up of pests</td>
<td>Temporary pest exclusion system with 50% shade cloth can significantly reduce moth numbers.</td>
<td>Pyrethrins and Spinosad may provide limited control; perform repeated spraying (every 3 d) on fruits with Bt-based products to stop small PW caterpillars</td>
</tr>
<tr>
<td>Squash bug</td>
<td>Pumpkin, squash</td>
<td>Trap cropping with Hubbard squash; planting tolerant varieties, sanitation (remove crop debris), use of plastic mulch may increase pest pressure</td>
<td>Insect netting for gardens*, High tunnel pest exclusion system for commercial producers can slow down pest migration.⁷</td>
<td>Pyrethrins (single a.i. or premix) and Spinosad may provide control of nymphs better than the adults on trap crops or main crop</td>
</tr>
<tr>
<td>Harlequin bug</td>
<td>Multiple crops</td>
<td>These are type of stink bugs with sucking mouthparts. Timely planting and harvest of crops.</td>
<td>Insect netting for garden crops. High tunnel pest exclusion system for commercial producers.⁸</td>
<td>Pyrethrins and Spinosad may reduce infestation but thorough coverage is needed.</td>
</tr>
<tr>
<td>Thrips</td>
<td>Multiple crops</td>
<td>Timely planting, avoid planting ornamental close to vegetable crops, use blue sticky cards for monitoring and trap out in small areas</td>
<td>Thrips exclusion netting material is available for greenhouse producers</td>
<td>Spinosad, Insecticidal soap, Paraffinic oil, Chenopodium Terpen Extract (Requiem Prime)</td>
</tr>
<tr>
<td>Whitefly</td>
<td>Multiple crops</td>
<td>Crop rotation, avoid planting ornamental close to vegetable crops, problem intensifies in drought; release parasitoids in greenhouses</td>
<td>Thrips exclusion netting may also reduce whiteflies</td>
<td>Metarhizium anisopliae (Met 52, Met Master). Insecticidal soap, Neem oil, Beauveria bassiana. Chenopodium Terpen Extract (products work well for nymphs, adults are difficult to kill in outbreak conditions)</td>
</tr>
<tr>
<td>Yellowmargined leaf beetle (YMLB)</td>
<td>Brassica crops</td>
<td>Turnips and Napa Cabbage are defoliated rapidly compared to other brassicas. Trap cropping with turnips and insecticidal treatment can reduce build up. Note the occurrence of caterpillar infestations distinct from YMLB. Remove crop debris after harvest to prevent pest buildup.</td>
<td>Insect netting (temporary exclusion methods) for blocking migratory adults*, soil tillage may reduce eggs in soil</td>
<td>Spinosad, Chromobacterium (Grandevo), Pyrethrins (use in rotation with frequent foliar applications). Azera (premix) for preventing YMLB outbreaks. If caterpillars are of primary concern, then use Bt first and then rotate to other bioinsecticides.</td>
</tr>
<tr>
<td>Snails & Slugs</td>
<td>Brassica crops</td>
<td>Frequent rainfall and high organic matter in soil increases snails & slugs. Do not over-irrigate. Soil tillage may destroy eggs. Remove crop debris to reduce buildup.</td>
<td>—</td>
<td>Iron phosphate (e.g., Sluggo by Monterey, OMRI-certified); Bonide Slug Magic for Gardens, Volatile oil blend (Montery All Natural Snail & Slug Spray). Diatomaceous earth with amorphous silica (PermaGuard Crawling Insect Control), Bait premix of iron phosphate and spinosad (Bug-N-Sluggo by Certis, Monterey Sluggo Plus), Sulfur (Bug-Geta by Ortho), Metaldehyde (Southern Ag Snail & Slug Bait, Deadline Mini-Pellets), Nemaslug (endoparasitic nematode formulation)</td>
</tr>
</tbody>
</table>

* High tunnel pest exclusion (permanent system) using 50 percent woven shade cloth on side- and end-walls can exclude large moths and reduce caterpillar pressure. Details at http://www.southernsare.org/News-and-Media/SSARE-Bulletins/High-Tunnel-Pest-Exclusion-System-HTPE.

Organic insecticides are currently available as single active ingredient (AI) or in the form of premixes, such as Azera (neem + pyrethrins), Leap (BT + methyl salicylate), and BotaniGard Maxx (pyrethrins + Beauveria bassiana).

† Relatively low-cost, temporary insect netting products include the Super-Light Insect Barrier (GardensAlive.com), AgroFabric Pro 19 (https://www.7springsfarm.com) or other lightweight exclusion material are suitable for early season pest prevention.
HARNESS THE POWER OF THE PLANT MICROBIOME.

VISIT AGBIOME.COM/HOWLER OR CALL (855) 946-9537 TO LEARN MORE
Disease Control for Commercial Vegetables

Caution: At the time these table were prepared; the entries were believed to be useful and accurate. However, labels change rapidly, and errors are possible, so the user must follow all directions on the product labels. Federal tolerances for fungicides may be canceled or changed at any time.

Information in the following tables must be used in the context of an integrated disease management program. Many diseases are successfully managed by combined strategies—using resistant varieties, crop rotation, deep-turn plowing, sanitation, seed treatments, cultural practices, and fungicides. Always use top quality seed and plants obtained from reliable sources. Seeds are ordinarily treated by commercial producers for control of decay and damping-off diseases.

Preplant fumigation of soils, nematode control chemicals, and greenhouse disease control products are provided in separate tables following the crop tables. The efficacy tables will help you select the appropriate disease control materials for some vegetable crops. These tables are located at the end of each crop table.

Rates: Some foliar rates are based on mixing a specified amount of product in 100 gal of water and applying the finished spray for complete coverage of foliage just to the point of run off with high-pressure (over 250 psi) drop nozzle sprayers. Actual amount of product and water applied per acre will vary depending on plant size and row spacing. Typically, 25 to 75 gallons (gal.) per acre of finished spray are used. Concentrate spray (air blast, aircraft, etc.) rates are based on the amount of product per acre.

Caution: With concentrate sprays, it is easy to apply too much product. Some fungicides are adversely affected by pH of water; adjust pH of water if specified on label. Some fungicides will cause damage to the plant if applied at temperatures above 90°F. Do not feed treated foliage to livestock unless allowed by the label. Do not reenter fields until sprays have dried; some fungicides may have a reentry requirement of one to several days. Read the label. Do not exceed maximum number of applications on the label. Do not exceed maximum limit of fungicide per acre per application or per year as stated on the label. See label for rotational crops. In all cases, follow directions on the label. The label is the law.

THE FOLLOWING ONLINE DATABASES PROVIDE CURRENT PRODUCT LABELS AND OTHER RELEVANT INFORMATION:

<table>
<thead>
<tr>
<th>Database</th>
<th>Web Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrian Label Database</td>
<td>https://home.agrian.com/</td>
</tr>
<tr>
<td>Crop Data Management Systems</td>
<td>http://www.cdms.net/Label-Database</td>
</tr>
<tr>
<td>EPA Pesticide Product and Label System</td>
<td>https://iaspub.epa.gov/apex/pesticides/?p=PPLS:1</td>
</tr>
<tr>
<td>Greenbook Data Solutions</td>
<td>https://www.greenbook.net/</td>
</tr>
<tr>
<td>Kelly Registration Systems</td>
<td>http://www.kellysolutions.com</td>
</tr>
</tbody>
</table>

1 Additional databases not included in this list may also be available. Please read the database terms of use when obtaining information from a particular website.
2 Available for AK, AL, AZ, CA, CO, CT, DE, FL, GA, ID, IN, KS, MA, MD, MN, MO, MS, NC, ND, NE, NJ, NV, NY, OK, OR, SC, SD, VA, VT, WA, and WI. Kelly Registration Systems works with State Departments of Agriculture to provide registration and license information.
TABLE 3-1. DISEASE CONTROL PRODUCTS FOR ASPARAGUS

E. Sikora, Plant Pathologist, Auburn University

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material Formulation</th>
<th>Minimum Days</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>CROWN ROT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mancozeb (various)</td>
<td>M</td>
<td>See label</td>
<td>See label</td>
<td>Soak crowns 5 min in burlap bag with gentle agitation, drain, and plant.</td>
</tr>
<tr>
<td>GRAY MOLD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fenhexamid (Elevate)</td>
<td>17</td>
<td>1.5 lb/A</td>
<td>180 0.5</td>
<td>Apply at fern stage only. Make up to four applications. Repeat at 7-to 14-day intervals if conditions favor disease development.</td>
</tr>
<tr>
<td>PHYTOPHTHORA CROWN ROT, SPEAR SLIME</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mefenoxam (various)</td>
<td>4</td>
<td>1 pt/A</td>
<td>1 2</td>
<td>Apply over beds after seeding or covering crowns, 30 to 60 days before first cutting, and just before harvest.</td>
</tr>
<tr>
<td>fosetyl-AL (Aliette)</td>
<td>33</td>
<td>5 lb/A</td>
<td>110 0.5</td>
<td></td>
</tr>
<tr>
<td>RUST</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>myclobutanil (various)</td>
<td>3</td>
<td>5 oz/A</td>
<td>180 1</td>
<td>Begin applications to developing ferns after harvest has taken place. Repeat on a schedule not to exceed 14 days. Do not apply to harvestable spears.</td>
</tr>
<tr>
<td>sulfur (various)</td>
<td>M</td>
<td>See label</td>
<td>0 1</td>
<td></td>
</tr>
<tr>
<td>tebuconazole (various)</td>
<td>3</td>
<td>4 to 6 fl oz/A</td>
<td>180 0.5</td>
<td>Apply to developing ferns at first sign of rust and repeat on a 14-day interval, no more than 3 applications per season.</td>
</tr>
<tr>
<td>copper oxychloride/hydroxide (Badge SC)</td>
<td>M</td>
<td>1 to 2.5 pints/A</td>
<td>0 48 hr</td>
<td>Recommended for tank mixture with other registered products. For suppression. Addition of spread/sticker is recommended</td>
</tr>
<tr>
<td>RUST, CERCOSPORA LEAF SPOT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chlorothalonil (various)</td>
<td>M</td>
<td>2 to 4 lb/acre</td>
<td>190 0.5</td>
<td>Repeat applications at 14-to-28-day intervals depending on disease pressure. Do not apply more than 12 pints/ acres during each growing season.</td>
</tr>
<tr>
<td>mancozeb (various)</td>
<td>M</td>
<td>See label</td>
<td>180 1</td>
<td>Apply to ferns after harvest; spray at first appearance of disease at 7 to 10 day intervals. Do not exceed 8 lb product per acre per crop.</td>
</tr>
<tr>
<td>mancozeb + azoxystrobin (Dexter MAX)</td>
<td>M3+11</td>
<td>2 to 2.2 lb/acre</td>
<td>180 1</td>
<td>Apply only on ferns after spears have been harvested. Applications should begin prior to disease development. Do not apply more than 8.5 lbs. of product per acre per season.</td>
</tr>
<tr>
<td>PURPLE SPOT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>azoxystrobin (various)</td>
<td>11</td>
<td>6 to 15.5 fl oz/acre</td>
<td>100 4 hr</td>
<td>Do not apply more than 1 foliar application of Quadris (or other group 11 fungicide) before alternating with a fungicide with a different mode of action.</td>
</tr>
<tr>
<td>chlorothalonil (various)</td>
<td>M</td>
<td>2 to 4 lb/acre</td>
<td>190 0.5</td>
<td>Repeat applications at 14-to-28-day intervals depending on disease pressure. Do not apply more than 12 pints/ acre during each growing season.</td>
</tr>
<tr>
<td>mancozeb + azoxystrobin (Dexter MAX)</td>
<td>M3+11</td>
<td>2 to 2.2 lb/acre</td>
<td>180 1</td>
<td>Apply only on ferns after spears have been harvested. Applications should begin prior to disease development. Do not apply more than 8.5 lbs. of product per acre per season.</td>
</tr>
<tr>
<td>trifloxystrobin (Flint Extra 500 SC)</td>
<td>11</td>
<td>3 to 3.8 oz/acre</td>
<td>180 12 hr</td>
<td>Apply on a 14-day interval as needed. Make applications to the fern stage only. Mow down the asparagus ferns (or allow the ferns to senesce) between the last fungicide application and harvest.</td>
</tr>
</tbody>
</table>

TABLE 3-2. IMPORTANCE OF ALTERNATIVE MANAGEMENT PRACTICES FOR DISEASE CONTROL IN ASPARAGUS

E. Sikora, Plant Pathologist, Auburn University; A. Keinath, Plant Pathologist, Clemson University

Scale: “E” excellent; “G” good; “F” fair; “P” poor; “NC” no control; “ND” no data.

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Rust</th>
<th>Cercospora blight</th>
<th>Stemphylium blight</th>
<th>Fusarium root rot</th>
<th>Phytophthora crown/spear rot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avoid overhead irrigation</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>Crop rotation (5 years or more)</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>P</td>
</tr>
<tr>
<td>Clip and bury infected ferns</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>Destroy infected ferns</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>Encourage air movement/wider row spacing</td>
<td>P</td>
<td>P</td>
<td>G</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>Plant in well-drained soil</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>Destroy volunteer asparagus</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>Pathogen-free planting material</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>Resistant/tolerant cultivars</td>
<td>G</td>
<td>G</td>
<td>NC</td>
<td>G</td>
<td>NC</td>
</tr>
</tbody>
</table>
Table 3-3. Disease Control Products for Basil

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material Formulation</th>
<th>Minimum Days</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAMPING OFF (PYTHIUM SPP.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mefenoxam (Ridomil Gold SL)</td>
<td>4</td>
<td>1.0 to 2.0 pt/acre</td>
<td>21</td>
<td>2 Limit of 2 soil applications per season. Basal direct spray at 28 days after planting or after first cutting.</td>
</tr>
<tr>
<td>LEAFSPOTS, FUNGAL (BOTRYTIS, ALTERNARIA, FUSARIA), POWDERY MILDEW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cyprodinil + fludioxonil (Switch 62.5WG)</td>
<td>9+12</td>
<td>11 to 14 oz/acre</td>
<td>7</td>
<td>0.5 Limit of 56 fl oz per acre per season. Make no more than two consecutive applications before rotating to another effective fungicide with a different mode of action. Apply in a minimum spray volume of 30 gal/A to obtain thorough coverage.</td>
</tr>
<tr>
<td>fluopyram (Luna Privilege)</td>
<td>7</td>
<td>4.0 to 6.84 fl oz/acre</td>
<td>3</td>
<td>0.5 Limit of 13.7 fl oz per acre per season. Apply as needed on a 7- to 10-day interval. When disease pressure is severe, use the higher rates and/or shorter intervals.</td>
</tr>
<tr>
<td>fluopyram + trifloxystrobin (Luna Sensation)</td>
<td>7+11</td>
<td>5.0 to 7.6 fl oz/acre</td>
<td>7</td>
<td>0.5 Limit of 15.3 fl oz per acre per season. Apply as needed on a 7- to 10-day interval. When disease pressure is severe, use the higher rates and/or shorter intervals.</td>
</tr>
<tr>
<td>DOWNY MILDEW (PERONOSPORA BELBAHRII)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fluopicolide (Adorn)</td>
<td>43</td>
<td>4 fl oz/acre</td>
<td>1</td>
<td>12 hr Limit of 12 fl oz per acre per year. Tank mix with a fungicide with a different mode of action. Greenhouse basil, foliar application.</td>
</tr>
<tr>
<td>fluopicolide (Presidio)</td>
<td>43</td>
<td>4 fl oz/acre</td>
<td>1</td>
<td>12 hr Limit of 12 fl oz per acre per year. Make no more than two sequential applications. Alternate with a fungicide with a different mode of action.</td>
</tr>
<tr>
<td>cyazofamid (Ramman 400SC)</td>
<td>21</td>
<td>2.75 to 3 fl oz/acre</td>
<td>0</td>
<td>0.5 Limit of 27 fl oz per acre per season. Alternate with a fungicide with a different mode of action. May be applied through sprinkler irrigation system. Can be applied in a greenhouse.</td>
</tr>
<tr>
<td>Mandipropamid (Revus)</td>
<td>40</td>
<td>8 fl oz/acre</td>
<td>1</td>
<td>4 hr Limit of 32 fl oz per acre per season. Make no more than two consecutive applications before rotating to another effective fungicide with a different mode of action.</td>
</tr>
<tr>
<td>phosphorous acid (Confine Extra, K-Phite)</td>
<td>P07</td>
<td>1 to 3 qt/20- to 100-gal water/acre</td>
<td>0</td>
<td>4 hr Do not apply at less than 3-day intervals. Minimum 10 gallons of water/A.</td>
</tr>
<tr>
<td>potassium phosphate (Fosphite, Fungiphite, Helena Prophyt)</td>
<td>P07</td>
<td>1 to 3 qt/100-gal water/acre</td>
<td>0</td>
<td>4 hr Do not apply at less than 3-day intervals.</td>
</tr>
<tr>
<td>FUSARIA WILT AND PYTHIUM AND RHIZOCOTONIA ROOT ROTTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>phosphorous acid (Confine Extra, K-Phite)</td>
<td>P07</td>
<td>1 to 3 qt/20- to 100-gal water/acre</td>
<td>0</td>
<td>4 hr Do not apply at less than 3-day intervals.</td>
</tr>
<tr>
<td>potassium phosphate (Fosphite, Fungiphite, Helena Prophyt)</td>
<td>P07</td>
<td>3 to 4 pints/acre</td>
<td>0</td>
<td>4 hr 7 days interval at least 30 gal/acre for best results.</td>
</tr>
</tbody>
</table>
TABLE 3-4. DISEASE CONTROL PRODUCTS FOR BEAN

E. Sikora, Plant Pathologist, Auburn University

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material Formulation</th>
<th>Minimum Days</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEAN, SNAP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANTHRACNOSE, BOTRYTIS, SCLEROTINIA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>azoxystrobin (various)</td>
<td>11</td>
<td>6.2 to 15.4 fl oz</td>
<td>0</td>
<td>4 hr</td>
</tr>
<tr>
<td>bosalid (Endura 70 WG)</td>
<td>7</td>
<td>8 to 11 oz</td>
<td>7</td>
<td>0.5</td>
</tr>
<tr>
<td>chlorothalonil (various)</td>
<td>M</td>
<td>2.7 lb/acre</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>thiophanate-methyl (various)</td>
<td>1</td>
<td>1 to 2 lb/acre</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>fluazinam (various)</td>
<td>29</td>
<td>8 to 13.6 fl oz/acre</td>
<td>14</td>
<td>3</td>
</tr>
<tr>
<td>fluxapyroxad + pyraclostrobin (Priaxor)</td>
<td>7+11</td>
<td>4.0 to 8.0 fl oz</td>
<td>7</td>
<td>12 hr</td>
</tr>
<tr>
<td>ASCOCHYTA BLIGHT, BOTRYTIS GRAY MOLD, WHITE MOLD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>boscalid (Endura 70 WG)</td>
<td>7</td>
<td>8 to 11 oz</td>
<td>7</td>
<td>0.5</td>
</tr>
<tr>
<td>penthiopyrad (Fontelis)</td>
<td>7</td>
<td>14 to 30 fl oz/acre</td>
<td>0</td>
<td>12 hr</td>
</tr>
<tr>
<td>ALTERNARIA, ANTHRACNOSE, ASCOCHYTA, RUST, SOUTHERN BLIGHT, WEB BLIGHT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>azoxystrobin + propiconazole (Quilt Xcel; Aframe Plus)</td>
<td>11+3</td>
<td>10.5 to 14 oz/acre</td>
<td>7</td>
<td>0.5</td>
</tr>
<tr>
<td>iprodione (various)</td>
<td>12</td>
<td>1.5 to 2 pt</td>
<td>See label</td>
<td>1</td>
</tr>
<tr>
<td>isofetamid (Kenja 400SC)</td>
<td>7</td>
<td>17 fl oz</td>
<td>See label</td>
<td>0.5</td>
</tr>
<tr>
<td>cyprodinil + fludioxonil (various)</td>
<td>9+12</td>
<td>11 to 14 oz</td>
<td>7</td>
<td>0.5</td>
</tr>
<tr>
<td>BACTERIAL BLIGHTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fixed copper (various)</td>
<td>M</td>
<td>See labels</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>POWDERY MILDEW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sulfur (various)</td>
<td>M</td>
<td>See labels</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>DOWNY MILDEW, PYTHIUM POD ROT, COTTONY LEAK</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mefenoxam + copper hydroxide (Ridomil Gold Copper)</td>
<td>4+M1</td>
<td>5 lb/2.5 acres</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>fenamidone (Reason 500SC)</td>
<td>11</td>
<td>5.5 to 8.2 fl oz</td>
<td>3</td>
<td>0.5</td>
</tr>
<tr>
<td>cyazofamid (Ranman)</td>
<td>21</td>
<td>2.75 fl oz</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>RHIZOCTONIA ROOT ROT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>azoxystrobin (various)</td>
<td>11</td>
<td>0.4 to 0.8 fl oz/1,000 row feet</td>
<td>—</td>
<td>4 hr</td>
</tr>
<tr>
<td>myclobutanil (various)</td>
<td>3</td>
<td>4 to 5 oz/acre</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>dichloropropane (Telone C-17) (Telone C-35)</td>
<td>—</td>
<td>10.8 to 17.1 gal/acre</td>
<td>13</td>
<td>20.5 gal/acre</td>
</tr>
<tr>
<td>metam-sodium (Vapam)</td>
<td>—</td>
<td>37.5 to 75 gal/acre</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>RHIZOCTONIA AND FUSARIUM SEED ROT AND DAMPING OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>prothioconazole (Redigo 480)</td>
<td>3</td>
<td>0.16 to 0.32 fl oz/100 lbs seed</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>penflufen + trifloxystrobin (Evergl Prime)</td>
<td>7+11</td>
<td>0.16 to 0.32 fl oz/100 lbs seed</td>
<td>—</td>
<td>0.5</td>
</tr>
<tr>
<td>Disease/Material</td>
<td>FRAC Code</td>
<td>Rate of Material Formulation</td>
<td>Minimum Days</td>
<td>Method, Schedule, and Remarks</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------</td>
<td>-----------------------------</td>
<td>--------------</td>
<td>------------------------------</td>
</tr>
</tbody>
</table>
| **BEAN, SNAP (CONT'D)**

RUST (UROMYCES)
- azoxystrobin (various) 11 6.2 to 15.4 fl oz/acre 0 4 hr Make no more than three sequential applications.
- pyraclostrobin (various) 11 6.0 to 9.0 fl oz 0.5 Make no more than two sequential applications.
- boscalid (Endura 70 WG) 7 8 to 11 oz/acre 7 0.5 Many other dried and succulent beans on label.
- myclobutanil (various) 3 4 to 5 oz/acre 0 1 Spray at first appearance.
- sulfur (various) M See label 0 1 Spray at 7- to 10-day intervals.
- tebuconazole (various) 3 4 to 6 fl oz/acre 7 0.5 Apply before disease appears when conditions favor rust development and repeat at 14-day intervals: maximum 24 fl oz per season.

WHITE MOLD (SCLEROTINIA)
- dicloran (Botran 5F) 14 1.3 qt/acre 2 0.5 Begin applications when disease is anticipated.

BEAN, LIMA

ALTERNARIA, ANTHRACNOSE, ASCOCHYTA, BEAN RUST, SOUTHERN BLIGHT, WEB BLIGHT (RHIZOCTONIA)
- azoxystrobin + propiconazole (Quilt Xcel, Aframe Plus) 11+3 10.5 to 14 fl oz 7 0.5 Apply when conditions are conducive for disease. Up to three applications may be made on a 7- to 14-day interval.

ALTERNARIA, ASCOCHYTA, CERCOSPORA, POWDERY MILDEW, MYCOSPHAERELLA, RUST
- pydiflumetofen + difenoconazole (Miravis Top) 3+7 13.7 fl oz/acre 14 0.5 For dried shelled beans only. Begin applications prior to disease development. Continue applications on a 14-day interval. Do not make more than 4 applications per season.

BOTRYTIS, SCLEROTINIA, LEAF SPOTS
- azoxystrobin (various) 11 6.2 to 15.4 fl oz/acre 0 4 hr Leaf spots only; do not make more than three sequential applications.
- iprodione (various) 2 1.5 to 2 lb/acre See Label 1 Apply as foliar spray and again 5- to 7-days later or up to peak bloom. If conditions are favorable for disease. Do not use on cowpeas
- isofetamid (Kenja 400SC) 7 17 fl oz See Label Apply at 10 to 30% bloom and 7- to 14-days later, if needed. Do not allow livestock to graze in treated area.
- fluazinam (various) 29 8 to 13.6 fl oz/acre 30 3 PHI varies by crop; see label restrictions.
- boscalid (Endura 70 WG) 7 8 to 11 oz 7 0.5 Apply at beginning of flowering or prior to onset of disease and repeat on 7-day intervals if condition remain favorable for disease development.
- fluxapyroxad + pyraclostrobin (Priaxor) 7+11 4.0 to 8.0 fl oz 21 12 hr Begin prior to disease development and continue on a 7- to 14-day spray schedule. See label for specific directions for edible-podded legumes and dried-shelled legumes.
- thiophanate-methyl (various) 12 7 oz 7 0.5 Begin before disease develops and continue on 7-day interval until conditions no longer favor disease development. Do not apply more than 28 oz/acre. Do not apply on cowpeas.

COTTONY LEAK (PYTHIUM SPP.)
- fenamidone (Reason 500SC) 11 5.5 to 8.2 fl oz 3 12 hr A spreader/sticker may be used to improve disease control. Minimum interval of 7-days between applications.

COTTONY LEAK, DOWNY MILDEW PHYTOPHTHORA BLIGHT
- cyazofamid (Ranman) 21 2.75 fl oz 0 0.5 Read label for specific directions for each disease as well as use restrictions.

DAMPING OFF, PYTHIUM, RHIZOCTONIA
- azoxystrobin (various) 11 0.4 to 0.8 fl oz/1,000 row feet — 4 hr Rhizoctonia only. Make in-furrow or banded applications shortly after plant emergence.
- azoxystrobin + mefenoxam (Uniform) 11+4 0.34 fl oz/1,000 row ft — — Limit of one application per season. In-furrow spray. See label directions.
- mefenoxam (various) 4 0.5 to 2 pt/trt acre — 2 For Pythium only. Soil incorporate. See label for row rates. Use proportionally less for banded rates.
TABLE 3-4. DISEASE CONTROL PRODUCTS FOR BEAN (cont’d)

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material Formulation</th>
<th>Minimum Days</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>RHIZOCTONIA, FUSARIUM, PHOMOPSIS, BOTRYTIS</td>
<td>penflufen + trifloxystrobin
(Evergol Prime)</td>
<td>7+11
See label</td>
<td>—
—</td>
<td>For seed rot and damping off caused by Rhizoctonia, Fusarium, Phomopsis, or Botrytis. Seed treatment only.</td>
</tr>
<tr>
<td>DONNY MILDEW</td>
<td>mefenoxam + copper hydroxide
(Ridomil Gold Copper)</td>
<td>4+M1
5 lb/2.5 acres</td>
<td>3
2</td>
<td>For succulent shelled beans. Begin foliar applications at onset of disease and continue on a 7-day interval. Do not exceed 4 applications per season.</td>
</tr>
</tbody>
</table>

TABLE 3-5. IMPORTANCE OF ALTERNATIVE MANAGEMENT PRACTICES FOR DISEASE CONTROL IN BEANS

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>Anthracnose</th>
<th>Ashy stem blight</th>
<th>Botrytis gray mold</th>
<th>Cercospora</th>
<th>Common Bacterial blight and halo blight</th>
<th>Fusarium root rot</th>
<th>Mosaic viruses</th>
<th>Powdery mildew</th>
<th>Pythium damping-off</th>
<th>Rhizoctonia root rot</th>
<th>Root knot nematode</th>
<th>Rust (more on pole beans)</th>
<th>Southern blight (Sclerotium rolfsii)</th>
<th>White mold (Sclerotinia)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avoid field operations when leaves are wet</td>
<td>E
NC</td>
<td>E
F</td>
<td>E
NC</td>
<td>NC
NC</td>
<td>NC
NC</td>
<td>NC
NC</td>
<td>E
NC</td>
<td>NC
NC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avoid overhead irrigation</td>
<td>E
NC</td>
<td>E
E</td>
<td>E
NC</td>
<td>NC
NC</td>
<td>P
NC</td>
<td>NC
NC</td>
<td>E
NC</td>
<td>NC
G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change planting date</td>
<td>F
F</td>
<td>NC
P</td>
<td>F
F</td>
<td>G
F</td>
<td>P
E</td>
<td>E
E</td>
<td>P
G</td>
<td>(early)
NC
NC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cover cropping with antagonist</td>
<td>NC
ND</td>
<td>NC
NC</td>
<td>NC
NC</td>
<td>NC
NC</td>
<td>NC
NC</td>
<td>NC
NC</td>
<td>G
NC</td>
<td>NC
NC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crop rotation</td>
<td>G
P</td>
<td>F
F</td>
<td>G
F</td>
<td>F
P</td>
<td>P
F</td>
<td>F
F</td>
<td>G
NC</td>
<td>F
E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deep plowing</td>
<td>E
F</td>
<td>E
P</td>
<td>E
NC</td>
<td>NC
NC</td>
<td>F
NC</td>
<td>F
F</td>
<td>F
NC</td>
<td>E
E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Destroy crop residue</td>
<td>E
F</td>
<td>E
F</td>
<td>E
NC</td>
<td>NC
NC</td>
<td>P
P</td>
<td>F
F</td>
<td>G
E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Encourage air movement</td>
<td>E
NC</td>
<td>E
F</td>
<td>E
NC</td>
<td>NC
NC</td>
<td>E
P</td>
<td>NC
NC</td>
<td>F
NC</td>
<td>NC
G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increase between-plant spacing</td>
<td>P
NC</td>
<td>P
F</td>
<td>P
P</td>
<td>P
P</td>
<td>P
F</td>
<td>F
NC</td>
<td>P
F</td>
<td>F
G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increase soil organic matter</td>
<td>NC
F</td>
<td>NC
NC</td>
<td>NC
NC</td>
<td>F
NC</td>
<td>NC
NC</td>
<td>NC
NC</td>
<td>F
NC</td>
<td>NC
NC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insecticidal oils</td>
<td>NC
NC</td>
<td>NC
NC</td>
<td>NC
NC</td>
<td>F
NC</td>
<td>NC
NC</td>
<td>NC
NC</td>
<td>NC
NC</td>
<td>NC
NC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH management</td>
<td>NC
NC</td>
<td>NC
NC</td>
<td>NC
NC</td>
<td>F
NC</td>
<td>NC
NC</td>
<td>NC
NC</td>
<td>NC
NC</td>
<td>NC
NC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plant in well-drained soil</td>
<td>F
F</td>
<td>F
NC</td>
<td>F
NC</td>
<td>E
NC</td>
<td>NC
E</td>
<td>E
NC</td>
<td>NC
P</td>
<td>F
F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plant on raised beds</td>
<td>F
P</td>
<td>F
NC</td>
<td>F
NC</td>
<td>E
NC</td>
<td>NC
E</td>
<td>E
NC</td>
<td>NC
P</td>
<td>F
F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plastic mulch bed covers</td>
<td>NC
NC</td>
<td>NC
NC</td>
<td>NC
NC</td>
<td>NC
NC</td>
<td>NC
NC</td>
<td>NC
NC</td>
<td>NC
NC</td>
<td>NC
NC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postharvest temperature control</td>
<td>NC
NC</td>
<td>NC
NC</td>
<td>NC
NC</td>
<td>NC
NC</td>
<td>NC
NC</td>
<td>NC
NC</td>
<td>NC
NC</td>
<td>NC
NC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reflective mulch</td>
<td>NC
NC</td>
<td>NC
NC</td>
<td>NC
NC</td>
<td>NC
NC</td>
<td>NC
NC</td>
<td>GC
NC</td>
<td>NC
NC</td>
<td>NC
NC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduce mechanical injury</td>
<td>NC
NC</td>
<td>NC
NC</td>
<td>NC
NC</td>
<td>F
P</td>
<td>NC
NC</td>
<td>NC
NC</td>
<td>NC
NC</td>
<td>P
NC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rogue diseased plants</td>
<td>NC
NC</td>
<td>P
NC</td>
<td>NC
NC</td>
<td>NC
NC</td>
<td>F
NC</td>
<td>NC
NC</td>
<td>NC
NC</td>
<td>NC
NC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Row covers</td>
<td>NC
NC</td>
<td>NC
NC</td>
<td>NC
NC</td>
<td>F
NC</td>
<td>NC
NC</td>
<td>NC
NC</td>
<td>NC
NC</td>
<td>NC
NC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil solarization</td>
<td>NC
NC</td>
<td>P
NC</td>
<td>NC
NC</td>
<td>F
NC</td>
<td>NC
NC</td>
<td>F
G</td>
<td>NC
F</td>
<td>NC
G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pathogen-free planting material</td>
<td>E
G</td>
<td>NC
F</td>
<td>E
NC</td>
<td>G
NC</td>
<td>NC
NC</td>
<td>NC
NC</td>
<td>NC
NC</td>
<td>NC
NC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disease/Material</td>
<td>FRAC Code</td>
<td>Rate of Material Formulation</td>
<td>Minimum Days</td>
<td>Method, Schedule, and Remarks</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-----------</td>
<td>-------------------------------</td>
<td>--------------</td>
<td>------------------------------</td>
<td></td>
</tr>
<tr>
<td>ALTERNARIA LEAF SPOT</td>
<td></td>
</tr>
<tr>
<td>azoxystrobin + difenoconazole (Quadris Top 2.72 SC)</td>
<td>11+3</td>
<td>14 fl oz/acre</td>
<td>1</td>
<td>0.5 Apply prior to disease, but when conditions are favorable on 7- to 14-day schedule. Alternate to a non-FRAC 11 fungicide after 1 application. No more than 4 applications per season.</td>
<td></td>
</tr>
<tr>
<td>boscalid (Endura 70 EG)</td>
<td>7</td>
<td>6 to 9 oz/acre</td>
<td>0</td>
<td>0.5 Begin applications prior to disease development and continue on a 7- to 14-day interval. Make no more than 2 applications per season.</td>
<td></td>
</tr>
<tr>
<td>cyprodinil + difenoconazole (Inspire Super 2.82SC)</td>
<td>9+3</td>
<td>16 to 20 fl oz/acre</td>
<td>7</td>
<td>0.5 Begin applications prior to disease development and continue on a 7- to 10-day interval. Make no more than 2 sequential applications before rotating to another effective fungicide with a different mode of action. Do not exceed 80 fl oz per season.</td>
<td></td>
</tr>
<tr>
<td>cyprodinil + fludioxonil (Switch 62.5WG)</td>
<td>9+12</td>
<td>11 to 14 oz/acre</td>
<td>7</td>
<td>0.5 Apply when disease first appears and continue on a 7- to 10-day interval. Do not exceed 56 oz of product per acre per year. Limit of 4 applications per year. Labeled for Alternaria and Cercospora leaf spots.</td>
<td></td>
</tr>
<tr>
<td>flutriafol (Rhyme 2.08SC)</td>
<td>3</td>
<td>5 to 7 fl oz/acre</td>
<td>7</td>
<td>0.5 Limit of 4 applications per year.</td>
<td></td>
</tr>
<tr>
<td>flutriafol + azoxystrobin (Topguard EQ 4.29 SC)</td>
<td>3+11</td>
<td>4 to 8 fl oz/acre</td>
<td>0</td>
<td>0.5 Limit of 4 applications per year.</td>
<td></td>
</tr>
<tr>
<td>fluxapyroxad + pyraclostrobin (Prixor 500 SC)</td>
<td>7+11</td>
<td>6.0 to 8.2 fl oz/acre</td>
<td>3</td>
<td>0.5 Make no more than two sequential applications before alternating with fungicides that have a different mode of action. Maximum of 3 applications. Do not apply to turnip greens or roots.</td>
<td></td>
</tr>
<tr>
<td>pydiflumetofen + fludioxonil (Miravis Prime)</td>
<td>7+12</td>
<td>11.4 fl oz/acre</td>
<td>7</td>
<td>0.5 Make no more than 2 sequential applications of Miravis Prime or other Group 7 and 12 fungicides before rotating to another effective fungicide with a different mode of action. Maximum 3 applications per year.</td>
<td></td>
</tr>
<tr>
<td>triflumizole (Procure 480SC)</td>
<td>3</td>
<td>6 to 8 fl oz/acre</td>
<td>1</td>
<td>0.5 Apply when disease first appears and continue on a 14-day interval. Do not exceed 18 fl oz per season.</td>
<td></td>
</tr>
<tr>
<td>ALTERNARIA LEAF SPOT, GRAY MOLD</td>
<td></td>
</tr>
<tr>
<td>fluopyram + trifloxystrobin (Luna Sensation 500 SC)</td>
<td>7+11</td>
<td>5.0 to 7.6 fl oz/acre</td>
<td>0</td>
<td>0.5 Do not apply more than 15.3 fl oz per acre per season. Make no more than 2 sequential applications before rotating to a fungicide not in Group 7 or 11.</td>
<td></td>
</tr>
<tr>
<td>penthiopyrad (Fontelis 1.67 SC)</td>
<td>7</td>
<td>14 to 30 fl oz/acre</td>
<td>0</td>
<td>0.5 Do not exceed 72 fl oz of product per year. Make no more than 2 sequential applications per season before rotating to another effective product with a different mode of action. See additional products listed below under Downy mildew and Alternaria leaf spot.</td>
<td></td>
</tr>
<tr>
<td>BLACK LEG</td>
<td></td>
</tr>
<tr>
<td>iprodione (Rovral 4F)</td>
<td>2</td>
<td>2 lb/acre</td>
<td>0</td>
<td>— Apply to base of plant at 2- to 4-leaf stage. A second application may be made up to the harvest date. Do not use as a soil drench. For broccoli only.</td>
<td></td>
</tr>
<tr>
<td>fluxapyroxad + pyraclostrobin (Prixor 500 SC)</td>
<td>7+11</td>
<td>6.0 to 8.2 fl oz/acre</td>
<td>3</td>
<td>0.5 Make no more than two sequential applications before alternating with fungicides that have a different mode of action. Maximum of 3 applications. Do not apply to turnip greens or roots.</td>
<td></td>
</tr>
<tr>
<td>BLACK ROT, DOWNY MILDEW</td>
<td></td>
</tr>
<tr>
<td>acibenzolar-S-methyl (Actigard 50WG)</td>
<td>P1</td>
<td>0.5 to 1 oz/acre</td>
<td>7</td>
<td>0.5 Begin applications 7- to 10-days after thinning, not to exceed 4 applications per season.</td>
<td></td>
</tr>
<tr>
<td>fixed copper (various)</td>
<td>M1</td>
<td>See labels</td>
<td>0</td>
<td>1 to 2 Apply on 7- to 10-day intervals after transplanting or shortly after seeds have emerged. Some reddening on older broccoli leaves and flecking of cabbage wrapper leaves may occur. Check label carefully for recommended rates for each disease.</td>
<td></td>
</tr>
<tr>
<td>CERCOSPORA LEAF SPOT</td>
<td></td>
</tr>
<tr>
<td>fluopyram + trifloxystrobin (Luna Sensation 500 SC)</td>
<td>7+11</td>
<td>7.6 fl oz/acre</td>
<td>0</td>
<td>0.5 Do not apply more than 15.3 fl oz per acre per season. Make no more than 2 sequential applications before rotating to a fungicide not in Group 7 or 11.</td>
<td></td>
</tr>
<tr>
<td>flutriafol (Rhyme 2.08SC)</td>
<td>3</td>
<td>5 to 7 fl oz/acre</td>
<td>7</td>
<td>0.5 Limit of 4 applications per year. Labeled for Alternaria and Cercospora leaf spots.</td>
<td></td>
</tr>
<tr>
<td>flutriafol + azoxystrobin (Topguard EQ 4.29 SC)</td>
<td>3+11</td>
<td>4 to 8 fl oz/acre</td>
<td>0</td>
<td>0.5 Limit of 4 applications per year.</td>
<td></td>
</tr>
<tr>
<td>pydiflumetofen + fludioxonil (Miravis Prime)</td>
<td>7+12</td>
<td>11.4 fl oz/acre</td>
<td>7</td>
<td>0.5 Make no more than 2 sequential applications of Miravis Prime or other Group 7 and 12 fungicides before rotating to another effective fungicide with a different mode of action. Maximum 3 applications per year.</td>
<td></td>
</tr>
<tr>
<td>CLUBROOT</td>
<td></td>
</tr>
<tr>
<td>cyazofamid (Ranman 34.5SC)</td>
<td>21</td>
<td>Transplant: 12.8 to 25.75 fl oz/100-gal water</td>
<td>0.5</td>
<td>0 Either apply immediately after transplanting with 1.7 fl oz of solution per transplant, or as a banded application with soil incorporation of 6 to 8 inches prior to transplanting. Do not apply more than 39.5 fl oz/acre/season or 6 (1 soil + 5 foliar) applications per season. Do not make more than 3 consecutive applications without rotating to another fungicide with a different mode of action for 3 subsequent applications.</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 3-6. DISEASE CONTROL PRODUCTS FOR BROCCOLI, BRUSSEL SPROUT, CABBAGE, AND CAULIFLOWER (HEAD AND STEM BRASSICAS)

A. Keinath, Plant Pathologist, Clemson University
TABLE 3-6. DISEASE CONTROL PRODUCTS FOR BROCCOLI, BRUSSEL SPROUT, CABBAGE, AND CAULIFLOWER (HEAD AND STEM BRASSICAS) (cont’d)

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material Formulation</th>
<th>Minimum Days</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLUBROOT (CON’T)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fluzinam (Omega 500F)</td>
<td>29</td>
<td>Transplant: 6.45 fl oz/100-gal water; Banded: 2.6 pts/acre</td>
<td>50 50</td>
<td>Apply either directly as a drench to transplants or as a banded application with soil incorporation of 6 to 8 inches prior to transplanting. Use of product can delay harvest and cause some stunting without adverse effects on final yields.</td>
</tr>
<tr>
<td>DOWNY MILDEW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ametoxid + dimethomorph (Zampro 525SC)</td>
<td>40+45</td>
<td>14 fl oz/acre</td>
<td>0 0.5</td>
<td>Do not make more than 2 sequential applications before alternating to a fungicide with a different mode of action. Addition of an adjuvant may improve performance (see label for specifics).</td>
</tr>
<tr>
<td>cyazofoamid (Ranman 400SC)</td>
<td>21</td>
<td>2.75 fl oz/acre</td>
<td>0 0.5</td>
<td>Begin applications on a 7- to 10-day schedule when disease first appears, or weather is conducive. Do not apply more than 39.5 fl oz/acre/season; or 6 (1 soil + 5 foliar) applications per season. Do not make more than 3 consecutive applications without rotating to another fungicide with a different mode of action for 3 subsequent applications.</td>
</tr>
<tr>
<td>dimethomorph (Forum 4.16SC)</td>
<td>40</td>
<td>6 oz/acre</td>
<td>0 0.5</td>
<td>Alternate every application with a non-FRAC Group 40 fungicide. Limit of 3 applications per season.</td>
</tr>
<tr>
<td>fenamidone (Reason 500SC)</td>
<td>11</td>
<td>5.5 to 8.2 oz/acre</td>
<td>2 0.5</td>
<td>Begin applications as soon as conditions become favorable for disease development. Applications should be made on a 5- to 10-day interval. Do not make more than one application of Reason 500SC before alternating with a fungicide from a different resistance management group.</td>
</tr>
<tr>
<td>fluoropicilide (Presidio 4 SC)</td>
<td>43</td>
<td>3 to 4 fl oz/acre</td>
<td>2 0.5</td>
<td>Must be tank mixed with another fungicide with a different mode of action. No more than 2 sequential applications before rotating to another effective product of a different mode of action. Limited to 4 applications 12 fl oz/acre per season.</td>
</tr>
<tr>
<td>fosetyl-AL (Allite)</td>
<td>33</td>
<td>2 to 5 lb/acre</td>
<td>3 1</td>
<td>Apply when disease first appears; then repeat on 7- to 21-day intervals. Do not tank mix with copper fungicides. A maximum of 7 applications can be made per season.</td>
</tr>
<tr>
<td>mandipropamid (Rebus 2.08SC)</td>
<td>40</td>
<td>8 fl oz/acre</td>
<td>1 0.5</td>
<td>Apply prior to disease development and continue throughout season at 7- to 10-day intervals; maximum 32 fl oz per season.</td>
</tr>
<tr>
<td>oxathiapipril + mandipropamid (Orondis Ultra A + Orondis Ultra B2.33SC)</td>
<td>U15+40</td>
<td>5.5 to 8 fl oz/acre</td>
<td>0 4 hr</td>
<td>Apply prior to disease development at 10-day intervals. Make no more than 2 sequential applications before alternating with fungicides that have a different mode of action. Maximum of 4 applications per crop per year of all Orondis products.</td>
</tr>
<tr>
<td>potassium phosphate (various)</td>
<td>33</td>
<td>2 to 4 pt/acre</td>
<td>0 4 hr</td>
<td>Apply when weather is foggy as a preventative. Do not apply to plants under water or temperature stress. Spray solution should have a pH greater than 5.5. Apply in at least 30-gal water per acre.</td>
</tr>
<tr>
<td>DOWNY MILDEW, ALTERNARIA LEAF SPOT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>azoxytrobin (Quadris 2.08F)</td>
<td>11</td>
<td>6.0 to 15.5 fl oz/acre</td>
<td>0 4 hr</td>
<td>Do not make more than 2 applications before alternating to a fungicide with a different mode of action. Do not apply more than 92.3 fl oz per acre per season.</td>
</tr>
<tr>
<td>chlorothalonil (various)</td>
<td>M5</td>
<td>See labels</td>
<td>7 2</td>
<td>Apply after transplanting, seedling emergence, or when conditions favor disease development. Repeat as needed on a 7- to 10-day interval.</td>
</tr>
<tr>
<td>fenamidone (Reason 500SC)</td>
<td>11</td>
<td>5.5 to 8.2 fl oz/acre</td>
<td>2 0.5</td>
<td>Begin applications on a 5- to 10-day schedule when disease first appears, or weather is conducive. Do not apply more than 24.6 fl oz/acre/season. Do not make more than 1 application without rotating to another fungicide with a different mode of action.</td>
</tr>
<tr>
<td>fluzinam (Omega 500 F)</td>
<td>29</td>
<td>15.35 fl oz/acre</td>
<td>7 0.5</td>
<td>Apply to cabbage only. DO NOT apply more than 5.75 pints (6 applications) per acre per year.</td>
</tr>
<tr>
<td>mancozeb (various)</td>
<td>M3</td>
<td>1.6 to 2.1 lb/acre</td>
<td>10 1</td>
<td>Spray at first appearance of disease and continue on a 7- to 10-day interval. No more than 12.8 lbs/acre per season.</td>
</tr>
<tr>
<td>mfenoxam + chlorothalonil (Ridomil Gold/ Bravo)</td>
<td>4+M5</td>
<td>1.5 lb/acre</td>
<td>7 2</td>
<td>Begin applications when conditions favor disease but prior to symptoms. Under severe diseases pressure use additional fungicides between 14-day intervals. Do not make more than four applications per crop.</td>
</tr>
<tr>
<td>oxathiapipril + mandipropamid (Orondis Opti)</td>
<td>U15+M5</td>
<td>1.75 to 2.5 fl oz/acre</td>
<td>7 0.5</td>
<td>Apply prior to disease development at 10-day intervals. Make no more than 2 sequential applications before alternating with fungicides that have a different mode of action. Maximum of 6 applications at the low rate or 4 applications at the high rate per year of Orondis Opti, if Ultra and Opti are both used, then the maximum is 4 applications each.</td>
</tr>
<tr>
<td>POWDERY MILDEW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>azoxytrobin + difenoconazole (Quadris Top 2.72 SC)</td>
<td>11+3</td>
<td>14 fl oz/acre</td>
<td>1 0.5</td>
<td>Apply prior to disease, but when conditions are favorable, on 7-to 14-day schedule. Alternate to a non-FRAC 11 fungicide after 1 application. No more than 4 applications per season.</td>
</tr>
<tr>
<td>boscalid (Endura 70 EG)</td>
<td>7</td>
<td>6 to 9 oz/acre</td>
<td>0 0.5</td>
<td>Begin applications prior to disease development and continue on a 7- to 14-day interval. Make no more than 2 applications per season; disease suppression only.</td>
</tr>
<tr>
<td>cyprodinil + difenoconazole (Inspire Super 2.82SC)</td>
<td>9+3</td>
<td>16 to 20 fl oz/acre</td>
<td>7 0.5</td>
<td>Begin applications prior to disease development and continue on a 7- to 10-day interval. Make no more than 2 sequential applications before rotating to another effective fungicide with a different mode of action. Do not exceed 80 fl oz per season.</td>
</tr>
</tbody>
</table>
Table 3-6. Disease Control Products for Broccoli, Brussels Sprout, Cabbage, and Cauliflower (Head and Stem Brassicas) (cont’d)

A. Keinath, Plant Pathologist, Clemson University

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material Formulation</th>
<th>Minimum Days Harv.</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Powdery Mildew (cont’d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cyprodinil + fludioxonil (Switch 62.5WG)</td>
<td>9+12</td>
<td>10 to 12 oz/acre</td>
<td>7</td>
<td>0.5</td>
</tr>
<tr>
<td>fluapyroxad + pyraclostrobin (Prixor 500 SC)</td>
<td>7+11</td>
<td>6.0 to 6.2 fl oz/acre</td>
<td>3</td>
<td>0.5</td>
</tr>
<tr>
<td>fluopyram + trifloxystrobin (Luna Sensation 500 SC)</td>
<td>7+11</td>
<td>5.0 to 7.6 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>flutriafol (Rhyme 2.08SC)</td>
<td>3</td>
<td>5 to 7 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
</tr>
<tr>
<td>flutriafol + azoxystrobin (Topguard EQ 4.29 SC)</td>
<td>3+11</td>
<td>4 to 8 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>penthiopyrad (Fontelis 1.67 SC)</td>
<td>7</td>
<td>14 to 30 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>pydiflumetofen + fludioxonil (Miravis Prime)</td>
<td>7+12</td>
<td>11.4 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
</tr>
<tr>
<td>sulfur (various)</td>
<td>M2</td>
<td>See labels</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>triflumizole (Procure 400SC)</td>
<td>3</td>
<td>6 to 8 fl oz/acre</td>
<td>1</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Pythium Damping Off, Phytophthora Basal Stem Rot

<table>
<thead>
<tr>
<th>Material</th>
<th>Formulation</th>
<th>Rate of Material</th>
<th>FRAC Code</th>
<th>Minimum Days Harv.</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>flupyradocil (Presidio 4 F)</td>
<td>43</td>
<td>3 to 4 fl oz/acre</td>
<td>2</td>
<td>0.5</td>
<td>Apply as a soil drench at transplant. As plants enlarge, use apply directly to soil by chemigation on a 10-day schedule as conditions favor disease, but prior to disease development. No more than 2 sequential applications before rotating to another effective product of a different mode of action. Limited to 4 applications, 12 fl oz/acre per season.</td>
</tr>
<tr>
<td>mefenoxam (Ridomil Gold 4 SL)</td>
<td>4</td>
<td>0.25 to 2 pt/acre</td>
<td>—</td>
<td>2</td>
<td>Apply 1 to 2 pt per acre as a broadcast, preplant application to soil and incorporate in top 2 in. of soil. For Pythium control, use only 0.25 to 0.5 pt per acre.</td>
</tr>
<tr>
<td>metalaxyl (MetaStar 2 EAG)</td>
<td>4</td>
<td>4 to 8 pt/ft² acre</td>
<td>—</td>
<td>2</td>
<td>Preplant incorporated or surface application.</td>
</tr>
</tbody>
</table>

Rhizoctonia Bottom Rot

<table>
<thead>
<tr>
<th>Material</th>
<th>Rate of Material</th>
<th>FRAC Code</th>
<th>Minimum Days Harv.</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>boscalid (Endura 70 WP)</td>
<td>7</td>
<td>6 to 9 oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Wirestem (Rhizoctonia Stem and Root Rot)

<table>
<thead>
<tr>
<th>Material</th>
<th>Rate of Material</th>
<th>FRAC Code</th>
<th>Minimum Days Harv.</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>azoxystrobin (Quadris 2.08 SC)</td>
<td>11</td>
<td>5.8 to 8.7 fl oz/ acre on 36-in. rows</td>
<td>0</td>
<td>4 hr</td>
</tr>
<tr>
<td>boscalid (Endura 70 EG)</td>
<td>7</td>
<td>6 to 9 oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>flutolanil (Moncut 3.8SC)</td>
<td>7</td>
<td>26 fl oz/acre</td>
<td>45</td>
<td>0.5</td>
</tr>
<tr>
<td>penthiopyrad (Fontelis 1.67 SC)</td>
<td>7</td>
<td>16 to 30 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Sclerotinia Stem Rot (White Mold)

<table>
<thead>
<tr>
<th>Material</th>
<th>Rate of Material</th>
<th>FRAC Code</th>
<th>Minimum Days Harv.</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>boscalid (Endura 70 EG)</td>
<td>7</td>
<td>6 to 9 oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>fluopyram + trifloxystrobin (Luna Sensation 500 SC)</td>
<td>7+11</td>
<td>7.6 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>penthiopyrad (Fontelis 1.67 SC)</td>
<td>7</td>
<td>16 to 30 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>Coniothyrium minitans (Contans WG)</td>
<td>—</td>
<td>1 to 4 lb/acre</td>
<td>0</td>
<td>4 hr</td>
</tr>
</tbody>
</table>

White Rust

<table>
<thead>
<tr>
<th>Material</th>
<th>Rate of Material</th>
<th>FRAC Code</th>
<th>Minimum Days Harv.</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>pydiflumetofen + fludioxonil (Miravis Prime)</td>
<td>7+12</td>
<td>11.4 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
</tr>
<tr>
<td>Active Ingredient 1,2</td>
<td>Product</td>
<td>Crop Group</td>
<td>Fungicide group</td>
<td>Preharvest interval (Days)</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------</td>
<td>------------</td>
<td>-----------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>acibenzolar-S-methyl</td>
<td>Actigard</td>
<td>H&S</td>
<td>P01</td>
<td>7</td>
</tr>
<tr>
<td>ametocotricon + dimethomorph</td>
<td>Zampro</td>
<td>B</td>
<td>45+40</td>
<td>0</td>
</tr>
<tr>
<td>azoxyostrobin</td>
<td>various</td>
<td>B</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>azoxyostrobin + difenoconazole</td>
<td>Quadris Top</td>
<td>B</td>
<td>11+3</td>
<td>1</td>
</tr>
<tr>
<td>bosalid 3</td>
<td>Endura</td>
<td>B</td>
<td>7</td>
<td>0 to 14</td>
</tr>
<tr>
<td>chlorothalonil</td>
<td>various</td>
<td>H&S</td>
<td>M05</td>
<td>7</td>
</tr>
<tr>
<td>fixed copper 4</td>
<td>various</td>
<td>B</td>
<td>M01</td>
<td>0</td>
</tr>
<tr>
<td>cyazofamid</td>
<td>Ranman</td>
<td>B</td>
<td>21</td>
<td>0</td>
</tr>
<tr>
<td>cyprodil + fludioxonil</td>
<td>Switch</td>
<td>B</td>
<td>9+12</td>
<td>7</td>
</tr>
<tr>
<td>difenoconazole + cyprodil</td>
<td>Inspire Super</td>
<td>B</td>
<td>3+9</td>
<td>7</td>
</tr>
<tr>
<td>dimethomorph</td>
<td>Forum</td>
<td>B</td>
<td>40</td>
<td>0</td>
</tr>
<tr>
<td>fenamidone</td>
<td>Reason</td>
<td>B</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>fluazinam 3</td>
<td>Omega 500</td>
<td>B</td>
<td>29</td>
<td>20 to 50</td>
</tr>
<tr>
<td>fluopicolide</td>
<td>Presidio</td>
<td>B</td>
<td>43</td>
<td>2</td>
</tr>
<tr>
<td>fluopyram + trifloxystrobin</td>
<td>Luna Sensation</td>
<td>H&S</td>
<td>7+11</td>
<td>0</td>
</tr>
<tr>
<td>flutolanil</td>
<td>Moncut</td>
<td>B&T</td>
<td>7</td>
<td>45</td>
</tr>
<tr>
<td>flutriafol</td>
<td>Rhyne</td>
<td>B</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>fluxapyroxad + pyraclostrobin</td>
<td>Priaxor</td>
<td>B</td>
<td>7+11</td>
<td>3</td>
</tr>
<tr>
<td>fosetyl-Al</td>
<td>Aliette</td>
<td>B</td>
<td>33</td>
<td>3</td>
</tr>
<tr>
<td>iprodione</td>
<td>Rovral</td>
<td>B</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>mandipropamid</td>
<td>Revus</td>
<td>B</td>
<td>40</td>
<td>1</td>
</tr>
<tr>
<td>mancozeb</td>
<td>various</td>
<td>H&S</td>
<td>M03</td>
<td>7</td>
</tr>
<tr>
<td>mancozeb + azoxyostrobin</td>
<td>Dexter Max</td>
<td>B&C</td>
<td>M03+ 11</td>
<td>7</td>
</tr>
<tr>
<td>mefenoxam (pre-plant)</td>
<td>Ridomil Gold</td>
<td>B</td>
<td>4</td>
<td>—</td>
</tr>
<tr>
<td>mefenoxam + chlorothalonil</td>
<td>Ridomil Gold Bravo</td>
<td>H&S</td>
<td>4+M05</td>
<td>7</td>
</tr>
<tr>
<td>oxathiapiprolin + mandipropamid</td>
<td>Orondis Ultra</td>
<td>H&S</td>
<td>U15+ 40</td>
<td>7</td>
</tr>
<tr>
<td>penthiopyrad</td>
<td>Fontelis</td>
<td>B</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>phosphonates</td>
<td>various</td>
<td>B</td>
<td>P07</td>
<td>0</td>
</tr>
<tr>
<td>pyraclostrobin 3</td>
<td>Cabrio, Pyrac</td>
<td>B</td>
<td>11</td>
<td>0 to 3</td>
</tr>
<tr>
<td>sulfur</td>
<td>various</td>
<td>B</td>
<td>M02</td>
<td>0</td>
</tr>
<tr>
<td>tebuconazole</td>
<td>various</td>
<td>B</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>triflumizole</td>
<td>Procure</td>
<td>B</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

1 Efficacy ratings do not necessarily indicate a labeled use for every disease.
2 H&S = fungicides registered only on head and stem brassicas (broccoli, Brussels sprouts, cabbage, and cauliflower); B= fungicides registered on all brassica crops except turnip greens and root turnips; see Tables 3-16 and 3-31 for products registered on turnips. B&T = fungicides registered on all brassica leafy vegetables, including turnip greens (but not grown for roots). Broc = fungicide registered on broccoli only. B&C = fungicide registered on broccoli and cabbage only. Always refer to product labels prior to use.
3 Shorter PHI is for head and stem brassicas (broccoli, Brussels sprout, cabbage, and cauliflower) and longer PHI is for leafy brassica greens.
4 Phytotoxicity is seen when fosetyl-Al is tank-mixed with copper.
5 Use a 20-day PHI for Omega 500 on leafy greens and a 50-day PHI for head and stem brassicas.
6 To prevent resistance in pathogens, alternate fungicides within a group with fungicides in another group. Fungicides in the “M” group are generally considered “low risk” with no signs of resistance developing.
7 Resistance reported in the pathogen.
TABLE 3-8. IMPORTANCE OF ALTERNATIVE MANAGEMENT PRACTICES FOR DISEASE CONTROL IN BRASSICAS

E. Sikora, Plant Pathologist, Auburn University

Scale: E, excellent; G, good; F, fair; P, poor; NC, no control; ND, no data.

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Alternaria leaf spot</th>
<th>Bacterial soft rot</th>
<th>Black rot</th>
<th>Black leg</th>
<th>Botrytis rot (Rhizoctonia)</th>
<th>Cercospora</th>
<th>Clubroot</th>
<th>Downy mildew</th>
<th>Powdery mildew</th>
<th>Pythium</th>
<th>Sclerotinia head</th>
<th>Wirestem (Rhizoctonia)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avoid field operations when leaves are wet</td>
<td>P</td>
<td>F</td>
<td>G</td>
<td>F</td>
<td>F</td>
<td>P</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>Avoid overhead irrigation</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>F</td>
<td>F</td>
<td>G</td>
<td>P</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>Change planting date</td>
<td>P</td>
<td>P</td>
<td>NC</td>
<td>NC</td>
<td>P</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>P</td>
<td>F</td>
</tr>
<tr>
<td>Cover cropping with antagonist</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>P</td>
<td>NC</td>
<td>NC</td>
<td>P</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>Crop rotation</td>
<td>F</td>
<td>F</td>
<td>G</td>
<td>G</td>
<td>P</td>
<td>F</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>P</td>
<td>NC</td>
</tr>
<tr>
<td>Deep plowing</td>
<td>F</td>
<td>F</td>
<td>G</td>
<td>G</td>
<td>F</td>
<td>F</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>Destroy crop residue</td>
<td>F</td>
<td>F</td>
<td>G</td>
<td>G</td>
<td>F</td>
<td>F</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>Encourage air movement</td>
<td>F</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>F</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
</tr>
<tr>
<td>Increase between-plant spacing</td>
<td>F</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>F</td>
<td>F</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>P</td>
<td>F</td>
</tr>
<tr>
<td>Increase soil organic matter</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>P</td>
<td>NC</td>
<td>P</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>P</td>
</tr>
<tr>
<td>Hot water seed treatment</td>
<td>P</td>
<td>NC</td>
<td>G</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>pH management</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>E</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>Plant in well-drained soil</td>
<td>P</td>
<td>F</td>
<td>P</td>
<td>P</td>
<td>G</td>
<td>P</td>
<td>E</td>
<td>P</td>
<td>NC</td>
<td>F</td>
<td>F</td>
<td>G</td>
</tr>
<tr>
<td>Plant on raised beds</td>
<td>NC</td>
<td>F</td>
<td>P</td>
<td>NC</td>
<td>G</td>
<td>NC</td>
<td>E</td>
<td>P</td>
<td>NC</td>
<td>F</td>
<td>F</td>
<td>G</td>
</tr>
<tr>
<td>Plastic mulch bed covers</td>
<td>P</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>Postharvest temperature control</td>
<td>NC</td>
<td>E</td>
<td>NC</td>
</tr>
<tr>
<td>Reflective mulch</td>
<td>NC</td>
</tr>
<tr>
<td>Reduce mechanical injury</td>
<td>NC</td>
<td>E</td>
<td>G</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
</tr>
<tr>
<td>Rogue diseased plants</td>
<td>P</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>P</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>Row covers</td>
<td>NC</td>
<td>P</td>
<td>NC</td>
</tr>
<tr>
<td>Soil solarization</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>P</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>P</td>
</tr>
<tr>
<td>Pathogen-free planting material</td>
<td>F</td>
<td>NC</td>
<td>E</td>
<td>E</td>
<td>F</td>
<td>NC</td>
<td>G</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>P</td>
</tr>
<tr>
<td>Resistant cultivars</td>
<td>NC</td>
<td>NC</td>
<td>E</td>
<td>NC</td>
<td>NC</td>
<td>P</td>
<td>F</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>P</td>
</tr>
<tr>
<td>Weed control</td>
<td>F</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>F</td>
<td>F</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
</tr>
</tbody>
</table>

Cantaloupe See Cucurbits

Celery See Leafy Petiole Vegetables

Cucumbers See Cucurbits
TABLE 3-9. DISEASE CONTROL PRODUCTS FOR CORN, SWEET

D. Langston, Extension Plant Pathologist, Virginia Tech

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material Formulation</th>
<th>Minimum Days</th>
<th>Reentry</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEEDLING DISEASES CAUSED BY RHIZOCTONIA AND PENICILLIUM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pyraclostrobin (Stamina 1.67FC)</td>
<td>11</td>
<td>0.8 to 1.6 fl oz/100 lbs of seed</td>
<td>NA</td>
<td>NA</td>
<td>Seed treatment. Seed treated on-farm must be dyed.</td>
</tr>
<tr>
<td>SOILBORNE DISEASES, RHIZOCTONIA ROOT AND STALK ROT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fluoxastrobin (Aftershock)</td>
<td>11</td>
<td>0.16 to 0.24 fl oz/1000 row feet</td>
<td>7</td>
<td>0.5</td>
<td>May be applied as a banded or in-furrow spray. Consult label for specifics.</td>
</tr>
<tr>
<td>azoxystrobin (various)</td>
<td>11</td>
<td>0.4 to 0.8 fl oz/1000 row feet</td>
<td>7</td>
<td>4 hr</td>
<td>See label for banded or in-furrow sprays. Apply no more than 2.88 qt per crop per acre per season, including soil applications.</td>
</tr>
<tr>
<td>ANTHRACNOSE, EYE-SPOT, GRAY LEAF SPOT (CERCOSPORA LEAF SPOT), NORTHERN CORN LEAF BLIGHT (EXSEROHILUM [HELMINTHOSPORIUM] TURCICUM) NORTHERN CORN LEAF SPOT (BIPOLARIS ZEICOLA [HELMINTHOSPORIUM CARBONUM]) SOUTHERN CORN LEAF BLIGHT (BIPOLARIS [HELMINTHOSPORIUM MAYDIS), RUST, SOUTHERN RUST</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>azoxystrobin (various)</td>
<td>11</td>
<td>See labels</td>
<td>7</td>
<td>-</td>
<td>Use lower rate for rust. Make no more than 2 sequential applications before alternating with fungicides that have a different mode of action. Apply no more than 123 fl oz per crop per acre per season. Not registered for Southern rust.</td>
</tr>
<tr>
<td>azoxystrobin + flutriafol (Topguard EQ)</td>
<td>11+3</td>
<td>5 to 7 fl oz/acre</td>
<td>7</td>
<td>3</td>
<td>Apply when disease symptoms first appear and re-apply on a 7- to 10-day interval. Use high rate under heavy disease pressure.</td>
</tr>
<tr>
<td>azoxystrobin + propiconazole (Quint, Quilt XCEL, Avaris)</td>
<td>11+3</td>
<td>7 or 10.5 to 14 fl oz/acre</td>
<td>14</td>
<td>0.5</td>
<td>Use 7 fl oz of Quilt or Avaris for 3 Helminthosporium diseases. Must rotate every application with a non-Group 11 fungicide. Maximum 56 fl oz/acre (4 applications at the high rate) per crop.</td>
</tr>
<tr>
<td>chlorothalonil (various)</td>
<td>M05</td>
<td>See labels</td>
<td>14</td>
<td>2</td>
<td>Spray at first appearance, 4-to 14-day intervals. Not registered for anthracnose, eyespot, or gray leaf spot.</td>
</tr>
<tr>
<td>fluoxastrobin (Aftershock)</td>
<td>11</td>
<td>2.0 to 3.8 fl oz/acre</td>
<td>30</td>
<td>0.5</td>
<td>Soil and foliar treatments. Maximum 2 applications per season. Do not apply after R4 early dough stage.</td>
</tr>
<tr>
<td>flutriafol (Topguard)</td>
<td>3</td>
<td>7 to 14 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
<td>Apply preventively when conditions are favorable for disease and on a 7-day schedule thereafter.</td>
</tr>
<tr>
<td>flutriafol (Xyway LFR)</td>
<td>3</td>
<td>7.6 to 15.2 fl oz/acre</td>
<td>-</td>
<td>0.5</td>
<td>Xyway LFR Fungicide soil applications provide foliar disease control/suppression through the growing season. For control of late-season infestations, heavy disease pressure situations, or foliar diseases not listed above, a supplemental foliar application may be needed.</td>
</tr>
<tr>
<td>fluxapyroxad + pyraclostrobin (Phloxar)</td>
<td>7+11</td>
<td>4 to 8 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
<td>Do not make more than 2 sequential applications before switching to a fungicide with a different mode of action. Maximum 4 (high rate) or 2 applications (low rate) per crop. Crop damage may occur when an adjuvant is used; read label for specifics.</td>
</tr>
<tr>
<td>mancozeb (Bicycle)</td>
<td>M03</td>
<td>See labels</td>
<td>7</td>
<td>1</td>
<td>Start applications when disease first appears and repeat at 4- to 7-day intervals. Not registered for anthracnose, eyespot, gray leaf spot, or Southern rust.</td>
</tr>
<tr>
<td>penitripyrad (Vertan)</td>
<td>7</td>
<td>10 to 24 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
<td>No more than 2 sequential applications of the fungicide before switching to a fungicide with another mode of action. Not registered for eyespot.</td>
</tr>
<tr>
<td>propiconazole (various)</td>
<td>3</td>
<td>See labels</td>
<td>14</td>
<td>0.5</td>
<td>16 fl oz per acre per crop maximum. Not registered for anthracnose.</td>
</tr>
<tr>
<td>propiconazole + azoxystrobin + benovindiflupyr (Triavpro)</td>
<td>3+11+7</td>
<td>13.7 fl oz/acre</td>
<td>14</td>
<td>0.5</td>
<td>Begin applications prior to disease development. Continue applications through season on a 14-day interval, following the resistance management guidelines.</td>
</tr>
<tr>
<td>propiconazole + azoxystrobin + pydiflumetofen (Miravis Neo)</td>
<td>3+11+7</td>
<td>13.7 fl oz/acre</td>
<td>14</td>
<td>0.5</td>
<td>Begin applications prior to disease development. Continue applications through season on a 7- to 14-day interval, following the resistance management guidelines.</td>
</tr>
<tr>
<td>prothioconazole + trifloxystrobin (Delaro)</td>
<td>3+11</td>
<td>8 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Apply Delaro 325 SC Fungicide when disease first appears and continue on 5- to 14-day interval if favorable conditions for disease development persist. Use of an adjuvant may enhance performance of Delaro 325 SC Fungicide. If utilized, apply the lowest label recommended rate of a NIS adjuvant to enhance disease control.</td>
</tr>
<tr>
<td>prothioconazole + trifloxystrobin + fluzapyrimid (Delaro Complete)</td>
<td>3+11+7</td>
<td>8 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Apply Fluzapyrimid when disease first appears. In sweet corn, continue applications on a 5- to 14-day interval if favorable conditions for disease development persist. In all other corn, continue applications on a 7- to 14-day interval if favorable conditions for disease development persist. Application of Fluzapyrimid is not recommended at times when corn is under severe environmental stress conditions.</td>
</tr>
<tr>
<td>prothioconazole + tebuconazole (Prosaro)</td>
<td>3+3</td>
<td>6.5 fl oz/acre</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 3-9. DISEASE CONTROL PRODUCTS FOR CORN, SWEET (cont’d)

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material Formulation</th>
<th>Minimum Days</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTHRACNOSE, EYE-SPOT, GRAY LEAF SPOT (CERCOSPOREA LEAF SPOT), NORTHERN CORN LEAF BLIGHT (EXSEROHILUM [HELMINTHOSPORIUM] TURCICUM), NORTHERN CORN LEAF SPOT (BIPOLARIS ZICOLA [HELMINTHOSPORIUM CARBONUM])</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pyraclostrobin (Headline SC & EC)</td>
<td>11</td>
<td>6 to 12 fl oz/acre</td>
<td>7</td>
<td>Do not make more than 2 sequential applications or 6 applications of this fungicide or other group 11 fungicides per crop. Not registered for eyespot.</td>
</tr>
<tr>
<td>pyraclostrobin + metconazole (Headline AMP)</td>
<td>11+3</td>
<td>10 to 14.4 fl oz/acre</td>
<td>7</td>
<td>No more than 2 sequential applications before alternating with a different mode of action. Maximum 4 (high rate) or 5 applications (low rate) per crop. Not registered for eyespot.</td>
</tr>
<tr>
<td>trifloxystrobin + propiconazole (Stratego)</td>
<td>11+3</td>
<td>10 fl oz/acre</td>
<td>14</td>
<td>Apply Stratego when disease first appears and continue on a 7- to 14-day interval. Alternate applications of Stratego with another product with a different mode of action than Group 11 fungicides. Maximum 3 applications per crop. Not registered for the 3 Helmintosporium diseases.</td>
</tr>
<tr>
<td>trifloxystrobin + propiconazole (Stratego YLD)</td>
<td>11+3</td>
<td>4 to 5 fl oz/acre</td>
<td>0</td>
<td>Alternates Stratego YLD sprays with another mode of action than agroup11fungicides. Maximum 4 (high rate) or 5 applications (low rate) per crop. Not registered for the 3 Helmintosporium diseases.</td>
</tr>
<tr>
<td>trifloxystrobin + тебучонозол (Absolute Maxx)</td>
<td>11+3</td>
<td>5 to 6 fl oz/acre</td>
<td>7</td>
<td>Apply when disease first appears and continue on a 10- to 14-day interval if favorable conditions for disease development persist. Use of shorter spray intervals and higher rates are recommended when disease pressure is severe.</td>
</tr>
<tr>
<td>BROWN SPOT (PHYSODERMA MAYDIS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fluxapyroxad + pyraclostrobin (Priaxor)</td>
<td>7+11</td>
<td>4 to 8 fl oz/acre</td>
<td>7</td>
<td>Do not make more than 2 sequential applications of Priaxor before switching to a fungicide with a different mode of action. Maximum 4 (high rate) or 2 applications (low rate) per crop. Crop damage may occur when an adjuvant is used; read label for specifics.</td>
</tr>
<tr>
<td>pentyopyrad (Vertisan)</td>
<td></td>
<td>16 to 24 fl oz/acre</td>
<td>0</td>
<td>No more than 2 sequential applications of the fungicide before switching to a fungicide with another mode of action.</td>
</tr>
<tr>
<td>pyraclostrobin (Headline SC & EC)</td>
<td>11</td>
<td>6 to 12 fl oz/acre</td>
<td>7</td>
<td>Do not exceed 2 sequential applications of this fungicide or other group 11 fungicides.</td>
</tr>
<tr>
<td>pyraclostrobin + metconazole (Headline AMP)</td>
<td>11+3</td>
<td>10 to 14.4 fl oz/acre</td>
<td>7</td>
<td>No more than 2 sequential applications before alternating with a different mode of action.</td>
</tr>
<tr>
<td>YELLOW LEAF BLIGHT (PEYRONELLA AEZAMAYDIS [PHYLOSTICTA MAYDIS])</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fluxapyroxad + pyraclostrobin (Priaxor)</td>
<td>7+11</td>
<td>4 to 8 fl oz/acre</td>
<td>7</td>
<td>Do not make more than 2 sequential applications of Priaxor before switching to a fungicide with a different mode of action. Maximum 4 (high rate) or 2 applications (low rate) per crop. Crop damage may occur when an adjuvant is used; read label for specifics.</td>
</tr>
</tbody>
</table>

TABLE 3-10. DISEASE CONTROL PRODUCTS FOR CUCURBITS

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material Formulation</th>
<th>Minimum Days</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANGULAR LEAF SPOT (PSEUDOMONAS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fixed copper (various)</td>
<td>M01</td>
<td>See labels</td>
<td>See label</td>
<td>See label. Rates vary depending on the formulation. Repeated use may cause leaf yellowing.</td>
</tr>
<tr>
<td>acibenzolar-S-methyl (Actigard) 50 WP</td>
<td>P01</td>
<td>0.5 to 1 oz/acre</td>
<td>0</td>
<td>Apply to healthy, actively growing plants. Do not apply to stressed plants. Apply no more than 8 oz per acre per season.</td>
</tr>
<tr>
<td>BACTERIAL LEAF SPOT (XANTHOMONAS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>acibenzolar-S-methyl (Actigard) 50 WP</td>
<td>P01</td>
<td>0.5 to 1 oz/acre</td>
<td>0</td>
<td>Apply to healthy, actively growing plants. Do not apply to stressed plants. Apply no more than 8 oz per acre per season.</td>
</tr>
<tr>
<td>fixed copper (various)</td>
<td>M01</td>
<td>See labels</td>
<td>See label</td>
<td>See label. Rates vary depending on the formulation. Repeated use may cause leaf yellowing.</td>
</tr>
<tr>
<td>BACTERIAL FRUIT BLotch (ACIDOVORAX)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fixed copper (various)</td>
<td>M01</td>
<td>See labels</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>acibenzolar-S-methyl (Actigard) 50 WP</td>
<td>P01</td>
<td>0.5 to 1 oz/acre</td>
<td>0</td>
<td>Apply to healthy, actively growing plants. Do not apply to stressed plants. Apply no more than 8 oz per acre per season.</td>
</tr>
</tbody>
</table>
TABLE 3-10. DISEASE CONTROL PRODUCTS FOR CUCURBITS (cont’d)

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material Formulation</th>
<th>Minimum Days Harv.</th>
<th>Reentry</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>BACTERIAL WILT (ERWINIA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>See Insect Control section for Cucumber Beetles.</td>
</tr>
<tr>
<td>BELLY (FRUIT) ROT (RHIZOCTONIA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>azoxystrobin (various)</td>
<td>11</td>
<td>See labels</td>
<td>1</td>
<td>4 hr</td>
<td>Make banded application to soil surface or in-furrow application just before seed are covered.</td>
</tr>
<tr>
<td>azoxystrobin + chlorothalonil (Quadris Opti, Arius Advance)</td>
<td>11+M05</td>
<td>3.2 pints/acre</td>
<td>1</td>
<td>0.5</td>
<td>Do not apply more than one foliar application before alternating with a fungicide with a different mode of action. Do not make more than 4 applications of QoI group 11 fungicides per crop per acre per year.</td>
</tr>
<tr>
<td>difenoconazole + benzoavindiflupyr (Aprovia Top)</td>
<td>7+3</td>
<td>8.5 to 13.5 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>For belly rot control, the first application should be made at the 1- to 3-leaf crop stage with a second application just prior to vine tip or 10 to 14 days later, whichever occurs first.</td>
</tr>
<tr>
<td>fluopyram + tebuconazole (Luna Experience 3.3 F)</td>
<td>7+3</td>
<td>17 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
<td>APPLY ONLY TO WATERMELON. Make no more than 2 applications before alternating to a fungicide with different active ingredients. Do not rotate with tebuconazole. Not labeled for use in Louisiana.</td>
</tr>
<tr>
<td>thiophanate-methyl (Topsin M 70 WP, Miromar)</td>
<td>1</td>
<td>0.5 lb/acre, 10.5 oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Apply in sufficient water to obtain runoff to soil surface.</td>
</tr>
<tr>
<td>COTTONY LEAK (PYTHIUM SPP.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>metalaxyl (MetaStar 2 E)</td>
<td>4</td>
<td>4 to 8 pt/ treated acre</td>
<td>0</td>
<td>2</td>
<td>Soil surface application in 7 in. band.</td>
</tr>
<tr>
<td>DAMPING OFF (PYTHIUM SPP.) AND FRUIT ROT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mefenoxam (Ridomil Gold 4 SL) (Ultra Flourish 2 EL)</td>
<td>4</td>
<td>1 to 2 pt/ acre 2 to 4 pt/ acre</td>
<td>0</td>
<td>2</td>
<td>Preplant incorporated (broadcast or band); soil spray (broadcast or band) or injection (drip irrigation).</td>
</tr>
<tr>
<td>metalaxyl (MetaStar 2 E)</td>
<td>4</td>
<td>4 to 8 pt/acre</td>
<td>0</td>
<td>2</td>
<td>Preplant incorporated or soil application.</td>
</tr>
<tr>
<td>propamocarb (Previcur Flex 6 F)</td>
<td>28</td>
<td>12.8 fl oz/100 gal</td>
<td>2</td>
<td>0.5</td>
<td>Rates based on rock wool cube saturation in the greenhouse. See label for use in seedbeds, drip system, and soil drench.</td>
</tr>
<tr>
<td>DOWNY MILDEW (PSEUDOPERONOSPORA CUBENSIS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ametoctradin + dimethomorph (Zampro4.38 SC)</td>
<td>45+40</td>
<td>14 oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Make no more than 2 applications before alternating to a fungicide with different active ingredients. Do not rotate with Forum. Maximum of 3 applications per crop per season.</td>
</tr>
<tr>
<td>chlorothalonil (various)</td>
<td>M05</td>
<td>See label</td>
<td>See label</td>
<td>See label</td>
<td>See labels. Rates vary depending on the formulation. Spray at first appearance and then at 7- to 14-day interval. Avoid late-season application after plants have reached full maturity.</td>
</tr>
<tr>
<td>chlorothalonil + cymoxanil (Cymbol Advance)</td>
<td>M05+27</td>
<td>1.9 to 3.0 pt/acre</td>
<td>3</td>
<td>0.5</td>
<td>Repeat application at 7-day intervals. Alternate applications with different MOA fungicides. Maximum of 17.5 pints of product per acre per year. Maximum of 15.75 lb a.i. chlorothalonil per acre per year.</td>
</tr>
<tr>
<td>chlorothalonil + potassium phosphate (Catamaran 5.27 SC)</td>
<td>M05+33</td>
<td>6 pints/acre</td>
<td>0</td>
<td>0.5</td>
<td>Apply no more than 50 pints per crop per acre per season.</td>
</tr>
<tr>
<td>chlorothalonil + zoxamide (Zing!)</td>
<td>M+22</td>
<td>36 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>May cause sunburn in watermelon fruit, see label for details.</td>
</tr>
<tr>
<td>cyazofamid (Ranman 400SC)</td>
<td>21</td>
<td>2.1 to 2.75 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>cymoxanil (Cymbol)</td>
<td>27</td>
<td>3.2 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
<td>Use with labeled rate of a protectant fungicide. Maximum of than four (4) applications per year. Maximum of 12.8 fl oz (0.48 lb a.i.) per year.</td>
</tr>
<tr>
<td>cymoxanil + propamocarb (Cymbol Balance)</td>
<td>27+28</td>
<td>28.5 fl oz/acre</td>
<td>3</td>
<td>0.5</td>
<td>Repeat application at 5-to 7-day intervals. Maximum of five (5) applications per year. Maximum of 142.5 fl oz of product per acre per year. Maximum of 4.5 lb a.i. propamocarb per acre per year.</td>
</tr>
<tr>
<td>ethaboxam (Eulumin)</td>
<td>22</td>
<td>8 fl oz/acre</td>
<td>2</td>
<td>0.5</td>
<td>Do not make more than 2 applications per year. Do not apply at intervals of less than 14 days.</td>
</tr>
<tr>
<td>fixed copper (various)</td>
<td>M01</td>
<td>See labels</td>
<td>See label</td>
<td>See label</td>
<td>See label. Rates vary depending on the formulation. Repeated use may cause leaf yellowing.</td>
</tr>
<tr>
<td>fluzinam (Omega 500F, Lektivar 40 SC)</td>
<td>29</td>
<td>0.75 to 1.5 pints/acre</td>
<td>7 or 30</td>
<td>0.5</td>
<td>Initiate applications when conditions are favorable for disease development or when disease symptoms first appear. Repeat applications on a 7- to 10-day schedule. PHI is 7 days for cucumber squash, pumpkin (subgroup 9A). PHI is 30 days for melon, watermelon, cantaloupe (subgroup 9B).</td>
</tr>
<tr>
<td>fluopicolide (Presidio 4F)</td>
<td>43</td>
<td>3 to 4 fl oz/acre</td>
<td>2</td>
<td>0.5</td>
<td>Tank mix with another downy mildew fungicide with a different mode of action.</td>
</tr>
</tbody>
</table>
TABLE 3-10. DISEASE CONTROL PRODUCTS FOR CUCURBITS (cont’d)

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material Formulation</th>
<th>Minimum Days Harv.</th>
<th>Reentry</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOWNY MILDEW (CONT’D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fosetyl-AL (Alteva 80 WDG)</td>
<td>P07</td>
<td>2 to 5 lb/acre</td>
<td>0.5</td>
<td>0.5</td>
<td>Do not tank mix with copper-containing products. Mixing with surfactants or foliar fertilizers is not recommended.</td>
</tr>
<tr>
<td>mandipropamid (Revus 2.08F)</td>
<td>40</td>
<td>8 fl oz/acre</td>
<td>1</td>
<td>0.5</td>
<td>For disease suppression only. Resistance reported.</td>
</tr>
<tr>
<td>mancozeb (various)</td>
<td>M03</td>
<td>See labels</td>
<td>See label</td>
<td>See label</td>
<td>See label. Rates vary depending on the formulation. Labeled on all cucurbits.</td>
</tr>
<tr>
<td>mefenoxam + chlorothalonil (Ridomil Gold Bravo, Flouronil 76.5 WP)</td>
<td>4+M05</td>
<td>2 to 3 lb/acre</td>
<td>7</td>
<td>2</td>
<td>Spray at first appearance and repeat at 14-day intervals. Apply full rate of protectant fungicide between applications. Avoid late-season application when plants reach full maturity. Resistance reported.</td>
</tr>
<tr>
<td>oxathiapiprin + chlorothalonil (Orondis Opti SC)</td>
<td>49+M05</td>
<td>1.7 to 2.5 pt/acre</td>
<td>0</td>
<td>0.5</td>
<td>Limit to 10 pt per acre per year. Limit of six foliar applications per acre per year for the same crop. Do not follow soil applications of Orondis with foliar applications of Orondis. Begin foliar applications prior to disease development and continue on a 5- to 14-day interval. Use the higher rates when disease is present.</td>
</tr>
<tr>
<td>oxathiapiprin + mandipropamid (Orondis Ultra)</td>
<td>49+40</td>
<td>5.5 to 8 fl oz/acre</td>
<td>0</td>
<td>4 hr</td>
<td>Limit to 32 fl oz per acre per year. Limit of six foliar applications per acre per year for the same crop. Do not follow soil applications of Orondis with foliar applications of Orondis. Begin foliar applications prior to disease development and continue on a 5- to 14-day interval. Use the higher rates when disease is present.</td>
</tr>
<tr>
<td>propamocarb (Previcur Flex 6 F, Bruin)</td>
<td>28</td>
<td>1.2 pt/acre</td>
<td>2</td>
<td>0.5</td>
<td>Begin applications before infection; continue on a 7- to 14-day interval. Do not apply more than 6 pt per growing season. Always tank mix with another Downy mildew product.</td>
</tr>
<tr>
<td>zoxamide + mancozeb (Gavel 75 DF)</td>
<td>22+M03</td>
<td>1.5 to 2 lb/acre</td>
<td>5</td>
<td>2</td>
<td>Begin applications when plants are in 2-leaf stage and repeat at 7- to 10-day intervals. Labeled on all cucurbits. Maximum 8 applications per season.</td>
</tr>
<tr>
<td>FUSARIUM WILT (FUSARIA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>prothioconazole (Proline 480 SC)</td>
<td>3</td>
<td>5.7 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
<td>One soil and two foliar applications allowed by either ground or chemigation application equipment (including drip irrigation). Do not use in water used for transplanting. Not for use in greenhouse/transplant house.</td>
</tr>
<tr>
<td>pydiflumetofen + fludioxonil (Miravis Prime)</td>
<td>7+12</td>
<td>11.4 fl oz/acre</td>
<td>1</td>
<td>0.5</td>
<td>For Suppression Only. Do not make more than two applications before alternating with a non-Group 7 or 12 fungicide. Follow label application methods and timing.</td>
</tr>
<tr>
<td>GUMMY STEM BLIGHT, BLACK ROT (DIDYMELLA BRYONIAE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chlorothalonil + cymoxanil (Cymbal Advance)</td>
<td>M05+27</td>
<td>3.0 pt/acre</td>
<td>3</td>
<td>0.5</td>
<td>Repeat application at 7-day intervals. Alternate applications with different MOA fungicide. Maximum of 17.5 pints of product per acre per year. Maximum of 15.75 lb a.i. chlorothalonil per acre per year.</td>
</tr>
<tr>
<td>prothioconazole (Proline 480 SC)</td>
<td>3</td>
<td>5.7 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
<td>One soil and two foliar applications allowed by either ground or chemigation application equipment (including drip irrigation). Do not use in water used for transplanting. Not for use in greenhouse/transplant house.</td>
</tr>
<tr>
<td>tebuconazole (Monsoon 3.6 F)</td>
<td>3</td>
<td>8 oz/acre</td>
<td>7</td>
<td>0.5</td>
<td>Maximum 3 applications per season. Apply as a protective spray at 10-to-14-day intervals. Add a surfactant.</td>
</tr>
<tr>
<td>LEAF SPOTS: ALTERNARIA, ANTHRACNOSE (COLLETOTRICHUM), CERCOSPORA, GUMMY STEM BLIGHT (DIDYMELLA), TARGET SPOT (CORYNESPORA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>azoxystrobin (Quadris 2.08F, Aries 250)</td>
<td>11</td>
<td>11 to 15.4 fl oz/acre</td>
<td>1</td>
<td>4 hr</td>
<td>Make no more than one application before alternating with a fungicide with a different mode of action. Apply no more than 2.86 qt per crop per acre per season. Do not use for gummy stem blight where resistance to group 11(QoI) fungicides exists.</td>
</tr>
<tr>
<td>Azoxystrobin + chlorothalonil (Quadris Opti, Aries Advance)</td>
<td>11+M05</td>
<td>3.2 pints/acre</td>
<td>1</td>
<td>0.5</td>
<td>Do not apply more than one foliar application before alternating with a fungicide with a different mode of action. Do not make more than 4 applications of QoI group 11 fungicides per crop per acre per year. Do not use for gummy stem blight where resistance to group 11(QoI) fungicides exists.</td>
</tr>
<tr>
<td>azoxystrobin + difenoconazole (Quadris Top 1.67 SC)</td>
<td>11+3</td>
<td>12 to 14 fl oz/acre</td>
<td>1</td>
<td>0.5</td>
<td>Not for Target spot. Make no more than one application before alternating with fungicides that have a different mode of action. Apply no more than 56 fl oz per crop per acre per season. Do not use for gummy stem blight where resistance to group 11(QoI) fungicides exists.</td>
</tr>
<tr>
<td>chlorothalonil (various)</td>
<td>M05</td>
<td>See label</td>
<td>See label</td>
<td>See label</td>
<td>See labels. Rates vary depending on the formulation.</td>
</tr>
<tr>
<td>chlorothalonil + cymoxanil (Cymbal Advance)</td>
<td>M05+27</td>
<td>3.0 pt/acre</td>
<td>3</td>
<td>0.5</td>
<td>Repeat application at 7-day intervals. Alternate applications with different MOA fungicide. Maximum of 17.5 pints of product per acre per year. Maximum of 15.75 lb a.i. chlorothalonil per acre per year.</td>
</tr>
<tr>
<td>chlorothalonil + potassium phosphite (Catamaran 5.27 SC)</td>
<td>M05+33</td>
<td>6 pints/acre</td>
<td>0</td>
<td>0.5</td>
<td>Apply no more than 50 pints per crop per acre per season. Do not apply to watermelon fruit when stress conditions conducive to sunburn occur.</td>
</tr>
<tr>
<td>cyprodinil + fludioxonil (Switch 62.5WG)</td>
<td>9+12</td>
<td>11 to 14 oz/acre</td>
<td>1</td>
<td>0.5</td>
<td>Only for Alternaria and gummy stem blight. Make no more than 2 applications before alternating to a different fungicide. Maximum of 4 to 5 applications at high and low rates.</td>
</tr>
</tbody>
</table>
TABLE 3-10. DISEASE CONTROL PRODUCTS FOR CUCURBITS (cont’d)

L. Quesada-Ocampo, Plant Pathologist, North Carolina State University; B. Dutta, Plant Pathologist, University of Georgia

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material Formulation</th>
<th>Minimum Days</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEAF SPOTS: ALTERNARIA, ANTHRACNOSE (COLLETOTRICHUM), CERCOSPORA, GUMMY STEM BLIGHT (DIDYMELLA), TARGET SPOT (CORYNESPORA) (CONT’D)**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>difenoconazole + benzoindiflupyr (Aprovia Top)</td>
<td>7+3</td>
<td>10.5 to 13.5 fl oz/acre</td>
<td>0 0.5</td>
<td>Make no more than 2 applications before alternating to a fungicide with different active ingredients. Do not rotate with Forum. Maximum of 3 applications per season. Apply at planting as a preventative drench treatment. Additon of a spreading or penetrating adjuvant is recommended.</td>
</tr>
<tr>
<td>difenoconazole + cyprodinil (Inspire Super 2.82SC)</td>
<td>3+9</td>
<td>16 to 20 fl oz/acre</td>
<td>7 0.5</td>
<td>Not for Target spot. Make no more than 2 sequential applications before alternating with fungicides that have a different mode of action. Apply no more than 80 fl oz per crop per acre per season.</td>
</tr>
<tr>
<td>famoxadone + cymoxanil (Tanos 50WP)</td>
<td>11+27</td>
<td>8 oz/acre</td>
<td>3 0.5</td>
<td>Only for Alternaria and Anthracnose, do not make more than one application before alternating with a fungicide that has a different mode of action; must be tank-mixed with contact fungicide with a different mode of action.</td>
</tr>
<tr>
<td>fenamidine (Reason) 500 SC</td>
<td>11</td>
<td>5.5 fl oz/acre</td>
<td>14 0.5</td>
<td>Begin applications when conditions favor disease development and continue on 5-to 10-day interval. Do not apply more than 22 fl oz per growing season. Alternate with fungicide from different resistance management group and make no more than 4 total applications of Group 11 fungicides per season.</td>
</tr>
<tr>
<td>fixed copper (various)</td>
<td>M01</td>
<td>See label</td>
<td>See label</td>
<td>See label</td>
</tr>
<tr>
<td>fluazinam (Omega 500F, Lektivar 40SC)</td>
<td>29</td>
<td>0.75 to 1.5 pts/acre</td>
<td>30 0.5</td>
<td>Initiate applications when conditions are favorable for disease development or when disease symptoms first appear. Repeat applications on a 7-to 10-day schedule.</td>
</tr>
<tr>
<td>mancozeb (various)</td>
<td>M03</td>
<td>See label</td>
<td>See label</td>
<td>See label</td>
</tr>
<tr>
<td>fluopyram + tebuconazole (Luna Experience) 3.3 F</td>
<td>7+3</td>
<td>8 to 17 fl oz/acre</td>
<td>7 0.5</td>
<td>Not for Cercospora or target spot. Make no more than 2 applications before alternating to a fungicide with different active ingredients. Do not rotate with tebuconazole.</td>
</tr>
<tr>
<td>fluopyram + trifloxystrobin (Luna Sensation) 1.67 F</td>
<td>7+11</td>
<td>7.6 fl oz/acre</td>
<td>0 0.5</td>
<td>APPLY ONLY TO WATERMELON and only to control Alternaria and Anthracnose. Make no more than 2 applications before alternating to a fungicide with different active ingredients. Maximum 4 applications per season.</td>
</tr>
<tr>
<td>fluxapyroxad + pyraclostrobin (Merivon 500 SC)</td>
<td>7+11</td>
<td>4 to 5.5 fl oz/acre</td>
<td>0 0.5</td>
<td>Make no more than two sequential applications before alternating with fungicides that have a different mode of action. Maximum of 3 applications per crop.</td>
</tr>
<tr>
<td>potassium phosphate + tebuconazole (Viathon)</td>
<td>P07+3</td>
<td>4 pints/acre</td>
<td>7 0.5</td>
<td>APPLY ONLY TO WATERMELON. Maximum 3 applications per crop.</td>
</tr>
<tr>
<td>pydifenametofeno + fluidioxonil (Miravis Prime)</td>
<td>7+12</td>
<td>9.2 to 11.4 fl oz/acre</td>
<td>1 0.5</td>
<td>Begin applications prior to disease development. Follow resistance management guidelines.</td>
</tr>
<tr>
<td>pyraclostrobin (Cabrio) 20 WG</td>
<td>11</td>
<td>12 to 16 oz/acre</td>
<td>0 0.5</td>
<td>Do not use for Gummy stem blight where resistance to group11 (QoI) fungicides exists. Make no more than one application before alternating to a fungicide with a different mode of action.</td>
</tr>
<tr>
<td>pyraclostrobin + boscalid (Pristine) 38 WG</td>
<td>11+7</td>
<td>12.5 to 18.5 oz/acre</td>
<td>0 1</td>
<td>Not for target spot. Do not use for gummy stem blight where resistance to group 7 and group 11 fungicides exists. Use highest rate for anthracnose. Make no more than 4 applications per season.</td>
</tr>
<tr>
<td>thiophanate-methyl (Topsin M 70 WP, Miramar)</td>
<td>1</td>
<td>0.5 lb/acre, 10.0 oz/acre</td>
<td>0 0.5</td>
<td>Spray at first appearance and then at 7- to 10-day intervals. Resistance reported in gummy stem blight fungus.</td>
</tr>
<tr>
<td>zoxamide + mancozeb (Gavel) 75 DF</td>
<td>22+M03</td>
<td>1.5 to 2 lb/acre</td>
<td>5 2</td>
<td>Cercospora and Alternaria only. Begin applications when plants are in 2-leaf stage and repeat at 7- to 10-day intervals. Now labeled on all cucurbits. Maximum 8 applications per season.</td>
</tr>
</tbody>
</table>

PHYTOPHTHORA BLIGHT (FOLIAGE AND FRUIT)

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material Formulation</th>
<th>Minimum Days</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ametoctradin + dimethomorph (Zampro 4.38SC)</td>
<td>45+40</td>
<td>14 oz/acre</td>
<td>0 0.5</td>
<td>Make no more than 2 applications before alternating to a fungicide with different active ingredients. Do not rotate with Forum. Maximum of 3 applications per crop per season. Apply at planting as a preventative drench treatment. Addition of a spreading or penetrating adjuvant is recommended.</td>
</tr>
<tr>
<td>cyazofamid (Ranman 400SC)</td>
<td>21</td>
<td>2.75 fl oz/acre</td>
<td>0 0.5</td>
<td>Do not apply more than 6 sprays per crop. Make no more than 3 consecutive applications followed by 3 applications of fungicides from a different resistance management group. Resistant isolates have been found.</td>
</tr>
<tr>
<td>dimethomorph (Forum 4.17SC)</td>
<td>40</td>
<td>6 fl oz/acre</td>
<td>0 0.5</td>
<td>Must be applied as a tank mix with another fungicide with a different mode of action. Do not make more than two sequential applications.</td>
</tr>
<tr>
<td>ethaboxam (Elumin)</td>
<td>22</td>
<td>8 fl oz/acre</td>
<td>2 0.5</td>
<td>Make no more than 2 applications before alternating to a fungicide with different active ingredients. Apply no more than 16 fl oz/acre per year.</td>
</tr>
<tr>
<td>fluazinam (Omega 500F, Lektivar 40 SC)</td>
<td>29</td>
<td>0.75 to 1.5 pt/acre</td>
<td>7 or 30 0.5</td>
<td>Initiate applications when conditions are favorable for disease development or when disease symptoms first appear. Repeat applications on a 7-to 10-day schedule. PHI is 7 days for cucumber squash, pumpkin (subgroup 9A), PHI is 30 for melon, watermelon, cantaloupe (subgroup 9B).</td>
</tr>
<tr>
<td>fluopicolide (Presidio 4F)</td>
<td>43</td>
<td>3 to 4 fl oz/acre</td>
<td>2 0.5</td>
<td>Tank mix with another Phytophthora fungicide with a different mode of action. May be applied through drip irrigation to target crown rot phase.</td>
</tr>
<tr>
<td>Disease/Material</td>
<td>FRAC Code</td>
<td>Rate of Material Formulation</td>
<td>Minimum Days Harvest</td>
<td>Reentry</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------</td>
<td>-----------------------------</td>
<td>---------------------</td>
<td>---------</td>
</tr>
<tr>
<td>PHYTOPHTHORA BLIGHT (FOLIAGE AND FRUIT) (CONT'D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mandipropamid (Revus 2.08F)</td>
<td>40</td>
<td>8 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>oxathiapiprolin + mfenoxam (Orondis Gold 200)</td>
<td>49+4</td>
<td>4.8 to 9.6 fl oz/acre</td>
<td>0</td>
<td>4 hr</td>
</tr>
<tr>
<td>oxathiapiprolin + mandipropamid (Orondis Ultra)</td>
<td>49+40</td>
<td>5.5 to 8 fl oz/acre</td>
<td>0</td>
<td>4 hr</td>
</tr>
<tr>
<td>PLECTOSPORIUM BLIGHT (PLECTOSPORIUM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>azoxystrobin (Quadris 2.08F, Aries 250)</td>
<td>11</td>
<td>11 to 15.4 fl oz/acre</td>
<td>1</td>
<td>4 hr</td>
</tr>
<tr>
<td>azoxystrobin + difenoconazole (Quadris Top 1.67SC)</td>
<td>11+3</td>
<td>12 to 14 fl oz/acre</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>fluxapyroxad + pyraclostrobin (Merivon 500SC)</td>
<td>7+11</td>
<td>4 to 5.5 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>trifloxystrobin (Flint 50WDG)</td>
<td>11</td>
<td>1.5 to 2 oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>pyraclostrobin (Cabrio 20WG)</td>
<td>11</td>
<td>12 to 16 oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>POWDERY MILDEW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>azoxystrobin + chlorothalonil (Quadris Opt, Aries Advance)</td>
<td>11+M05</td>
<td>3.2 pt/acre</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>azoxystrobin + difenoconazole (Quadris Top 1.67SC)</td>
<td>11+3</td>
<td>12 to 14 fl oz/acre</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>chlorothalonil (various)</td>
<td>M05</td>
<td>See label</td>
<td>See label</td>
<td>See label</td>
</tr>
<tr>
<td>chlorothalonil + cyadoxanil (Cymbal Advance)</td>
<td>M05+27</td>
<td>3.0 pt/acre</td>
<td>3</td>
<td>0.5</td>
</tr>
<tr>
<td>chlorothalonil + potassium phosphite (Catamaran) 5.27 SC</td>
<td>M05+ P07</td>
<td>6 pints/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>difenoconazole + benzovindiflupyr (Aprovia Top)</td>
<td>7+3</td>
<td>10.5 to 13.5 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>difenoconazole + cyprodinil (Inspire Super) 2.82 SC</td>
<td>3+9</td>
<td>16 to 20 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
</tr>
<tr>
<td>cyufenamid (Torino) 0.85 SC</td>
<td>U6</td>
<td>3.4 oz/acre</td>
<td>0</td>
<td>4 hr</td>
</tr>
<tr>
<td>cyprodinil + fludioxonil (Switch) 62.5 WG</td>
<td>9+12</td>
<td>11 to 14 oz/acre</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>fixed copper (various)</td>
<td>M01</td>
<td>See label</td>
<td>See label</td>
<td>See label</td>
</tr>
<tr>
<td>fluopyram + tebuconazole (Luna Experience) 3.3 F</td>
<td>7+3</td>
<td>8 to 17 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
</tr>
<tr>
<td>flutianil (Gatten)</td>
<td>U13</td>
<td>6 to 8 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>fluxapyrroxad + pyraclostrobin (Merivon 500 SC)</td>
<td>7+11</td>
<td>4 to 5.5 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
</tbody>
</table>
TABLE 3-10. DISEASE CONTROL PRODUCTS FOR CUCURBITS (cont’d)

L. Quesada-Ocampo, Plant Pathologist, North Carolina State University; B. Dutta, Plant Pathologist, University of Georgia

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material</th>
<th>Formulation</th>
<th>Minimum Days</th>
<th>Retreatment</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>POWDERY MILDEW (CONT’D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>metrafenone (Vivando)</td>
<td>50</td>
<td>15.4 fl oz/acre</td>
<td></td>
<td>0</td>
<td>0.5</td>
<td>Begin applications prior to disease and continue in a 7- to 10- day interval.</td>
</tr>
<tr>
<td>myclobutanil (Rally) 40WP</td>
<td>3</td>
<td>2.5 to 5 oz/acre</td>
<td></td>
<td>0</td>
<td>1</td>
<td>Apply no more than 1.5 lb per acre per crop. Observe a 30-day plant-back interval.</td>
</tr>
<tr>
<td>penthiopyrad (Fontelis) 1.67 SC</td>
<td>7</td>
<td>12 to 16 fl oz/acre</td>
<td></td>
<td>1</td>
<td>0.5</td>
<td>Make no more than 2 sequential applications before switching to another fungicide. Do not rotate with Pristine or Luna Experience.</td>
</tr>
<tr>
<td>pyraclostrobin + boscalid (Pristine) 38 WG</td>
<td>11+7</td>
<td>12.5 to 18.5 oz/acre</td>
<td></td>
<td>0</td>
<td>1</td>
<td>Make no more than 4 applications per season</td>
</tr>
<tr>
<td>pyriflufenone (Profivlo)</td>
<td>50</td>
<td>4 to 5 fl oz/acre</td>
<td></td>
<td>0</td>
<td>0.17</td>
<td>Make fungicide applications prior to disease on a 7- to 10-day interval. Do not apply more than 16 fl oz/A/year.</td>
</tr>
<tr>
<td>quinoxyfen (Quintec) 2.08 SC</td>
<td>13</td>
<td>4 to 6 fl oz/acre</td>
<td></td>
<td>3</td>
<td>0.5</td>
<td>Make no more than 2 applications before alternating to a different fungicide. Maximum of 24 fl oz/acre per year. DO NOT USE ON SUMMER SQUASH OR CUCUMBER; labeled on winter squashes, pumpkins, gourds, melon and watermelon.</td>
</tr>
<tr>
<td>sulfur (various)</td>
<td>M02</td>
<td>See label</td>
<td>See label</td>
<td>See label</td>
<td></td>
<td>See labels. Rates vary depending on the formulation. Do not use when temperature is over 90°F or on sulfur-sensitive varieties.</td>
</tr>
<tr>
<td>tebuconazole (Monsoon) 3.6F</td>
<td>3</td>
<td>4 to 6 fl oz/acre</td>
<td></td>
<td>7</td>
<td>0.5</td>
<td>Apply before disease appears when conditions favor development and repeat at 10- to 14-day intervals; max 24 fl oz per season.</td>
</tr>
<tr>
<td>triflumizole (Procure) 50 WS</td>
<td>3</td>
<td>4 to 8 oz/acre</td>
<td></td>
<td>0</td>
<td>0.5</td>
<td>Begin applications at vining or first sign of disease and repeat at 7-to 10-day intervals.</td>
</tr>
<tr>
<td>SCAB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>acibenzolar-S-methyl (Actigard) 50 WP</td>
<td>P01</td>
<td>0.5 to 1 oz/acre</td>
<td></td>
<td>0</td>
<td>0.5</td>
<td>Apply to healthy, actively growing plants. Do not apply to stressed plants. Apply no more than 8 oz per acre per season.</td>
</tr>
<tr>
<td>chlorothalonil (various)</td>
<td>M05</td>
<td>See label</td>
<td>See label</td>
<td>See label</td>
<td></td>
<td>See labels. Rates vary depending on the formulation.</td>
</tr>
<tr>
<td>chlorothalonil + potassium phosphite (Catamaran) 5.27 SC</td>
<td>M05+ P07</td>
<td>6 pints/acre</td>
<td></td>
<td>0</td>
<td>0.5</td>
<td>Apply no more than 50 pints per crop per acre per season. Do not apply to watermelon fruit when stress conditions conducive to sunburn occur.</td>
</tr>
<tr>
<td>VINE DECLINE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fludioxonil (Cannonball)</td>
<td>12</td>
<td>4 to 8 oz/acre</td>
<td></td>
<td>14</td>
<td>0.5</td>
<td>APPLY ONLY TO MELOSNS.</td>
</tr>
</tbody>
</table>
TABLE 3-11. Efficacy of Products for Disease Control in Cucurbits

L. Quesada-Ocampo, Plant Pathologist, North Carolina State University; A. Keinath, Plant Pathologist, Clemson University; B. Dutta, Plant Pathologist, University of Georgia

Scale: E, excellent; G, good; F, fair; P, poor; NC, no control; ND, no data.

Active Ingredient 12

<table>
<thead>
<tr>
<th>Active Ingredient</th>
<th>Product</th>
<th>Fungicide group3</th>
<th>Pathharvest Interval (Days)</th>
<th>Alternaria Leaf Blight</th>
<th>Angular Leaf Spot</th>
<th>Anthracnose</th>
<th>Bacterial F nut Blotch</th>
<th>Bacterial Rot</th>
<th>Cercospora Leaf Spot</th>
<th>Crotalaria</th>
<th>Defective off (Pythium)</th>
<th>Downy Mildew</th>
<th>Fusarium wilt</th>
<th>Gummy Stem Blight</th>
<th>Pythium Blight (folage and fruit)</th>
<th>Pythium Blight (crown and root)</th>
<th>Powdery Mildew</th>
<th>Target Spot</th>
</tr>
</thead>
<tbody>
<tr>
<td>acibenzolar-S-methyl</td>
<td>Actigard</td>
<td>P</td>
<td>0</td>
<td>NC</td>
<td>ND</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>ND</td>
<td>ND</td>
<td>P</td>
<td>ND</td>
<td>NC</td>
<td>ND</td>
<td>NC</td>
<td>ND</td>
<td>NC</td>
</tr>
<tr>
<td>ametoctradin + dimethomorph</td>
<td>Zamplo</td>
<td>45+40</td>
<td>0</td>
<td>ND</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>ND</td>
<td>ND</td>
<td>F</td>
<td>NC</td>
<td>F</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>azoxystrobin</td>
<td>Quadris/ Aries 250</td>
<td>11</td>
<td>1</td>
<td>G</td>
<td>NC</td>
<td>G*</td>
<td>F</td>
<td>G</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>ND</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>azoxystrobin + chlorothalonil</td>
<td>Quadris Opt/ Aries Advance</td>
<td>11+ M05</td>
<td>0</td>
<td>G</td>
<td>NC</td>
<td>P*</td>
<td>NC</td>
<td>F</td>
<td>G</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>ND</td>
<td>NC</td>
<td>F*</td>
<td>NC</td>
<td>NC</td>
<td></td>
</tr>
<tr>
<td>azoxystrobin + difenoconazole</td>
<td>Quadris Top</td>
<td>11+3</td>
<td>1</td>
<td>ND</td>
<td>NC</td>
<td>P*</td>
<td>NC</td>
<td>F</td>
<td>G</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>ND</td>
<td>NC</td>
<td>F*</td>
<td>NC</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>boscalid</td>
<td>Endura</td>
<td>7</td>
<td>0</td>
<td>ND</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>ND</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>ND</td>
<td>NC</td>
<td>NC</td>
<td>ND</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>chlorothalonil</td>
<td>various</td>
<td>M05</td>
<td>0</td>
<td>F</td>
<td>NC</td>
<td>G</td>
<td>NC</td>
<td>G-F</td>
<td>NC</td>
<td>P</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cyazofamid</td>
<td>Ramman</td>
<td>21</td>
<td>0</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>ND</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cytufenamid</td>
<td>Torino</td>
<td>U06</td>
<td>0</td>
<td>NC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cymoxanil</td>
<td>Curzate</td>
<td>27</td>
<td>3</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>ND</td>
<td>ND</td>
<td>NC</td>
<td>ND</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cyprodinil + fludioxonil</td>
<td>Switch</td>
<td>9+12</td>
<td>1</td>
<td>ND</td>
<td>NC</td>
<td>P</td>
<td>NC</td>
<td>ND</td>
<td>ND</td>
<td>NC</td>
<td>NC</td>
<td>ND</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>difenoconazole + benzoitindiflurpy</td>
<td>Aprovia Top</td>
<td>3+7</td>
<td>0</td>
<td>ND</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>ND</td>
<td>ND</td>
<td>NC</td>
<td>NC</td>
<td>ND</td>
<td>G</td>
<td>NC</td>
<td>NC</td>
<td>ND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>difenoconazole + cyprodonil</td>
<td>Inspire Super</td>
<td>3+9</td>
<td>7</td>
<td>F</td>
<td>P</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>ND</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dimethomorph</td>
<td>Forum</td>
<td>40</td>
<td>0</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>ND</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ethabonam</td>
<td>Elumin</td>
<td>22</td>
<td>2</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>famoxadone + cymoxanil</td>
<td>Tanos</td>
<td>11+27</td>
<td>3</td>
<td>ND</td>
<td>NC</td>
<td>P</td>
<td>NC</td>
<td>ND</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>ND</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fenamidone</td>
<td>Reason</td>
<td>11</td>
<td>14</td>
<td>F</td>
<td>NC</td>
<td>ND</td>
<td>NC</td>
<td>NC</td>
<td>ND</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>P*</td>
<td>ND</td>
<td>NC</td>
<td>P</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>fixed copper</td>
<td>various</td>
<td>M01</td>
<td>1</td>
<td>P</td>
<td>F</td>
<td>P</td>
<td>F</td>
<td>NC</td>
<td>P</td>
<td>NC</td>
<td>NC</td>
<td>P</td>
<td>ND</td>
<td>P</td>
<td>NC</td>
<td>NC</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>fluazinam</td>
<td>Omega</td>
<td>29</td>
<td>30,7</td>
<td>ND</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>ND</td>
<td>NC</td>
<td>ND</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>fludioxonil</td>
<td>Presidio</td>
<td>43</td>
<td>2</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td></td>
</tr>
<tr>
<td>fluopyram + tebuconazole</td>
<td>Luna Experience</td>
<td>7+3</td>
<td>7</td>
<td>ND</td>
<td>NC</td>
<td>NC</td>
<td>ND</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>ND</td>
<td>G-F</td>
<td>NC</td>
<td>NC</td>
<td>G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fluopyram + trifloxystrobin</td>
<td>Luna Sensation</td>
<td>7+11</td>
<td>0</td>
<td>ND</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>ND</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td></td>
</tr>
<tr>
<td>flusoxastin</td>
<td>Evito</td>
<td>11</td>
<td>1</td>
<td>G</td>
<td>NC</td>
<td>G</td>
<td>NC</td>
<td>F</td>
<td>G</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
</tr>
<tr>
<td>fluitanil</td>
<td>Gatten</td>
<td>U13</td>
<td>0</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>ND</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>G</td>
<td>NC</td>
<td></td>
</tr>
<tr>
<td>flutriafol</td>
<td>Rhyme, Topguard</td>
<td>3</td>
<td>0</td>
<td>ND</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>ND</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td></td>
</tr>
<tr>
<td>flutriafol + azoxystrobin</td>
<td>Topguard EQ</td>
<td>3+11</td>
<td>0</td>
<td>ND</td>
<td>NC</td>
<td>P</td>
<td>NC</td>
<td>NC</td>
<td>ND</td>
<td>NC</td>
<td>NC</td>
<td>ND</td>
<td>P</td>
<td>NC</td>
<td>NC</td>
<td>P</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>flucyproxyf + pyraclostrobin</td>
<td>Merion</td>
<td>7+11</td>
<td>0</td>
<td>G</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>ND</td>
<td>NC</td>
<td>ND</td>
<td>NC</td>
<td>ND</td>
<td>F</td>
<td>NC</td>
<td>F</td>
<td>ND</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>kresoxim-methyl</td>
<td>Sovran</td>
<td>11</td>
<td>0</td>
<td>ND</td>
<td>NC</td>
<td>ND</td>
<td>NC</td>
<td>ND</td>
<td>NC</td>
<td>ND</td>
<td>NC</td>
<td>ND</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>mancozeb</td>
<td>various</td>
<td>M03</td>
<td>5</td>
<td>F</td>
<td>NC</td>
<td>G</td>
<td>NC</td>
<td>G</td>
<td>NC</td>
<td>NC</td>
<td>P</td>
<td>ND</td>
<td>F</td>
<td>P</td>
<td>NC</td>
<td>F</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>mancozeb + azoxystrobin</td>
<td>Dexter Max</td>
<td>M03+ M05</td>
<td>11</td>
<td>5</td>
<td>F</td>
<td>NC</td>
<td>G</td>
<td>NC</td>
<td>G</td>
<td>NC</td>
<td>NC</td>
<td>P</td>
<td>ND</td>
<td>F</td>
<td>NC</td>
<td>F</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>mancozeb + fixed copper</td>
<td>ManKocide</td>
<td>M03+ M05</td>
<td>5</td>
<td>P</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>NC</td>
<td>P</td>
<td>NC</td>
<td>P</td>
<td>ND</td>
<td>NC</td>
<td>P</td>
<td>NC</td>
<td>P</td>
<td>F</td>
<td></td>
</tr>
</tbody>
</table>

1 Efficacy ratings do not necessarily indicate a labeled use for every disease.
2 Curative; activity; locally systemic.
3 Systemic.
4 When used in combination with chlorothalonil or mancozeb, increases control.
5 Contact control only; no systemic control.
6 Check manufacturers label for compatibility with other products.
7 Can be phytotoxic at temperatures above 90°F; read label carefully.
8 Resistance reported in the pathogen.
9 Ratings based on efficacy and resistance on cucumber.
TABLE 3-11. EFFICACY OF PRODUCTS FOR DISEASE CONTROL IN CUCURBITS (cont’d)

<table>
<thead>
<tr>
<th>Active Ingredient ¹,²</th>
<th>Product</th>
<th>Fungicide group ³</th>
<th>Preharvest Interval (Days)</th>
<th>Alternaria Leaf Blight</th>
<th>Angular Leaf Spot</th>
<th>Bacterial Furi-Biotic</th>
<th>Belly Rot</th>
<th>Cercospora Leaf Spot</th>
<th>Cottony Leak</th>
<th>Damping-off (Pythium)</th>
<th>Fusarium Wilt</th>
<th>Gummy Stem Blight</th>
<th>Phytophthora Blight (foliage and fruit)</th>
<th>Phytophthora Blight (crown and root)</th>
<th>Powdery Mildew</th>
<th>Target Spot</th>
</tr>
</thead>
<tbody>
<tr>
<td>mandipropamid</td>
<td>Revus</td>
<td></td>
<td>40</td>
<td>NC</td>
</tr>
<tr>
<td>mfenoxam ²</td>
<td>Ridomil Gold EC, Ultra Flourish</td>
<td>4</td>
<td>0</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>F¹</td>
<td>G²</td>
<td>NC</td>
<td>ND</td>
<td>NC</td>
<td>F²</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>mfenoxam ² + chlorothalonil ³</td>
<td>Ridomil Gold/ Bravo, Flouronil</td>
<td>4+M05</td>
<td>0</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>F</td>
<td>F²</td>
<td>F²</td>
<td>ND</td>
<td>F</td>
<td>F²</td>
<td>F²</td>
<td>NC</td>
<td>F¹</td>
</tr>
<tr>
<td>mfenoxam ² + copper ⁵</td>
<td>Ridomil Gold/ Copper</td>
<td>4+M01</td>
<td>5</td>
<td>F</td>
<td>P</td>
<td>NC</td>
<td>P</td>
<td>F</td>
<td>F²</td>
<td>F²</td>
<td>ND</td>
<td>NC</td>
<td>F²</td>
<td>F²</td>
<td>NC</td>
<td>F¹</td>
</tr>
<tr>
<td>mfenoxam ² + mancozeb ⁵</td>
<td>Ridomil Gold MZ</td>
<td>4+M03</td>
<td>5</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>F</td>
<td>F²</td>
<td>F²</td>
<td>ND</td>
<td>P</td>
<td>F²</td>
<td>NC</td>
<td>F¹</td>
<td>NC</td>
</tr>
<tr>
<td>metrafenone</td>
<td>Vivando</td>
<td></td>
<td>50</td>
<td>0</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>G</td>
<td>NC</td>
<td>G</td>
<td>NC</td>
</tr>
<tr>
<td>myclobutanil ²</td>
<td>Rally</td>
<td></td>
<td>3</td>
<td>0</td>
<td>NC</td>
<td>F¹</td>
</tr>
<tr>
<td>oxathiapipril + chlorothalonil</td>
<td>Orondis Opti</td>
<td>49+M05</td>
<td>40</td>
<td>ND</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>ND</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>G</td>
<td>ND</td>
<td>F</td>
<td>G</td>
<td>F</td>
</tr>
<tr>
<td>oxathiapipril + mancozeb</td>
<td>Orondis Ultra</td>
<td>49+40</td>
<td>0</td>
<td>ND</td>
<td>NC</td>
<td>NC</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>G</td>
<td>ND</td>
<td>G</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>penthiopyrad</td>
<td>Fontella</td>
<td></td>
<td>7</td>
<td>1</td>
<td>ND</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>ND</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>ND</td>
<td>NC</td>
<td>NC</td>
<td>F¹</td>
</tr>
<tr>
<td>phosphonate ⁶</td>
<td>various</td>
<td>0.7</td>
<td>15</td>
<td>0.5</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>F²</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>potassium phosphate + tebuconazole</td>
<td>Viathon</td>
<td>P07+3</td>
<td>7</td>
<td>ND</td>
<td>NC</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>F</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>NC</td>
</tr>
<tr>
<td>propamocarb</td>
<td>Prevoir Flex/ Bruin</td>
<td>28</td>
<td>2</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>F²</td>
<td>ND</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>prothioconazole</td>
<td>Proline</td>
<td></td>
<td>3</td>
<td>7</td>
<td>ND</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>ND</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>G²</td>
<td>NC</td>
<td>ND</td>
<td>F</td>
</tr>
<tr>
<td>pydiflumetofen + fludioxonil</td>
<td>Miravis Prime</td>
<td>7+12</td>
<td>1</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>F</td>
<td>ND</td>
<td>G</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>pyraclostrobin ²</td>
<td>Cabrio, Pyrac</td>
<td>11</td>
<td>0</td>
<td>G</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>ND</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC²</td>
<td>NC</td>
<td>NC³</td>
<td>E</td>
</tr>
<tr>
<td>pyraclostrobin ² + boscalid ²</td>
<td>Pristine</td>
<td>11+7</td>
<td>0</td>
<td>G</td>
<td>NC</td>
<td>P</td>
<td>NC</td>
<td>ND</td>
<td>G</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC²</td>
<td>NC</td>
<td>P</td>
<td>F</td>
</tr>
<tr>
<td>quinoxyfen</td>
<td>Quintec</td>
<td></td>
<td>13</td>
<td>3</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC²</td>
<td>NC</td>
<td>NC</td>
<td>G weighing</td>
</tr>
<tr>
<td>sulfur</td>
<td>various ³</td>
<td>M02</td>
<td>0</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC²</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
</tr>
<tr>
<td>tebuconazole</td>
<td>Monsson</td>
<td></td>
<td>3</td>
<td>7</td>
<td>ND</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>F²</td>
<td>NC</td>
<td>NC²</td>
<td>NC</td>
<td>NC</td>
<td>F¹</td>
</tr>
<tr>
<td>thiofanate-methyl ³</td>
<td>Topsin M</td>
<td></td>
<td>1</td>
<td>1</td>
<td>F</td>
<td>NC</td>
<td>G</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC²</td>
<td>NC</td>
<td>NC</td>
<td>F¹</td>
</tr>
<tr>
<td>trifloxystrobin ²</td>
<td>Flint</td>
<td></td>
<td>11</td>
<td>0</td>
<td>G</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>ND</td>
<td>ND</td>
<td>NC</td>
<td>NC</td>
<td>NC²</td>
<td>ND</td>
<td>NC</td>
<td>G¹</td>
</tr>
<tr>
<td>triflumizole</td>
<td>Procure</td>
<td></td>
<td>3</td>
<td>0</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC²</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>zoxamide + chlorothalonil</td>
<td>Zing!</td>
<td>22+ M05</td>
<td>5</td>
<td>F</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>P</td>
<td>ND</td>
<td>F</td>
<td>P</td>
<td>NC</td>
<td>F²</td>
<td>NC</td>
<td>F¹</td>
</tr>
<tr>
<td>zoxamide + mancozeb</td>
<td>Gavel</td>
<td></td>
<td>22+ M03</td>
<td>5</td>
<td>F</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>P</td>
<td>ND</td>
<td>F</td>
<td>P²</td>
<td>NC</td>
<td>F²</td>
<td>P¹</td>
</tr>
</tbody>
</table>

¹ Efficacy ratings do not necessarily indicate a labeled use for every disease.
² Curative activity; locally systemic.
³ Systemic.
⁴ When used in combination with chlorothalonil or mancozeb, gives increased control.
⁵ Contact control only; no systemic control.
⁶ Check manufacturers label for compatibility with other products.
⁷ Can be phytotoxic at temperatures above 90°F; read label carefully.
⁸ To prevent resistance in pathogens, alternate fungicides within a group with fungicides in another group. Fungicides in the “M” group are generally considered “low risk” with no signs of resistance developing to most fungicides.
⁹ Resistance reported in the pathogen.
¹⁰ Ratings based on efficacy and resistance on cucumber.
TABLE 3-12. IMPORTANCE OF ALTERNATIVE MANAGEMENT PRACTICES FOR DISEASE CONTROL IN CUCURBITS

L Quesada-Ocampo, Plant Pathologist, North Carolina State University; A. Keinath, Plant Pathologist, Clemson University

Scale: E, excellent; G, good; F, fair; P, poor; NC, no control; ND, no data.

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Alternaria leaf blight</th>
<th>Angular leaf spot</th>
<th>Anthracnose</th>
<th>Bacterial fruit botch</th>
<th>Bacterial wilt</th>
<th>Bellota</th>
<th>Cercospora leaf spot</th>
<th>Chaetomium fruit rot</th>
<th>Cottony leak</th>
<th>Fusarium wilt</th>
<th>Gummy stem blight</th>
<th>Mosaic Virus</th>
<th>Phytophthora blight</th>
<th>Plectosporium blight</th>
<th>Powdery mildew</th>
<th>Pythium damping off</th>
<th>Root knot nematode</th>
<th>Target spot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avoid field operations when leaves are wet</td>
<td>P</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>NC</td>
<td>P</td>
<td>NC</td>
<td>P</td>
<td>NC</td>
<td>P</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>Avoid overhead irrigation</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>P</td>
<td>P</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
</tr>
<tr>
<td>Change planting date from Fall to Spring (^1)</td>
<td>G</td>
<td>P</td>
<td>G</td>
<td>P</td>
<td>F</td>
<td>F</td>
<td>G</td>
<td>F</td>
<td>G</td>
<td>P</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F-G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>Cover cropping with antagonist</td>
<td>NC</td>
</tr>
<tr>
<td>Crop rotation with non-host (2 to 3 years)</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>NC</td>
<td>P</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>P</td>
<td>NC</td>
<td>F</td>
</tr>
<tr>
<td>Deep plowing</td>
<td>P</td>
<td>NC</td>
<td>P</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>P</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>P</td>
<td>P</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>Destroy crop residue immediately</td>
<td>F</td>
<td>P</td>
<td>F-G</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>NC</td>
<td>P</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>P</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
</tr>
<tr>
<td>Encourage air movement (^2)</td>
<td>F</td>
<td>P</td>
<td>F</td>
<td>P</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>P</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>Soil organic amendments (^3)</td>
<td>ND</td>
<td>NC</td>
<td>ND</td>
<td>NC</td>
<td>NC</td>
<td>P</td>
<td>ND</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>P</td>
<td>ND</td>
<td>NC</td>
<td>ND</td>
<td>F</td>
<td>ND</td>
<td>F</td>
<td>NC</td>
</tr>
<tr>
<td>Insecticide/horticultural oils (^4)</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
</tr>
<tr>
<td>pH management (soil)</td>
<td>NC</td>
</tr>
<tr>
<td>Plant in well-drained soil</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>Plant on raised beds</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>P</td>
<td>NC</td>
<td>P</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>Plastic mulch bed covers</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>P</td>
<td>NC</td>
<td>G</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>Postharvest temperature control (fruit)</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>P</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>Reflective mulch (additional effect over plastic mulch)</td>
<td>NC</td>
</tr>
<tr>
<td>Reduce mechanical injury</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>F</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>NC</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>NC</td>
<td>P</td>
<td>NC</td>
<td>P</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>Rogue diseased plants/fruit (home garden)</td>
<td>F</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>F</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>P</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>Row covers (insect exclusion)</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>G</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>G</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>Soil solarization (reduce soil inoculum)</td>
<td>P</td>
<td>NC</td>
<td>P</td>
<td>NC</td>
<td>P</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>P</td>
<td>NC</td>
<td>F</td>
<td>P</td>
<td>NC</td>
<td>P</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>Pathogen-free planting material</td>
<td>P</td>
<td>E</td>
<td>F</td>
<td>E</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>G</td>
<td>E</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>Resistant cultivars (^5)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>E</td>
<td>ND</td>
<td>G</td>
<td>E</td>
<td>ND</td>
<td>E</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Grafting (^6)</td>
<td>NC</td>
<td>GC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>Destroy volunteer plants</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>F</td>
<td>G</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>P</td>
<td>F</td>
<td>NC</td>
</tr>
</tbody>
</table>

\(^1\) Early planting reduces risk.

\(^2\) Air movement can be encouraged by increasing plant spacing, orienting beds with prevailing wind direction and increasing exposure of field to prevailing wind.

\(^3\) Soil organic amendments = cover crops; composted organic wastes.

\(^4\) Insecticide/Horticultural oil = Sunspray Ultra-Fine Spray Oil (Sun Company, Inc.), JMS Stylet oil; Safe-T-Side (Brandt Consolidated, Inc.); PCC 1223 (United Ag Products).

\(^5\) Resistance available in some cucurbits.
DISEASE CONTROL

Note 5-day PHI on mancozeb. If gummy stem blight is present. Apply Gatten if weather is unusually dry. Chlorothalonil
Quadris Top protects against anthracnose.

Comments on Fall Program

OR tebuconazole + Gavel
If gummy stem blight is present. OR mancozeb + 2022 Vegetable Crop Handbook for Southeastern United States
tebuconazole + Ranman
Miravis Prime
cholorothalonil
mancozeb + Ranman
chlorothalonil

Comments on Spring Program

If downy mildew is present. Note 5-day PHI on mancozeb. Apply Orondis Ultra in weeks 5 and 7 to manage Alternaria leaf spot.

May be substituted for products in the spray program below.

• Start spraying when vines start to run or no later than when the first blooms (the male ones) open.
• Check http://cdm.ipmpipe.org to see where and when downy mildew has been reported on watermelon. Rotate Orondis Ultra with Ranman if downy mildew is present in your field.
• From vine run until mid-May, spray every 10 days. After mid-May or when powdery and downy mildew typically show up in your area, spray every week through harvest regardless of the weather.

Do not stop spraying until you stop harvesting. Downy and powdery mildew can attack a crop any time it goes more than one week without a fungicide spray. Fungicides with a 7-day PHI are not recommended during the harvest period (usually after week 5); note that mancozeb and Gavel have a 5-day PHI.

• If this spray schedule is used to select fungicides for other cucurbits (vine crops), note that cucumber does not need to be sprayed for powdery mildew, and most hybrid cantaloupe cultivars also are resistant to powdery mildew. For cantaloupe, substitute a FRAC 11 fungicide for mancozeb in weeks 5 and 7 to manage Alternaria leaf spot.

TABLE 3-13. EXAMPLE SPRAY PROGRAM FOR FOLIAR DISEASE CONTROL IN WATERMELON PRODUCTION

A Keinath, Plant Pathologist, Clemson University

This spray program is based on research conducted at the Clemson Coastal Research and Education Center, Charleston, SC, and on a survey of watermelon fields in South Carolina in 2015 and 2016. The most common diseases in both survey years were gummy stem blight and powdery mildew. This program is designed to manage bacterial fruit blight, various bacterial leaf spots, gummy stem blight, powdery mildew, anthracnose, and downy mildew. The fall spray program is designed to manage gummy stem blight, downy mildew, powdery mildew, and anthracnose.

• Protectants (chlorothalonil and mancozeb) are effective against anthracnose all season, but other disease-specific fungicides must be used against gummy stem blight, downy mildew, and powdery mildew. See Tables 3-10 and 3-11. Products rated as good (G) in Table 3-11 may be substituted for products in the spray program below.

• Fungicides for downy mildew are in bold and should be applied in spring and during dry periods in fall.
• Underline indicates the fungicide should be used if downy mildew has been reported on watermelon in your state or a neighboring state. Tank mix Orondis Ultra with mancozeb to protect against powdery mildew.

• If fruit blotch or bacterial leaf spot is a concern, use mancozeb + fixed copper instead. Do not tank mix copper with chlorothalonil.

• Do not stop spraying until you stop harvesting. Downy and powdery mildew can attack a crop any time it goes more than one week without a fungicide spray.

Options to consider:

- Use this program if gummy stem blight is present.
- If harvest has started note 7-day PHI for Inspire Super, and 1-day PHI for Miravis Prime.
- Start spraying when vines start to run or no later than when the first blooms (the male ones) open.
- Check http://cdm.ipmpipe.org to see where and when downy mildew has been reported on watermelon. Rotate Orondis Ultra with Ranman if downy mildew is present.

Spray	Fungicide Program for Spring Watermelon*	Comments on Spring Program	Fungicide Program for Fall Watermelon*	Comments on Fall Program
1 (vine run) | mancozeb + fixed copper | For prevention of bacterial leaf spots and fruit blotch. | chlorothalonil |
2 | chlorothalonil | If fruit blot or bacterial leaf spot is a concern, use mancozeb + fixed copper instead. Do not tank mix copper with chlorothalonil. | |
3a** | tebuconazole | If fruit blot is a concern, add fixed copper. | tebuconazole + Ranman | Apply Ranman if downy mildew has been reported on watermelon in your state.
3b** | OR tebuconazole + (Flint Extra) | Add Flint if anthracnose was found the previous year. | OR tebuconazole + Gatten | Apply Gatten if weather is unusually dry to prevent powdery mildew.
4 | chlorothalonil (or mancozeb) | If fruit blot or bacterial leaf spot is a concern, substitute mancozeb + fixed copper. | Quadris Top | Quadris Top protects against anthracnose and gummy stem blight.
5a** | mancozeb + Gatten | Starting week 5, use mancozeb to avoid injury to fruit on hot, sunny days. Note 5-day PHI on mancozeb. | Gavel | Gavel protects against anthracnose, gummy stem blight, and downy mildew.
5b** | OR Inspire Super or Miravis Prime | Use this program if gummy stem blight is present. If harvest has started note 7-day PHI for Inspire Super, and 1-day PHI for Miravis Prime. (same as 5a) | |
6 | Gavel | Note 5-day PHI. | Miravis Prime |
6b | OR mancozeb plus Orondis Ultra | Apply Orondis Ultra if downy mildew has been reported on watermelon in your state or a neighboring state. Tank mix Orondis Ultra with mancozeb to protect against gummy stem blight and anthracnose. (same as 6a) | |
7a** | mancozeb + Vivando | Note 5-day PHI on mancozeb. | mancozeb + Ranman | If downy mildew is present. Note 5-day PHI on mancozeb.
7b** | Switch or Miravis Prime | If gummy stem blight is present. | Miravis Prime or Switch | If gummy stem blight is present.
8 | mancozeb + Ranman | | chlorothalonil |
9-12 | If more sprays are needed after spray 8 until the last harvest, apply sprays 5 to 8 again, BUT check maximum number of applications allowed per crop | | |

* Fungicides for downy mildew are in bold and should be used if downy mildew has been reported on watermelon in the current season (visit http://cdm.ipmpipe.org to access the downy mildew forecast). Fungicides for powdery mildew are underlined and should be applied in spring and during dry periods in fall.
** Option "a" is a lower cost treatment that may be less effective. Option “b” is a more expensive systemic fungicide that is more effective when disease is already in the field or when weather conditions favor disease getting worse.

Fungicides for powdery mildew are in **bold** and should be applied in spring and during dry periods in fall.

Fungicides for powdery mildew are **underlined** and should be applied in spring and during dry periods in fall.
TABLE 3-14. DISEASE CONTROL PRODUCTS FOR EGGPLANT

A. Keinath, Plant Pathologist, Clemson University

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material Formulation</th>
<th>Minimum Days</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTHRACNOSE FRUIT ROT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>azoxystrobin (various)</td>
<td>11</td>
<td>See labels</td>
<td>0</td>
<td>4 hr</td>
</tr>
<tr>
<td>chlorothalonil + cymoxanil (Cymbol Advance)</td>
<td>M5+27</td>
<td>2 to 2.4 pint/acre</td>
<td>3</td>
<td>0.5</td>
</tr>
<tr>
<td>difenoconazole + benzoindifluypr (Aprovia Top. 1.62EC)</td>
<td>3+7</td>
<td>10.5 to 13.5 fl oz/acre</td>
<td>14</td>
<td>0.5</td>
</tr>
<tr>
<td>fluatriafol (Rhyme 2.08SC)</td>
<td>3</td>
<td>7 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>fluatriafol + azoxystrobin (Topguard EQ 4.29 SC)</td>
<td>3+11</td>
<td>4 to 8 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>ANTHRACNOSE FRUIT ROT, EARLY BLIGHT, GRAY MOLD, GRAY LEAF SPOT, SEPTORIA LEAF SPOT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOTE: THESE LEAF SPOTS ARE NOT COMMON ON EGGPLANT IN THE SOUTHEASTERN U.S., SO PREVENTATIVE APPLICATIONS ARE NOT USUALLY NEEDED.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>boscalid (Endura 70 WG)</td>
<td>7</td>
<td>2.5 to 3.5 oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>chlorothalonil (various)</td>
<td>M5</td>
<td>1.5 pt/acre</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>chlorothalonil + cymoxanil (Cymbol Advance)</td>
<td>M5+27</td>
<td>2 to 2.4 pint/acre</td>
<td>3</td>
<td>0.5</td>
</tr>
<tr>
<td>fenamidone (Reason 500SC)</td>
<td>11</td>
<td>5.5 to 8.2 fl oz/acre</td>
<td>14</td>
<td>0.5</td>
</tr>
<tr>
<td>fludioxonil + pydfluometofen (Miravis Prime 2.09SC)</td>
<td>12+7</td>
<td>9.2 to 11.4 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>fluropyram + trifloxystrobin (Luna Sensation 500 SC)</td>
<td>7+11</td>
<td>5.0 to 7.6 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
</tr>
<tr>
<td>fluzoxidin (Aftershock, Evito 280 SC)</td>
<td>11</td>
<td>2 to 5.7 fl oz/acre</td>
<td>3</td>
<td>0.5</td>
</tr>
<tr>
<td>penthiopyrad (Fontels 1.67 SC)</td>
<td>7</td>
<td>16 to 24 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>pyraclostrobin (various)</td>
<td>11</td>
<td>8 to 12 oz/acre</td>
<td>0</td>
<td>4 hr</td>
</tr>
<tr>
<td>pyraclostrobin + fluaxpyroxad (Prixor 500 SC)</td>
<td>11+7</td>
<td>4.0 to 8.0 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>tetracozazole (Metilo 125 ME)</td>
<td>3</td>
<td>6 to 8 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>trifloxystrobin (Flint Extra 42.6 SC)</td>
<td>11</td>
<td>3.0 to 3.8 fl oz/acre</td>
<td>3</td>
<td>0.5</td>
</tr>
<tr>
<td>zoxamide + chlorothalonil (Zing! 4.9 SC)</td>
<td>22+M5</td>
<td>34 fl oz/acre</td>
<td>3</td>
<td>0.5</td>
</tr>
<tr>
<td>PHOMOPSIS BLIGHT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>copper (various)</td>
<td>M1</td>
<td>See labels</td>
<td>See labels</td>
<td>2</td>
</tr>
<tr>
<td>PHYTOPHTHORA BLIGHT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ametractrin + dimethomorph (Zampro 525 SC)</td>
<td>45+40</td>
<td>14 fl oz/acre</td>
<td>4</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Table 3-14. Disease Control Products for Eggplant (cont’d)

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material Formulation</th>
<th>Minimum Days Harv.</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phytophthora Blight (cont’d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cyazofamid (Ranman 400SC)</td>
<td>21</td>
<td>2.75 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>copper (various)</td>
<td>M1</td>
<td>See labels</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>dimethomorph (Acrobat, Forum)</td>
<td>40</td>
<td>6 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>ethaboxam (Emin 4SC)</td>
<td>22</td>
<td>8 fl oz/acre</td>
<td>2</td>
<td>0.5</td>
</tr>
<tr>
<td>famoxadone + cymoxanil (Tanis 50 DF)</td>
<td>11+27</td>
<td>8 to 10 oz/acre</td>
<td>3</td>
<td>0.5</td>
</tr>
<tr>
<td>fluazinam (Omega 500 F)</td>
<td>29</td>
<td>1 to 1.5 pt/acre</td>
<td>30</td>
<td>0.5</td>
</tr>
<tr>
<td>fluopicolide (Presidio 4 SC)</td>
<td>43</td>
<td>3 to 4 fl oz/acre</td>
<td>2</td>
<td>0.5</td>
</tr>
<tr>
<td>mefenoxam + copper hydroxide (Ridomil Gold + Copper)</td>
<td>4+M1</td>
<td>2 lb/acre</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>oxathiapiprilon + mefenoxam (Orondis Gold 200)</td>
<td>U15+4</td>
<td>4.8 to 9.6 fl oz/acre</td>
<td>0</td>
<td>4 hr</td>
</tr>
<tr>
<td>oxathiapiprilon + mandipropamid (Orondis Ultra 2.33 SC)</td>
<td>U15+40</td>
<td>5.5 to 8.0 fl oz/acre</td>
<td>1</td>
<td>4 hr</td>
</tr>
<tr>
<td>mandipropamid (Revus 2.08 F, Micora)</td>
<td>40</td>
<td>8 fl oz/acre</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>Powdery Mildew</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Powdery mildew has not been reported on eggplant in the U.S. If you see it, contact your county Extension agent.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pythium Root Rot</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mefenoxam (various)</td>
<td>4</td>
<td>See labels</td>
<td>—</td>
<td>2</td>
</tr>
<tr>
<td>metalaxyl (MetaStar2 E)</td>
<td>4</td>
<td>4 to 8 pt/treated acre</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>cyazofamid (Ranman 400SC)</td>
<td>21</td>
<td>2.75 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>Southern Blight</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fluoxastrobin (Artershock, Evito 280SC)</td>
<td>11</td>
<td>2 to 5.7 fl oz/acre</td>
<td>3</td>
<td>0.5</td>
</tr>
<tr>
<td>penthiopyrad (Fontelis 1.67 SC)</td>
<td>7</td>
<td>16 to 24 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>pyraclostrobin (various)</td>
<td>11</td>
<td>12 to 16 oz/acre</td>
<td>0</td>
<td>4 hr</td>
</tr>
<tr>
<td>pyraclostrobin + fluxapyroxad (Pniaxor 500 SC)</td>
<td>11+7</td>
<td>4.0 to 8.0 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
</tbody>
</table>
TABLE 3-14. DISEASE CONTROL PRODUCTS FOR EGGPLANT (cont’d)

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material</th>
<th>Minimum Days</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>RHIZOCTONIA SEEDLING AND ROOT ROT</td>
<td>11</td>
<td>0.4 to 0.8 fl oz/1,000 row feet</td>
<td>—</td>
<td>4 hr Make in-furrow or banded applications shortly after plant emergence. Under cool, wet conditions, crop injury from soil directed applications may occur.</td>
</tr>
<tr>
<td>difenoconazole + benzovindiflupyr (Aprovia Top 1.62 EC)</td>
<td>3+7</td>
<td>10.5 to 13.5 fl oz/acre</td>
<td>14</td>
<td>0.5 Make no more than 2 consecutive applications before switching to a non-Group 7 fungicide. Make no more than 5 applications at the low rate or 4 applications at the high rate per year.</td>
</tr>
</tbody>
</table>

VERTICILLIUM WILT

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material</th>
<th>Minimum Days</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>polyoxin D (OSO 5%)</td>
<td>19</td>
<td>6.5 to 13 fl oz/acre</td>
<td>0</td>
<td>4 hr SUPPRESSION ONLY. Can be applied using banded or irrigation water applications. Limit of 6 applications at maximum rate per acre per season.</td>
</tr>
</tbody>
</table>

FENNEL SEE LEAFY PETIOLES

TABLE 3-15. DISEASE CONTROL PRODUCTS FOR GARLIC (cont’d)

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material</th>
<th>Minimum Days</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOTRYTIS BLIGHT (BOTRYTIS SPP.), CLADOSPORIUM LEAF BLOTCH (CLADOSPORIUM ALLII), PURPLE BLOTCH (ALTERNARIA PORRI), DOWNY MILDEW (PERONOSPORA DESTRUCTOR), RUST (PUCCINIA ALLII)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>azoxystrobin (various)</td>
<td>11</td>
<td>6.2 to 15.4 fl oz/acre</td>
<td>0</td>
<td>4 hr Use higher rate for downy mildew and Botrytis. Do not make more than two sequential applications.</td>
</tr>
<tr>
<td>azoxystrobin + difenoconazole (Quadrant Top)</td>
<td>11+3</td>
<td>14 fl oz/acre</td>
<td>7</td>
<td>0.5 Begin sprays prior to disease onset and spray on a 7- to 14-day schedule. Do not rotate with Group 11 fungicides.</td>
</tr>
<tr>
<td>azoxystrobin + chlorothalonil (Quadrant Opti)</td>
<td>11+M</td>
<td>1.6 to 3.2 pt/acre</td>
<td>14</td>
<td>0.5 Make no more than one application before alternating with a fungicide with a different mode of action. Use higher rates for downy mildew.</td>
</tr>
<tr>
<td>azoxystrobin + mancozeb (various)</td>
<td>11+M</td>
<td>3.2 lb/acre</td>
<td>7</td>
<td>0.5 Follow protective 7-day schedule. Observe season limit for azoxystrobin applications.</td>
</tr>
<tr>
<td>azoxystrobin + propiconazole (various)</td>
<td>3+11</td>
<td>14 to 26 oz/acre</td>
<td>0 to 14</td>
<td>0.5 Also labeled for white rot. Apply preventatively on a 7- to 14-day schedule. Season limit 56 oz/acre.</td>
</tr>
<tr>
<td>azoxystrobin + tebuconazole (various)</td>
<td>11+3</td>
<td>8.6 to 32 oz/acre</td>
<td>7</td>
<td>0.5 Also labeled for drip-irrigation or banded applications for white rot. Apply preventatively on a 10- to 14-day schedule. Season limit 70 oz/acre.</td>
</tr>
<tr>
<td>benzinovindiflupyr + difenoconazole (Aprovia Top)</td>
<td>7+3</td>
<td>10.5 oz/acre</td>
<td>7</td>
<td>0.5 Not Botrytis. Includes Stemphylium and powdery mildew. Spreading/penetrating type adjuvant recommended.</td>
</tr>
<tr>
<td>boscalid (Endura) 70 WG</td>
<td>7</td>
<td>6.8 oz/acre</td>
<td>7</td>
<td>0.5 Not for downy mildew. Do not make more than 2 sequential applications or more than 6 applications per season.</td>
</tr>
<tr>
<td>chlorothalonil (various)</td>
<td>M</td>
<td>See label</td>
<td>7</td>
<td>2 Spray at first appearance; 7- to 14-day intervals.</td>
</tr>
<tr>
<td>chlorothalonil + cymoxanil (Aniston)</td>
<td>M+27</td>
<td>1.6 to 2.4 pt/acre</td>
<td>7</td>
<td>0.5 Not for Botrytis blight. Apply prior to favorable infection periods; continue on 7- to 9-day interval; alternate with a different mode of action.</td>
</tr>
<tr>
<td>chlorothalonil + oxathiapiprolin (Orondis Opti)</td>
<td>M5+49</td>
<td>1.75 to 2.5 pt/acre</td>
<td>7</td>
<td>0.5 Do not combine with other products containing oxathiapiprolin (any Orondis product).</td>
</tr>
<tr>
<td>chlorothalonil + tebuconazole (Muscle ADV)</td>
<td>M5+3</td>
<td>1.1 to 1.6 pt/acre</td>
<td>7 to 14</td>
<td>0.5 Rust and purple blotch only.</td>
</tr>
<tr>
<td>chlorothalonil + zoxamide (Zing!)</td>
<td>M+22</td>
<td>30 fl oz/acre</td>
<td>7</td>
<td>0.5 Follow protective spray schedule when diseases are in the area; continue on 7-day interval.</td>
</tr>
<tr>
<td>difenoconazole + cyprodinil (Inspire Super)</td>
<td>3+9</td>
<td>16 to 20 fl oz/acre</td>
<td>14</td>
<td>0.5 Make no more than two applications before alternating with a fungicide with a different mode of action.</td>
</tr>
<tr>
<td>famoxadone + cymoxanil (Tanos)</td>
<td>11+27</td>
<td>8 oz/acre</td>
<td>3</td>
<td>0.5 Not for Botrytis.</td>
</tr>
<tr>
<td>fenamidone (Reason)</td>
<td>11</td>
<td>5.5 oz/acre</td>
<td>7</td>
<td>0.5 Not for Botrytis.</td>
</tr>
</tbody>
</table>
TABLE 3-15. DISEASE CONTROL PRODUCTS FOR GARLIC (cont’d)

E. Pfeufer, Plant Pathologist, University of Kentucky (Not updated in 2021)

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material Formulation</th>
<th>Minimum Days</th>
<th>Reentry</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOTRYTIS BLIGHT (BOTRYTIS SPP.), CLADOSPORIUM LEAF BLOTCH (CLADOSPORIUM ALLII), PURPLE BLOTCH (ALTERNARIA PORRI), DOWNY MILDEW (PERONOSPORA DESTRUCTOR), RUST (PUCCINIA ALLII) (CONT’D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fixed copper (various)</td>
<td>M</td>
<td>various</td>
<td>1 1</td>
<td>Also effective against foliar bacterial diseases.</td>
<td></td>
</tr>
<tr>
<td>fluazinam (various)</td>
<td>29</td>
<td>1.0 pt/acre</td>
<td>7 1</td>
<td>Initiate sprays when conditions are favorable for disease at disease onset. Spray on a 7- to 10-day or schedule.</td>
<td></td>
</tr>
<tr>
<td>fluopyram + tebuconazole (Luna Experience)</td>
<td>7+3</td>
<td>8 to 12.8 oz/acre</td>
<td>7 0.5</td>
<td>Not for downy mildew but labeled for white rot suppression. Apply preventatively on 10- to 14-day schedule.</td>
<td></td>
</tr>
<tr>
<td>fluopyram + pyrimethanil (Luna Tranquility)</td>
<td>7+9</td>
<td>16 to 27 oz/acre</td>
<td>7 0.5</td>
<td>Not for downy mildew but labeled for white rot suppression. Apply preventatively on 10- to 14-day schedule.</td>
<td></td>
</tr>
<tr>
<td>fluxapyroxad + pyraclostrobin (Merivon)</td>
<td>7+11</td>
<td>4 to 11 fl oz/acre</td>
<td>7 0.5</td>
<td>Use higher rates for downy mildew suppression. Apply at disease onset; continue on a 7- to 14-day schedule. No more than 3 applications/season.</td>
<td></td>
</tr>
<tr>
<td>mancozeb + zoxamide (Gavel)</td>
<td>M3+22</td>
<td>1.5 to 2 lb/acre</td>
<td>7 2</td>
<td>Apply on a protective spray schedule. Do not apply to exposed bulbs.</td>
<td></td>
</tr>
<tr>
<td>mancozeb + azoxyostrobin (Dexter Max)</td>
<td>M3+11</td>
<td>3.2 lb/acre</td>
<td>7 1</td>
<td>Do not apply to exposed bulbs.</td>
<td></td>
</tr>
<tr>
<td>mefenoxam + chlorothalonil (Ridomil Gold/Bravo)</td>
<td>4+M</td>
<td>2.5 pt/acre</td>
<td>7 2</td>
<td>Spray at first appearance; 7- to 14-day intervals.</td>
<td></td>
</tr>
<tr>
<td>mancozeb + azoxystrobin (Dexter Max)</td>
<td>M3+11</td>
<td>various</td>
<td>1 1</td>
<td>Also effective against foliar bacterial diseases.</td>
<td></td>
</tr>
<tr>
<td>penthiopyrad (Fontelis)</td>
<td>7</td>
<td>16 to 24 oz/acre</td>
<td>3 0.5</td>
<td>Not for downy mildew, but also labeled for white rot in-furrow, drenched, or drip irrigated. Use preventatively on a 7- to 14-day schedule.</td>
<td></td>
</tr>
<tr>
<td>propiconazole (various)</td>
<td>3</td>
<td>2 to 8 oz/acre</td>
<td>0 to 14 0.5</td>
<td>Purple blotch and Botrytis suppression. Apply preventatively in no less than 15 gal/acre, on a 7- to 10-day schedule (16 oz/acre season limit).</td>
<td></td>
</tr>
<tr>
<td>pyraclostrobin (Cabrio)</td>
<td>11</td>
<td>8 to 12 oz/acre</td>
<td>7 0.5</td>
<td>Not for Botrytis. Use highest rate for downy mildew.</td>
<td></td>
</tr>
<tr>
<td>mancozeb + zoxamide (Gavel)</td>
<td>M3+22</td>
<td>1.5 to 2 lb/acre</td>
<td>7 2</td>
<td>Make no more than 2 sequential applications and no more than 6 applications per season.</td>
<td></td>
</tr>
<tr>
<td>mancozeb + azoxyostrobin (Dexter Max)</td>
<td>M3+11</td>
<td>3.2 lb/acre</td>
<td>7 1</td>
<td>Do not apply to exposed bulbs.</td>
<td></td>
</tr>
<tr>
<td>pyraclostrobin +boscalid (Pristine 38 WG)</td>
<td>11+7</td>
<td>10.5 to 18.5 oz/acre</td>
<td>7 1</td>
<td>Use highest rate for suppression only on downy mildew. Make no more than 6 applications per season.</td>
<td></td>
</tr>
<tr>
<td>pyrimethanil (Scala 5F)</td>
<td>9</td>
<td>9 or 18 fl oz/acre</td>
<td>7 0.5</td>
<td>Not for downy mildew. Use lower rate in a tank mix with broad-spectrum fungicide and higher rate when applied alone. Do not apply more than 54 fl oz per crop.</td>
<td></td>
</tr>
<tr>
<td>tebuconazole (various)</td>
<td>3</td>
<td>4 to 6 oz/acre</td>
<td>7 0.5</td>
<td>Rust and purple blotch only. Also labeled for white rot. Apply preventatively on a 10- to 14-day schedule. Season limit 12 oz/acre.</td>
<td></td>
</tr>
</tbody>
</table>

DOWNY MILDEW (PERONOSPORA DESTRUCTOR)

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material Formulation</th>
<th>Minimum Days</th>
<th>Reentry</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>acibenzolar-S-methyl (Actigard 50 WG)</td>
<td>P01</td>
<td>0.75 to 1 oz/acre</td>
<td>7 0.5</td>
<td>Downy mildew, iris yellow spot virus, and bacterial leaf streak. Apply preventatively; avoid usage during periods of plant stress.</td>
<td></td>
</tr>
<tr>
<td>ametoctradin + dimethomorph (Zampro)</td>
<td>45+40</td>
<td>14.0 fl oz/acre</td>
<td>0 12 hr</td>
<td>Tank-mix with a broad-spectrum fungicide like chlorothalonil or mancozeb.</td>
<td></td>
</tr>
<tr>
<td>cyazofamid (Ranman)</td>
<td>21</td>
<td>2.75 to 3 oz/acre</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dimethomorph (Forum 50 WP)</td>
<td>40</td>
<td>6.4 oz/acre</td>
<td>0 0.5</td>
<td>Must be applied as a tank mix with another fungicide active against downy mildew. Apply every 7- to 10-days. Do not make more than two sequential applications.</td>
<td></td>
</tr>
<tr>
<td>fluopicolide (Presidio)</td>
<td>43</td>
<td>3 to 4 oz/acre</td>
<td>2 0.5</td>
<td>Tank-mix with a nonionic surfactant and apply on preventative schedule.</td>
<td></td>
</tr>
<tr>
<td>mandipropamid (Revus)</td>
<td>40</td>
<td>8.0 fl oz/acre</td>
<td>7 0.5</td>
<td>Apply as a tank mix with another fungicide active against downy mildew. Apply with a silicone-based adjuvant. 7- to 10-day schedule.</td>
<td></td>
</tr>
<tr>
<td>mandipropamid + oxathiapiprolin (Onordis Ultra)</td>
<td>40+49</td>
<td>5.5 to 8 oz/acre</td>
<td>7 4 hr</td>
<td>Do not combine with other products containing oxathiapiprolin (any Onordis product).</td>
<td></td>
</tr>
<tr>
<td>mefenoxam + mancozeb (Ridomil Gold MZ)</td>
<td>4+M</td>
<td>2.5 lb/acre</td>
<td>7 2</td>
<td>Use with a suitable adjuvant.</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 3-15. DISEASE CONTROL PRODUCTS FOR GARLIC (cont’d)

E. Pfeufer, Plant Pathologist, University of Kentucky (Not updated in 2021)

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material</th>
<th>Minimum Days</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHITE ROT (SCLEROTIUM CUPARTUM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>azoxystrobin (various)</td>
<td>11</td>
<td>See labels</td>
<td>0</td>
<td>4 hr</td>
</tr>
<tr>
<td>azoxystrobin + chlorothalonil (Quadris Opti)</td>
<td>11+M</td>
<td>1.6 to 3.2 pt/acre</td>
<td>7</td>
<td>0.5</td>
</tr>
<tr>
<td>bosalid (Endura)</td>
<td>7</td>
<td>6.8 oz/acre</td>
<td>7</td>
<td>0.5</td>
</tr>
<tr>
<td>dicloran (Botran)</td>
<td>14</td>
<td>2 to 3.2 qt/acre</td>
<td>14</td>
<td>0.5</td>
</tr>
<tr>
<td>fludioxonil (Cannonball)</td>
<td>12</td>
<td>0.5 oz/1000 row ft</td>
<td>7</td>
<td>0.5</td>
</tr>
<tr>
<td>iprodione (Rovral 50 WP)</td>
<td>2</td>
<td>4 lb/acre</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>PCNB (Blocker 4F)</td>
<td>14</td>
<td>29 oz/1000 row ft</td>
<td>—</td>
<td>0.5</td>
</tr>
<tr>
<td>thiophanate-methyl (various)</td>
<td>1</td>
<td>43.6 oz/acre</td>
<td>—</td>
<td>3</td>
</tr>
</tbody>
</table>

TABLE 3-16. DISEASE CONTROL PRODUCTS FOR GREENS, LEAFY BRASSICA (COLLARD, KALE, MUSTARD, RAPE SALAD GREENS, TURNIP GREENS)

A. Keinath, Plant Pathologist, Clemson University

Note: For turnips harvested for roots, see Remarks and Table 3-31 Root Vegetables.

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material</th>
<th>Minimum Days</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEEDLING BLIGHT, DAMPING OFF, ROOT ROT (PYTHIUM SPP., RHIZOCTONIA SOLANI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>azoxystrobin + mefenoxam (Uniform 3.72SC)</td>
<td>11+4</td>
<td>0.34 fl oz/1000 row ft</td>
<td>—</td>
<td>0</td>
</tr>
<tr>
<td>azoxystrobin (Quadris 2.08 SC)</td>
<td>11</td>
<td>0.4 to 0.8 fl oz per 1000 row feet</td>
<td>0</td>
<td>4 hr</td>
</tr>
<tr>
<td>ALTERNARIA LEAF SPOT, CERCOSPORA LEAF SPOT, ANTHRACNOSE, WHITE SPOT, AND VARIOUS FOLIAR FUNGAL DISEASES (SEE SPECIFIC LABELS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>azoxystrobin (various)</td>
<td>11</td>
<td>See labels</td>
<td>0</td>
<td>4 hr</td>
</tr>
<tr>
<td>azoxystrobin + difenoconazole (Quadris Top 2.72 SC)</td>
<td>11+3</td>
<td>12 to 14 fl oz/acre</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>bosalid (Endura 70 WG)</td>
<td>7</td>
<td>6 to 9 oz/acre</td>
<td>14</td>
<td>0.5</td>
</tr>
<tr>
<td>cyproconazole + fludioxonil (Switch 62.5WG)</td>
<td>9+12</td>
<td>11 to 14 oz/acre</td>
<td>7</td>
<td>0.5</td>
</tr>
<tr>
<td>difenoconazole + cyprodinil (Inspire Super 2.82SC)</td>
<td>3+9</td>
<td>16 to 20 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
</tr>
<tr>
<td>flutriafol (Rhyne 2.08SC)</td>
<td>3</td>
<td>5 to 7 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
</tr>
<tr>
<td>flutriafol + azoxystrobin (Topguard EQ 4.29 SC)</td>
<td>3+11</td>
<td>4 to 8 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>fluopyram + tebuconazole (Luna Experience 400 SC)</td>
<td>7+3</td>
<td>6 to 8.6 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
</tr>
<tr>
<td>fluopyram + trifloxystrobin (Luna Sensation 500 SC)</td>
<td>7+11</td>
<td>5 to 7.6 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Based on field trials in SC, no fungicides, bactericides, or biopesticides are available for turnips harvested for roots. A. Keinath, Plant Pathologist, Clemson University

TABLE 3-16. DISEASE CONTROL PRODUCTS FOR GREENS, LEAFY BRASSICA (COLLARD, KALE, MUSTARD, RAPE SALAD GREENS, TURNIP GREENS) (cont’d)

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material</th>
<th>Minimum Days Harv.</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALTERNARIA LEAF SPOT, CERCOSPORA LEAF SPOT, ANTHRACNOSE, WHITE SPOT, AND VARIOUS FOLIAR FUNGAL DISEASES (SEE SPECIFIC LABELS) (CONT’D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fluxapyroxad + pyraclostrobin (Prixor 500 SC)</td>
<td>7+11</td>
<td>6.0 to 8.2 fl oz/acre</td>
<td>3 0.5</td>
<td>Make no more than two sequential applications before alternating with fungicides that have a different mode of action. Maximum of 3 applications. Do not apply to turnip greens or roots.</td>
</tr>
<tr>
<td>penthiopyrad (Fontelis 1.67 SC)</td>
<td>7</td>
<td>14 to 30 fl oz/acre</td>
<td>0 0.5</td>
<td>Make no more than two sequential applications before alternating with fungicides that have a different mode of action. May be applied to turnips grown for roots.</td>
</tr>
<tr>
<td>pydiflumetofen + fludioxonil (Miravis Prime)</td>
<td>7+12</td>
<td>11.4 fl oz/acre</td>
<td>7 0.5</td>
<td>Make no more than 2 sequential applications of Miravis Prime or other Group 7 and 12 fungicides before rotating to another effective fungicide with a different mode of action. Maximum 3 applications per year EXCEPT 2 APPLICATIONS ON MUSTARD GREENS. Do not apply to turnip grown for roots or mustard greens.</td>
</tr>
<tr>
<td>pyraclostrobin (Cabrio 20 EG) (Pyrac 2 EC)</td>
<td>11</td>
<td>12 to 16 oz/acre 8 to 12 oz/acre (turnip greens)</td>
<td>3 0.5</td>
<td>Begin applications prior to disease development and continue on a 7- to 10-day interval. Make no more than 2 sequential applications before alternating to a fungicide with a different mode of action.</td>
</tr>
<tr>
<td>tebuconazole (various)</td>
<td>3</td>
<td>3 to 4 oz/acre</td>
<td>7 0.5</td>
<td>For optimum results use as a preventative treatment. Folicur 3.6 F must have 2 to 4 hours of drying time on foliage for the active ingredient to move systematically into plant tissue before rain or irrigation occurs.</td>
</tr>
<tr>
<td>BACTERIAL BLIGHT (PSEUDOMONAS), XANTHOMONAS LEAF BLIGHT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>none</td>
<td></td>
<td></td>
<td>Based on field trials in SC, no fungicides, bactericides, or biopesticides are available.</td>
<td></td>
</tr>
<tr>
<td>BOTRYTIS GRAY MOLD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>difenoconazole + cyprodinil (Inspire Super 2.82SC)</td>
<td>3+9</td>
<td>16 to 20 fl oz/acre</td>
<td>7 0.5</td>
<td>Make no more than 2 sequential applications before alternating to a fungicide with a different mode of action.</td>
</tr>
<tr>
<td>fluopyram + tebuconazole (Luna Experience 400 SC)</td>
<td>7+3</td>
<td>6 to 8.6 fl oz/acre</td>
<td>7 0.5</td>
<td>Make no more than 2 sequential applications before alternating to a fungicide with a different mode of action. Limit of 34 fl oz (4 applications at the high rate) per acre per year. Not labeled for white spot. Do not apply to turnip grown for roots.</td>
</tr>
<tr>
<td>penthiopyrad (Fontelis 1.67 SC)</td>
<td>7</td>
<td>14 to 30 fl oz/acre</td>
<td>0 0.5</td>
<td>Make no more than two sequential applications before alternating with fungicides that have a different mode of action. Maybe applied to turnips grown for roots.</td>
</tr>
<tr>
<td>CLUBROOT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cyazofamid (Ranman 34.5SC)</td>
<td>21</td>
<td>Transplant: 12.9 to 25.75 fl oz/100-gal water Banded: 20 fl oz/A</td>
<td>0.5 0</td>
<td>Either apply immediately after transplanting with 1.7 fl oz of solution per transplant, or as a banded application with soil incorporation of 6 to 8 inches prior to transplanting. Do not apply more than 39.5 fl oz/acre/year, including foliar sprays made for downy mildew.</td>
</tr>
<tr>
<td>fluazinam (Omega 500 F)</td>
<td>29</td>
<td>Transplant: 6.45 fl oz/100 gal. Soil incorporation: 2.6 pints/acre</td>
<td>20 0.5</td>
<td>Transplant soil drench: Immediately after transplanting to turnips, apply 3.4 fl oz of trans-plant solution per plant. Soil incorporation: Apply in a 9-in. band and incorporate 6 to 8 in. deep before transplanting. Note: Omega may delay harvest; see label. Do not apply to turnip grown for roots.</td>
</tr>
<tr>
<td>DOWNY MILDEW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ametracrin + dimethomorph (Zampro 525 SC)</td>
<td>45+40</td>
<td>14 fl oz/acre</td>
<td>0 0.5</td>
<td>Do not make more than 2 sequential applications before alternating to a fungicide with a different mode of action. Addition of an adjuvant may improve performance (see label for specifics).</td>
</tr>
<tr>
<td>cyazofamid (Ranman 400SC)</td>
<td>21</td>
<td>2.75 fl oz/acre</td>
<td>0 0.5</td>
<td>Make applications on a 7- to 10-day schedule. Do not apply more than 39.5 fl oz/acre per crop growing season, including soil applications made for clubroot.</td>
</tr>
<tr>
<td>dimethomorph (Forum 4.16SC)</td>
<td>40</td>
<td>6.4 oz/acre</td>
<td>0 0.5</td>
<td>Must be tank-mixed with another fungicide active against Pythophthora blight. Do not make more than 2 sequential applications before alternating to another fungicide with a different mode of action. Do not make more than 5 applications per season. Do not apply to turnip grown for roots.</td>
</tr>
<tr>
<td>fenamidone (Reason 500SC)</td>
<td>11</td>
<td>5.5 to 8.2 oz/acre</td>
<td>2 0.5</td>
<td>Begin applications as soon as conditions become favorable. Applications should be made on a 5- to 10-day interval. Do not make more than one application of Reason 500SC before alternating with a fungicide from a different resistance management group.</td>
</tr>
</tbody>
</table>
TABLE 3-16. DISEASE CONTROL PRODUCTS FOR GREENS, LEAFY BRASSICA (COLLARD, KALE, MUSTARD, RAPE SALAD GREENS, TURNIP GREENS) (cont’d)

A. Keinath, Plant Pathologist, Clemson University

Note: For turnips harvested for roots, see Remarks and Table 3-31 Root Vegetables.

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material Formulation</th>
<th>Minimum Days Harv.</th>
<th>Reentry</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOWNY MILDEW (CONT’D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fluopicolide (Presidio 4 SC)</td>
<td>43</td>
<td>3 to 4 fl oz/acre</td>
<td>2</td>
<td>0.5</td>
<td>Make applications on a 7- to 10-day schedule. Make no more than 2 sequential applications before rotating to a fungicide with a different mode of action. Apply no more than 12 oz per acre and make no more than 4 applications per season.</td>
</tr>
<tr>
<td>fluopyram + trifloxystrobins (Luna Sensation 500 SC)</td>
<td>7+11</td>
<td>5 to 7.6 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
<td>Make no more than 2 sequential applications before alternating to a fungicide with a different mode of action. Limit of 15.3 fl oz (2 applications at the high rate) per acre per year. May be applied to turnip grown for roots.</td>
</tr>
<tr>
<td>fosetyl-Al (Alite 80W DG)</td>
<td>33</td>
<td>2 to 5 lb/acre</td>
<td>3</td>
<td>1</td>
<td>Apply when disease first appears; then repeat every 7- to 14-day intervals. Do not apply to turnip greens or roots.</td>
</tr>
<tr>
<td>potassium phosphate (various)</td>
<td>33</td>
<td>2 to 4 pt/acre</td>
<td>0</td>
<td>4 hr</td>
<td>Apply when weather is foggy as a preventative. Do not apply to plants under water or temperature stress. Spray solution should have a pH greater than 5.5. Apply in at least 30-gal water per acre.</td>
</tr>
<tr>
<td>pyraclostrobin (Cabrio 20 EG)</td>
<td>7</td>
<td>12 to 16 oz/acre</td>
<td>3</td>
<td>0.5</td>
<td>Begin applications prior to disease development and continue on a 7- to 10-day interval. Do not apply to turnip greens or roots.</td>
</tr>
<tr>
<td>POWDERY MILDEW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>azoxystrin + difenoconazole (Quadris Top 2.72 SC)</td>
<td>11+3</td>
<td>12 to 14 fl oz/acre</td>
<td>1</td>
<td>0.5</td>
<td>Make no more than one application before alternating to another fungicide with a different mode of action (NOT FRAC 11).</td>
</tr>
<tr>
<td>boscalid (Endura 70 WG)</td>
<td>7</td>
<td>6 to 9 oz/acre</td>
<td>14</td>
<td>0.5</td>
<td>Begin applications prior to disease development and continue on a 7- to 14-day interval. Make no more than 2 applications per season: disease suppression only. Do not apply to turnip greens or roots.</td>
</tr>
<tr>
<td>cyprodinil + fludioxonil (Switch 62.5WG)</td>
<td>9+12</td>
<td>11 to 14 oz/acre</td>
<td>7</td>
<td>0.5</td>
<td>Apply when disease first appears and continue on 7- to 10-day intervals. See label for complete list of greens. May be used on turnip where leaves only will be harvested. Do not apply to turnip grown for roots.</td>
</tr>
<tr>
<td>difenoconazole + cyprodinil (Inspire Super)</td>
<td>3+9</td>
<td>16 to 20 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
<td>Make no more than 2 sequential applications before alternating to a fungicide with a different mode of action.</td>
</tr>
<tr>
<td>fluopyram + trifloxystrobins (Luna Sensation 500 SC)</td>
<td>7+11</td>
<td>5 to 7.6 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
<td>Make no more than 2 sequential applications before alternating to a fungicide with a different mode of action. Limit of 15.3 fl oz (2 applications at the high rate) per acre per year. May be applied to turnip grown for roots.</td>
</tr>
<tr>
<td>flutriafol (Rhyme 2.08SC)</td>
<td>3</td>
<td>5 to 7 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
<td>Limit of 4 applications per year. Labeled for Alternaria and Cercospora leaf spots.</td>
</tr>
<tr>
<td>fluxapyroxad + pyraclostrobin (Priaxor 500 SC)</td>
<td>7+11</td>
<td>6.0 to 8.2 fl oz/acre</td>
<td>3</td>
<td>0.5</td>
<td>Make no more than two sequential applications before alternating with fungicides that have a different mode of action. Maximum of 3 applications. Do not apply to turnip greens or roots.</td>
</tr>
<tr>
<td>penthiopyrad (Fontelis 1.67 SC)</td>
<td>7</td>
<td>14 to 30 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Make no more than 2 sequential applications before alternating with fungicides that have a different mode of action. May be applied to turnip grown for roots.</td>
</tr>
<tr>
<td>pydiflumetofen + fludioxonil (Miravis Prime)</td>
<td>7+12</td>
<td>11.4 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
<td>Make no more than 2 sequential applications of Miravis Prime or other Group 7 and 12 fungicides before rotating to another effective fungicide with a different mode of action. Maximum 3 applications per year EXCEPT 2 APPLICATIONS ON MUSTARD GREENS. Do not apply to turnip grown for roots.</td>
</tr>
<tr>
<td>pyraclostrobin (Cabrio 20 EG, Pyrac 2 EC)</td>
<td>11</td>
<td>12 to 16 oz/acre</td>
<td>3</td>
<td>0.5</td>
<td>Begin applications prior to disease development and continue on a 7-to-10 day interval. Make no more than 2 sequential applications before alternating to a fungicide with a different mode of action.</td>
</tr>
<tr>
<td>triflumizole (Procure 480SC)</td>
<td>3</td>
<td>6 to 8 oz/acre</td>
<td>1</td>
<td>0.5</td>
<td>Make no more than two sequential applications before rotating with a fungicide with a different mode of action. Do not rotate with Rally or Nova.</td>
</tr>
<tr>
<td>tebuconazole (various)</td>
<td>3</td>
<td>3 to 4 oz/acre</td>
<td>7</td>
<td>0.5</td>
<td>For optimum results use as a preventative treatment. Foliaric 3.6 F must have 2 to 4 hours of drying time on foliage for the active ingredient to move systemically into plant tissue before rain or irrigation occurs. May be applied to turnip grown for roots.</td>
</tr>
<tr>
<td>RHIZOCTONIA BOTTOM ROT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>boscalid (Endura 70 WG)</td>
<td>7</td>
<td>6 to 9 oz/acre</td>
<td>14</td>
<td>0.5</td>
<td>Begin applications prior to disease development and continue on a 7-to-14 day interval. Make no more than 2 applications per season: disease suppression only. Do not apply to turnip greens or roots.</td>
</tr>
<tr>
<td>fluopyram + tebuconazole (Luna Experience 400 SC)</td>
<td>7+3</td>
<td>8.6 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
<td>Make no more than 2 sequential applications before alternating to a fungicide with a different mode of action. Limit of 34 fl oz (4 applications at the high rate) per acre per year. Do not apply to turnip grown for roots.</td>
</tr>
</tbody>
</table>
TABLE 3-16. DISEASE CONTROL PRODUCTS FOR GREENS, LEAFY BRASSICA (COLLARD, KALE, MUSTARD, RAPE SALAD GREENS, TURNIP GREENS) (cont’d)

A. Keinath, Plant Pathologist, Clemson University

Note: For turnips harvested for roots, see Remarks and Table 3-31 Root Vegetables.

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material Formulation</th>
<th>Minimum Days</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCLEROTINIA STEM ROT (WHITE MOLD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fluopyram + tebuconazole (Luna Experience 400 SC)</td>
<td>7+3</td>
<td>8.6 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
</tr>
<tr>
<td>fluopyram + trifloxystrobin (Luna Sensation 500 SC)</td>
<td>7+11</td>
<td>5 to 7.6 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
</tr>
<tr>
<td>penthiopyrad (Fontelis 1.67 SC)</td>
<td>7</td>
<td>16 to 30 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>Coniothyrium minitans (Contans WG)</td>
<td>—</td>
<td>1 to 4 lb/acre</td>
<td>0</td>
<td>4 hr</td>
</tr>
<tr>
<td>WHITE RUST</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>azoxystrobin (Quadris 2.08 SC)</td>
<td>11</td>
<td>6.2 to 15.4 fl oz/acre</td>
<td>0</td>
<td>4 hr</td>
</tr>
<tr>
<td>fenamidone (Reason 500SC)</td>
<td>11</td>
<td>8.2 oz/acre</td>
<td>2</td>
<td>0.5</td>
</tr>
<tr>
<td>fluxapyroxad + pyraclostrobin (Priaxor 500 SC)</td>
<td>7+11</td>
<td>6.0 to 8.2 fl oz/acre</td>
<td>3</td>
<td>0.5</td>
</tr>
<tr>
<td>WIRESTEM (RHIZOCTONIA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>flutolanil (Moncut 3.8 SC)</td>
<td>7</td>
<td>26 fl oz/acre</td>
<td>45</td>
<td>0.5</td>
</tr>
</tbody>
</table>

TABLE 3-17. DISEASE CONTROL PRODUCTS FOR HOPS

L. Quesada-Ocampo, Plant Pathologist, North Carolina State University

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material Formulation</th>
<th>Minimum Days</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOWNY MILDEW (PSEUDOPERONOSPORA HUMULI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ametracin + dimethomorph (Zampro)</td>
<td>45+40</td>
<td>11 to 14 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
</tr>
<tr>
<td>cyazofamid (Ramnon 400SC)</td>
<td>21</td>
<td>2.5 to 2.75 fl oz/acre</td>
<td>3</td>
<td>0.5</td>
</tr>
<tr>
<td>cyflufenamid (Torno 0.85 SC)</td>
<td>U6</td>
<td>6 to 8 oz/acre</td>
<td>6</td>
<td>4 hr</td>
</tr>
<tr>
<td>cymoxanil (Curzate 60 DF)</td>
<td>27</td>
<td>3.2 oz/acre</td>
<td>7</td>
<td>0.5</td>
</tr>
<tr>
<td>dimethomorph (Forum)</td>
<td>40</td>
<td>6 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
</tr>
<tr>
<td>famoxadone + cymoxanil (Tanos)</td>
<td>27+11</td>
<td>8 oz/acre</td>
<td>7</td>
<td>0.5</td>
</tr>
<tr>
<td>fixed copper (various)</td>
<td>M01</td>
<td>See label</td>
<td>See label</td>
<td>See label</td>
</tr>
<tr>
<td>fluopyram (Presidio)</td>
<td>43</td>
<td>4 fl oz/acre</td>
<td>24</td>
<td>12 hr</td>
</tr>
<tr>
<td>fosetyl-Al (Aliette WDG)</td>
<td>P07</td>
<td>2.5 lb/acre</td>
<td>24</td>
<td>0.5</td>
</tr>
<tr>
<td>mandipropamid (Revus)</td>
<td>40</td>
<td>8 fl oz/acre</td>
<td>7</td>
<td>4 hr</td>
</tr>
</tbody>
</table>
TABLE 3-17. DISEASE CONTROL PRODUCTS FOR HOPS (cont’d)

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material Formulation</th>
<th>Minimum Days</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRAC</td>
<td>Rate of Material</td>
<td>Formulation</td>
<td>Harv.</td>
<td>Reentry</td>
</tr>
<tr>
<td>DOWNY MILDEW (PSEUDOPERONOSPORA HUMULI) (CONT’D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mefenoxam (Ridomil Gold SL)</td>
<td>4</td>
<td>0.50 pt/acre</td>
<td>45</td>
<td>2</td>
</tr>
<tr>
<td>metalaxyl (MetaStar 2E)</td>
<td>4</td>
<td>1 qt/acre</td>
<td>45</td>
<td>2</td>
</tr>
<tr>
<td>potassium phosphite (various)</td>
<td>P07</td>
<td>See label</td>
<td>See label</td>
<td>See label</td>
</tr>
<tr>
<td>POWDERY MILDEW (SPHAEROTHECA HUMULI, S. MACULARIS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>metrafenone (Vivando)</td>
<td>50</td>
<td>15.4 fl oz/acre</td>
<td>3</td>
<td>0.5</td>
</tr>
<tr>
<td>pyraclostrobin + boscalid (Pristine)</td>
<td>11+7</td>
<td>28 oz/acre</td>
<td>14</td>
<td>0.5</td>
</tr>
<tr>
<td>quinoxyfen (Quintec)</td>
<td>13</td>
<td>4 to 8.2 fl oz/acre</td>
<td>21</td>
<td>0.5</td>
</tr>
<tr>
<td>tebuconazole (Tebucon 3.6F)</td>
<td>3</td>
<td>4 to 8 fl oz/acre</td>
<td>14</td>
<td>12 hr</td>
</tr>
<tr>
<td>trifloxystrobin (Flint)</td>
<td>11</td>
<td>See label</td>
<td>14</td>
<td>0.5</td>
</tr>
<tr>
<td>triflumizole (Procure 480 SC)</td>
<td>3</td>
<td>12 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
</tr>
</tbody>
</table>

TABLE 3-18. DISEASE CONTROL PRODUCTS FOR JERUSALEM ARTICHOKE (SUNCHOKE)

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material Formulation</th>
<th>Minimum Days</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>PYTHIUM ROOT AND CROWN ROT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cyazofamid (Ranman 34.5SC)</td>
<td>21</td>
<td>0.42 fl oz/1,000 row feed</td>
<td>7</td>
<td>0.5</td>
</tr>
<tr>
<td>fluopicolide (Presidio 4 SC)</td>
<td>43</td>
<td>3 to 4 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
</tr>
<tr>
<td>mefenoxam (Ridomil Gold 4 SL) (Ultra Flourish 2 SL)</td>
<td>4</td>
<td>1 to 2 pt/treated acre</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>GRAY MOLD, POWDERY MILDEW, RUST, SEPTORIA LEAF SPOT (SEE LABEL FOR DETAILS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>azoxystrobin (various)</td>
<td>11</td>
<td>See labels</td>
<td>14</td>
<td>4 hr</td>
</tr>
<tr>
<td>azoxystrobin + difenoconazole (Quadris Top 2.72 SC)</td>
<td>11+3</td>
<td>8 to 14 fl oz/acre</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>difenoconazole + benzoindiflupyr (Aprovia Top 1.62 EC)</td>
<td>3+7</td>
<td>10.5 to 13.5 fl oz/acre</td>
<td>14</td>
<td>0.5</td>
</tr>
<tr>
<td>pydiflumetofen + fludioxonil (Miravis Prime)</td>
<td>7+12</td>
<td>11.4 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
</tr>
<tr>
<td>POWDERY MILDEW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>metconazole (Quash 50 WDG)</td>
<td>3</td>
<td>2.5 to 4.0 fl oz/acre</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>pyrimethanil + fluopyram (Luna Tranquility 4.16 F)</td>
<td>9+7</td>
<td>8 to 11.2 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
</tr>
<tr>
<td>trifloxystrobin (Flint Extra 42.6 SC)</td>
<td>11</td>
<td>3.0 to 3.8 fl oz/acre</td>
<td>0 (broadcast), 20 (banded)</td>
<td>0.5</td>
</tr>
</tbody>
</table>
TABLE 3-18. DISEASE CONTROL PRODUCTS FOR JERUSALEM ARTICHOKE (SUNCHOKE) (cont’d)

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material Formulation</th>
<th>Minimum Days</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOUTHERN BLIGHT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>azoxystrobin (Quadris 2.08 SC)</td>
<td>11</td>
<td>6.0 to 15.5 fl oz/acre</td>
<td>14</td>
<td>4 hr</td>
</tr>
<tr>
<td>Coniothyrium minitans (Contans WG)</td>
<td>NA</td>
<td>1 to 4 lb/acre</td>
<td>0</td>
<td>4 hr</td>
</tr>
<tr>
<td>fluazinam (Omega 500 F)</td>
<td>29</td>
<td>5.5 to 8 fl oz/acre</td>
<td>14</td>
<td>0.5</td>
</tr>
<tr>
<td>metconazole (Omega 500 F)</td>
<td>3</td>
<td>4.0 fl oz/acre</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>pydiflumetofen + fludioxonil (Miravis Prime)</td>
<td>7+12</td>
<td>11.4 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
</tr>
<tr>
<td>pyrimethanil + fluopyram (Luna Tranquility 4.16 F)</td>
<td>9+7</td>
<td>11.2 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
</tr>
</tbody>
</table>

TABLE 3-19. DISEASE CONTROL PRODUCTS FOR LEAFY PETIOLE VEGETABLES - CELERY, FENNEL, RHUBARB, AND SWISS CHARD

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material Formulation</th>
<th>Minimum Days</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAMPING OFF AND ROOT ROT (PYTHIUM, PHYTOPHTHORA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mefenoxam (Ultra Flourish 2 EC)</td>
<td>4</td>
<td>1 to 4 pt/treated acre (see label)</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>metalaxyl (Metalaxyl 2E AG, MetaStar 2 E)</td>
<td>4</td>
<td>2 to 8 pt/treated acre (see label)</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>SEEDLING BLIGHT, DAMPING OFF, ROOT ROT (PYTHIUM SPP., RHIZOCTONIA SOLANI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>azoxystrobin + mefenoxam (Uniform 3.72 SC)</td>
<td>11+4</td>
<td>0.34 fl oz/1,000 row ft</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>ALTERNARIA LEAF SPOT, CERCOSPORA LEAF SPOT (EARLY BLIGHT), POWDERY MILDEW, SEPTORIA LEAF SPOT (LATE BLIGHT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>azoxystrobin (various)</td>
<td>11</td>
<td>See labels</td>
<td>0</td>
<td>4 hr</td>
</tr>
<tr>
<td>boscalid (Endura 70 WG)</td>
<td>7</td>
<td>4.5 to 9 oz/acre</td>
<td>14</td>
<td>0.5</td>
</tr>
<tr>
<td>cyprodinil + fludioxonil (Switch 62.5WG)</td>
<td>9+12</td>
<td>11 to 14 oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>fenamidone (Reason 500SC)</td>
<td>11</td>
<td>5.5 to 8.2 fl oz/acre</td>
<td>2</td>
<td>0.5</td>
</tr>
<tr>
<td>fixed copper (generic)</td>
<td>M1</td>
<td>See label</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>fludioxonil + pydiflumetofen (Miravis Prime 2.09 SC)</td>
<td>12+7</td>
<td>9.2 to 13.4 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>fluopyram + trifloxystrobin (Luna Sensation 500 SC)</td>
<td>7+11</td>
<td>5.0 to 7.6 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
</tr>
</tbody>
</table>
TABLE 3-19. DISEASE CONTROL PRODUCTS FOR LEAFY PETIOLE VEGETABLES - CELERY, FENNEL, RHUBARB, AND SWISS CHARD (cont’d)

A. Keinath, Plant Pathologist, Clemson University

Note: Some fungicides are not registered on all leafy petiole crops; check Remarks section for exceptions before applying any fungicide to any crop included in this section.

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material</th>
<th>Formulation</th>
<th>Minimum Days</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALTERNARIA LEAF SPOT, CERCOSPORA LEAF SPOT (EARLY BLIGHT), POWDERY MILDEW, SEPTORIA LEAF SPOT (LATE BLIGHT) (CONT’D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>flutriafol (Rhyme 2.08SC)</td>
<td>3</td>
<td>5 to 7 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
<td>Make no more than 4 applications (28 fl oz) per crop per year. Do not use in greenhouses.</td>
</tr>
<tr>
<td>flutriafol + azoxystrobin</td>
<td>3+11</td>
<td>6 to 8 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
<td>Make no more than 4 applications per crop per year. Do not use in greenhouses.</td>
</tr>
<tr>
<td>fluxapyroxad + pyraclostrobin (Merivon 500 SC)</td>
<td>7+11</td>
<td>4 to 11 fl oz/acre</td>
<td>3</td>
<td>0.5</td>
<td>Make no more than 2 sequential applications before alternating with fungicides that have a different mode of action. Maximum of 3 applications per crop. Do not use in greenhouses.</td>
</tr>
<tr>
<td>fluoxastrobin (Aftershock 4 SC, Evito 480SC)</td>
<td>11</td>
<td>5.7 fl oz/acre</td>
<td>3</td>
<td>0.5</td>
<td>Make no more than 4 applications per acre per year. Alternate each application with a non-FRAC Group 11 fungicide. Not labeled to control Alternaria or powdery mildew.</td>
</tr>
<tr>
<td>mancozeb (various)</td>
<td>M03</td>
<td>1.6 qt/acre</td>
<td>14</td>
<td>1.0</td>
<td>Make no more than 8 applications per acre per season. Labeled only on fennel.</td>
</tr>
<tr>
<td>penthiopyrad (Fontella 1.67 F)</td>
<td>7</td>
<td>14 to 24 fl oz</td>
<td>3</td>
<td>0.5</td>
<td>Do not make more than 2 sequential applications. Maximum of 72 fl oz/acre per year.</td>
</tr>
<tr>
<td>propiconazole (various)</td>
<td>3</td>
<td>3 to 4 fl oz/acre</td>
<td>14</td>
<td>0.5</td>
<td>Begin at first sign of disease and repeat at 14-day intervals. Make no more than 2 consecutive applications before rotating to another fungicide with a different mode of action. Not labeled to control Alternaria or powdery mildew.</td>
</tr>
<tr>
<td>pydiflumetofen + fludioxonil (Miravis Prime 2.09 SC)</td>
<td>7+12</td>
<td>9.2 to 13.4 fl oz/acre (13.4 fl oz/acre for gray mold)</td>
<td>7</td>
<td>0.5</td>
<td>Make no more than 2 sequential applications of Miravis Prime or other Group 7 and 12 fungicides before rotating to another effective fungicide with a different mode of action. Maximum 2 applications per year. Not labeled for Septoria leaf spot. Do not labeled on fennel. Do not use in greenhouses.</td>
</tr>
<tr>
<td>pyraclostrobin (Cabrio 20 EG, Pyrac 2 EC)</td>
<td>11</td>
<td>12 to 16 oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Make no more than 2 sequential applications before alternating with fungicides that have a different mode of action. Apply no more than 64 oz per crop per acre per season. Do not use in greenhouses.</td>
</tr>
<tr>
<td>trifloxystrobin (Flint Extra 42.6 SC)</td>
<td>11</td>
<td>2.5 to 2.9 fl oz/acre (broadcast), 14 (banded)</td>
<td>0</td>
<td>0.5</td>
<td>Limit of 11.6 fl oz per acre per season.</td>
</tr>
<tr>
<td>WHITE MOLD, PINK ROT (SCLEROTINIA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>boscalid (Endura 70 WG)</td>
<td>7</td>
<td>4.5 to 9 oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Make no more than 2 sequential applications before alternating with fungicides that have a different mode of action. Limit of 18 oz/acre per year. Do not use on cilantro. Do not use in greenhouses.</td>
</tr>
<tr>
<td>cyprodinil + fludioxonil (Switch 82.5WG)</td>
<td>9+12</td>
<td>11 to 14 oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Make no more than 2 sequential applications before alternating with fungicides that have a different mode of action for two applications. Apply no more than 56 oz per crop per acre per season. First application at thinning and second application 2 weeks later. Also controls gray mold.</td>
</tr>
<tr>
<td>dicloran (Botran 75 W)</td>
<td>14</td>
<td>2 lb/acre or 5.3 lb/acre (single application)</td>
<td>7</td>
<td>0.5</td>
<td>Apply only once at 5.3 lb/acre or twice at 2 lb/acre. Suggested application time is 10 weeks before harvest. Labeled only on celery and fennel.</td>
</tr>
<tr>
<td>fludioxonil (various)</td>
<td>12</td>
<td>see label</td>
<td>0</td>
<td>0.5</td>
<td>Make no more than 4 applications per crop per year. Applying excessive water after application may decrease efficacy. Also controls gray mold.</td>
</tr>
<tr>
<td>fludioxonil + pydiflumetofen (Miravis Prime 2.09 SC)</td>
<td>12+7</td>
<td>13.4 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Limit of 2 applications per crop per year. Not labeled on fennel. Do not use in greenhouses.</td>
</tr>
<tr>
<td>penthiopyrad (Fontella 1.67 F)</td>
<td>7</td>
<td>16 to 30 fl oz/acre</td>
<td>3</td>
<td>0.5</td>
<td>Do not make more than two sequential applications. Maximum of 72 fl oz/acre per year.</td>
</tr>
<tr>
<td>Coniothyrium minitans (Contans WG)</td>
<td>NA</td>
<td>1 to 4 lb/acre</td>
<td>0</td>
<td>4 hr</td>
<td>OMRI listed product. Apply to soil surface and incorporate no deeper than 2 inches. Works best when applied prior to planting or transplanting. Do not apply other fungicides for 3 weeks after applying Contans.</td>
</tr>
</tbody>
</table>
TABLE 3-20. DISEASE CONTROL PRODUCTS FOR LETTUCE AND ENDIVE

L. Quesada-Ocampo, Plant Pathologist, North Carolina State University; E. Sikora, Plant Pathologist, Auburn University

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material Formulation</th>
<th>Minimum Days</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOTTOM ROT (RHIZOCTONIA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>azoxystrobin (various)</td>
<td>11</td>
<td>0.4 to 0.8 fl oz/1,000 row feet</td>
<td>—</td>
<td>4 hr</td>
</tr>
<tr>
<td>SEED DECAY, SEEDLING BLIGHT, DAMPING-OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fludioxonil (Spirato 480 FS) (Maxim 4 FS)</td>
<td>12</td>
<td>0.08 to 0.16 fl oz/100 lb of seed</td>
<td>—</td>
<td>12</td>
</tr>
<tr>
<td>DOWNY MILDEW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>acibenzolar-S-methyl (Actigard 50 WG)</td>
<td>P01</td>
<td>0.75 to 1 oz/acre</td>
<td>7</td>
<td>0.5</td>
</tr>
<tr>
<td>ametredrin + dimethomorph (Zampro 525 SC)</td>
<td>45+40</td>
<td>14 fl oz/acre</td>
<td>0</td>
<td>12 hr</td>
</tr>
<tr>
<td>azoxystrobin (various)</td>
<td>11</td>
<td>6.2 to 15.4 fl oz/acre</td>
<td>0</td>
<td>4 hr</td>
</tr>
<tr>
<td>cyazofamid (Ranman 400SC)</td>
<td>21</td>
<td>2.75 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>cymoxanil (Curzate)</td>
<td>27</td>
<td>3.2 to 5.0 oz/acre</td>
<td>3</td>
<td>0.5</td>
</tr>
<tr>
<td>cymoxanil + famoxadone (Tanos)</td>
<td>27+11</td>
<td>8.0 oz</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>dimethomorph (various)</td>
<td>40</td>
<td>6.4 oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>fenamidone (Reason 500SC)</td>
<td>11</td>
<td>5.5 to 8.2 fl oz</td>
<td>2</td>
<td>0.5</td>
</tr>
<tr>
<td>fluopicolide (Presidio)</td>
<td>43</td>
<td>3 to 4 fl oz/acre</td>
<td>2</td>
<td>0.5</td>
</tr>
<tr>
<td>mandipropamid (various)</td>
<td>40</td>
<td>See label</td>
<td>See label</td>
<td>See label</td>
</tr>
<tr>
<td>mono- and di-potassium salts of phosphorous acid (Alude, K-Phite)</td>
<td>P07</td>
<td>1 to 4 quarts in a minimum of 10 gal/acre</td>
<td>0</td>
<td>4 hr</td>
</tr>
<tr>
<td>oxathiapiprolin + mandipropamid (Onards Ultra)</td>
<td>49+40</td>
<td>5.5 to 8 fl oz/acre</td>
<td>0</td>
<td>4 hr</td>
</tr>
<tr>
<td>oxathiapiprolin + mefenoxam (Oronds Gold 200)</td>
<td>49+44</td>
<td>4.8 to 9.6 fl oz/acre</td>
<td>0</td>
<td>4 hr</td>
</tr>
<tr>
<td>propamocarb (Previcur Flex)</td>
<td>28</td>
<td>2 pt/acre</td>
<td>2</td>
<td>0.5</td>
</tr>
<tr>
<td>DOWNY MILDEW, LEAF SPOTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>azoxystrobin (various)</td>
<td>11</td>
<td>6.2 to 15.4 fl oz/acre</td>
<td>7</td>
<td>4 hr</td>
</tr>
<tr>
<td>fixed copper (various)</td>
<td>M01</td>
<td>See label</td>
<td>See label</td>
<td>See label</td>
</tr>
<tr>
<td>pyraclostrobin (various)</td>
<td>11</td>
<td>12 to 16 oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>fluxapyroxad + pyraclostrobin (Merivon 500 SC)</td>
<td>7+11</td>
<td>4 to 11 fl oz/acre</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>mancozeb (various)</td>
<td>M03</td>
<td>See labels</td>
<td>See label</td>
<td>See label</td>
</tr>
<tr>
<td>LEAF SPOTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>penthiopyrad (Fontelis)</td>
<td>7</td>
<td>14 to 24 fl oz/acre</td>
<td>3</td>
<td>0.5</td>
</tr>
<tr>
<td>flutriafol (Rhyme)</td>
<td>3</td>
<td>5 to 7 oz/acre</td>
<td>7</td>
<td>0.5</td>
</tr>
<tr>
<td>cyprodinil + fludioxonil (Switch 62.5 WDG)</td>
<td>9+12</td>
<td>11 to 14 oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
</tbody>
</table>
TABLE 3-20. DISEASE CONTROL PRODUCTS FOR LETTUCE AND ENDIVE (cont’d)

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material Formulation</th>
<th>Minimum Days Harv.</th>
<th>Reentry</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRAY MOLD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dicloran (Botran 5F)</td>
<td>14</td>
<td>See label</td>
<td>14</td>
<td>0.5</td>
<td>Application instructions vary by crop; see label. Two applications may be applied per season. Do not apply more than 3.2 quarts per season.</td>
</tr>
<tr>
<td>penthiopyrad (Fontelis)</td>
<td>7</td>
<td>14 to 24 fl oz/acre</td>
<td>3</td>
<td>0.5</td>
<td>Begin applications before disease development. DO NOT make more than two consecutive applications before switching to a fungicide with a different mode of action.</td>
</tr>
<tr>
<td>boscalid (Endura)</td>
<td>7</td>
<td>7 to 9 oz/acre</td>
<td>14</td>
<td>0.5</td>
<td>Begin applications prior to the onset of disease and continue on a 7-day interval.</td>
</tr>
<tr>
<td>SEED DECAY, SEEDLING BLIGHT, DAMPING-OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fluazinonil (Spirato 480FS)</td>
<td>12</td>
<td>0.08 to 0.16 fl oz/100 lb of seed</td>
<td>—</td>
<td>12</td>
<td>Used to control diseases of seed such as Aspergillus, Fusarium, and Rhizoctonia among others. DOES NOT control Pythium or Phytophthora.</td>
</tr>
<tr>
<td>POWDERY MILDEW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>penthiopyrad (Fontelis)</td>
<td>7</td>
<td>14 to 24 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Begin applications before disease development. DO NOT make more than two sequential applications before switching to a fungicide with a different mode of action.</td>
</tr>
<tr>
<td>quinoxyfen (Quintec)</td>
<td>13</td>
<td>6 fl oz</td>
<td>1</td>
<td>1</td>
<td>Alternate with a fungicide with a different mode of action.</td>
</tr>
<tr>
<td>sulfur (various)</td>
<td>M02</td>
<td>See label</td>
<td>See label</td>
<td>See label</td>
<td></td>
</tr>
<tr>
<td>triflumizole (various)</td>
<td>3</td>
<td>6 to 8 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Applications should begin prior to disease development. Repeat on a 14-day schedule. Do not apply more than 18 fl oz per acre per season.</td>
</tr>
<tr>
<td>azoxytrobin (various)</td>
<td>11</td>
<td>6.2 to 15.4 fl oz/acre</td>
<td>0</td>
<td>4 hr</td>
<td>Make no more than two sequential applications before alternating with a fungicide with a different mode of action.</td>
</tr>
<tr>
<td>fluxapyroxad + pyraclostrobin (Mervion 500 SC)</td>
<td>7+11</td>
<td>4 to 11 fl oz/acre</td>
<td>1</td>
<td>0.5</td>
<td>Make no more than two sequential applications before alternating with fungicides that have a different mode of action.</td>
</tr>
<tr>
<td>myclobutanil (Rally) 40WSP</td>
<td>3</td>
<td>5 oz/acre</td>
<td>3</td>
<td>1</td>
<td>For use on lettuce only. Apply when disease first appears and continue on a 14-day interval.</td>
</tr>
<tr>
<td>PYTHIUM DAMPING-OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cyazofamid (Ranman 400SC)</td>
<td>21</td>
<td>2.75 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Apply on a 7- to 10-day interval when disease first appears or when conditions favorable for disease development. Do not make subsequent applications, and limit applications to six per year.</td>
</tr>
<tr>
<td>mefenoxam (various)</td>
<td>4</td>
<td>See label</td>
<td>—</td>
<td>2</td>
<td>Apply preplant incorporated or surface application at planting.</td>
</tr>
<tr>
<td>metalaxyl (various)</td>
<td>4</td>
<td>See label</td>
<td>—</td>
<td>2</td>
<td>Banded over the row, preplant incorporated, or injected with liquid fertilizer</td>
</tr>
<tr>
<td>propamocarb (Previcur Flex)</td>
<td>28</td>
<td>2 pt/acre</td>
<td>2</td>
<td>0.5</td>
<td>Previcur Plus is only labeled for head and leaf lettuce. Various application methods; see label.</td>
</tr>
<tr>
<td>RUST</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>penthiopyrad (Fontelis)</td>
<td>7</td>
<td>14 to 24 fl oz/acre</td>
<td>3</td>
<td>0.5</td>
<td>Begin applications before disease development. DO NOT make more than two sequential applications before switching to a fungicide with a different mode of action.</td>
</tr>
<tr>
<td>sulfur (various)</td>
<td>M02</td>
<td>See labels</td>
<td>14</td>
<td>1</td>
<td>Apply at early leaf stage and repeat every 10- to 14-days or as needed. Do not apply if temperatures are expected to exceed 90°F within 3 days of application due to the risk of crop injury.</td>
</tr>
<tr>
<td>SCLEROTINIA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>boscalid (Endura)</td>
<td>7</td>
<td>See label</td>
<td>14</td>
<td>0.5</td>
<td>Begin applications prior to onset of disease. Use higher rate when disease pressure is high.</td>
</tr>
<tr>
<td>cyazofamid (Ranman 400SC)</td>
<td>21</td>
<td>2.75 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Apply on a 7- to 10-day interval when disease first appears or when conditions favorable for disease development. Do not make subsequent applications, and limit applications to six per year.</td>
</tr>
<tr>
<td>Coniothyrium minitans (Contans WG)</td>
<td>NA</td>
<td>1 to 4 lb/acre</td>
<td>0</td>
<td>4 hr</td>
<td>OMRI listed product. Apply to soil surface and incorporate no deeper than 2 inches. Works best when applied prior to planting or transplanting. Do not apply other fungicides for 3 weeks after applying Contans.</td>
</tr>
<tr>
<td>dicloran (Botran)</td>
<td>14</td>
<td>See label</td>
<td>14</td>
<td>0.5</td>
<td>Rate depends specific crop and timing of application. See label.</td>
</tr>
<tr>
<td>fluazinonil (Cannonball WP)</td>
<td>12</td>
<td>7 oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Ground applications only. Do not apply more than 28 oz/acre per year.</td>
</tr>
<tr>
<td>isofetamid (Kenja)</td>
<td>7</td>
<td>12.3 fl oz/acre</td>
<td>14</td>
<td>0.5</td>
<td>Application timing depends on planting method. Make no more than two sequential applications.</td>
</tr>
</tbody>
</table>

L. Quesada-Ocampo, Plant Pathologist, North Carolina State University; E. Sikora, Plant Pathologist, Auburn University
DISEASE CONTROL

Begin applications preventively and continue as needed on a 7- to 14-day interval. Begin applications before disease development and continue on 7- to 10-day intervals. Make no more than 2 consecutive applications before switching to a fungicide with a different mode of action. Do not apply more than 80 fl oz per acre per season.

MUSKMELON (CANTALOUPE) SEE CUCURBITS

TABLE 3-21. DISEASE CONTROL PRODUCTS FOR OKRA

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material Formulation</th>
<th>Minimum Days</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALTERNARIA, GRAY MOLD, POWDERY MILDEW</td>
<td></td>
<td></td>
<td></td>
<td>Begin applications before disease development and continue on a 7- to 10-day interval. Make no more than 2 consecutive applications before alternating to a fungicide with a different mode of action. Do not apply more than 56 oz per acre per season.</td>
</tr>
<tr>
<td>cyprodinil + fludioxonil (various)</td>
<td>9+12</td>
<td>11 to 14 oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>ANTHRACNOSE, BACTERIAL LEAF SPOT, LEAF SPOTS, POD SPOTS, POWDERY MILDEW</td>
<td></td>
<td></td>
<td></td>
<td>Begin applications when conditions favor disease development and repeat on 5- to 10-day intervals.</td>
</tr>
<tr>
<td>fixed copper (various)</td>
<td>M</td>
<td>See label</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>ANTHRACNOSE, BOTRYTIS LEAF MOLD, POWDERY MILDEW, CERCOSPORA LEAF SPOT</td>
<td></td>
<td></td>
<td></td>
<td>Begin applications before disease development and continue on a 7-day interval.</td>
</tr>
<tr>
<td>chlorothalonil; cymoxanil (Ariston)</td>
<td>M+27</td>
<td>2 to 2.4 pints/acre</td>
<td>3</td>
<td>0.5</td>
</tr>
<tr>
<td>ANTHRACNOSE, GRAY LEAF SPOT, POWDERY MILDEW, CERCOSPORA LEAF SPOT</td>
<td></td>
<td></td>
<td></td>
<td>Begin applications before disease development and continue on 7- to 10-day intervals. Make no more than 2 consecutive applications before alternating to a fungicide with a different mode of action. Refer to label for information on addition of an adjuvant.</td>
</tr>
<tr>
<td>difenoconazole; azoxystrobin (Quardis Top)</td>
<td>3+11</td>
<td>8 to 14 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>difenoconazole + cyprodinil (Inspire Super)</td>
<td>3+9</td>
<td>16 to 20 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>fludioxonil (various)</td>
<td>12</td>
<td>5 to 7 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>ANTHRACNOSE, GRAY LEAF SPOT, POWDERY MILDEW, CERCOSPORA LEAF SPOT, RHIZOCTONIA STEM ROT</td>
<td></td>
<td></td>
<td></td>
<td>Begin applications before disease development and continue on 7- to 10-day intervals. Make no more than 2 consecutive applications before alternating to a fungicide with a different mode of action. Refer to label for information on addition of an adjuvant.</td>
</tr>
<tr>
<td>difenoconazole + benzoavindiflupyr (Aprovia Top)</td>
<td>3+7</td>
<td>10.5 to 13.5 oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>ANTHRACNOSE, POWDERY MILDEW</td>
<td></td>
<td></td>
<td></td>
<td>Do not apply more than 2 sequential applications before alternating with a fungicide with a different mode of action. Do not make more than 4 applications strobilurin fungicides per acre per season.</td>
</tr>
<tr>
<td>azoxystrobin (various)</td>
<td>11</td>
<td>6.0 to 15.5 fl oz/acre</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>chlorothalonil (various)</td>
<td>M</td>
<td>2 to 2.4 pt/acre</td>
<td>3</td>
<td>0.5</td>
</tr>
<tr>
<td>fluoxastrobin (Aphershock)</td>
<td>11</td>
<td>3 to 5.7 fl oz/acre</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>myclobutanil (various)</td>
<td>3</td>
<td>2.5 to 5 oz/acre</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>tetraconazole (Mettle 125 ME)</td>
<td>3</td>
<td>6 to 8 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>BLACK MOLD, EARLY BLIGHT, GRAY LEAF SPOT, LEAF MOLD, POWDERY MILDEW, SEPTORIA LEAF SPOT, TARGET SPOT</td>
<td></td>
<td></td>
<td></td>
<td>Begin applications prior to disease onset and continue on a 7- to 14-day interval.</td>
</tr>
<tr>
<td>penthiopyrad (Fontelis)</td>
<td>7</td>
<td>16 to 24 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
</tbody>
</table>
TABLE 3-21. DISEASE CONTROL PRODUCTS FOR OKRA (cont’d)

E. Sikora, Plant Pathologist, Auburn University

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material Formulation</th>
<th>Minimum Days</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLACK MOLD, EARLY BLIGHT, GRAY LEAFSPOT, LEAF MOLD, POWDERY MILDEW, SEPTORIA LEAFSPOT, TARGET SPOT (CONT’D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fluopyram + trifloxystrobin (Luna Sensation)</td>
<td>7+11</td>
<td>5 to 7.6 fl oz/acre</td>
<td>3</td>
<td>0.5</td>
</tr>
<tr>
<td>pydiflumetofen + fludioxonil (Miravis Prime)</td>
<td>7+12</td>
<td>9.2 to 11.4 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>CERCOSPORA LEAF SPOT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chlorothalonil (various)</td>
<td>M</td>
<td>2 to 2.4 pt/acre</td>
<td>3</td>
<td>0.5</td>
</tr>
<tr>
<td>tebuconazole (various)</td>
<td>3</td>
<td>4 to 6 fl oz/acre</td>
<td>3</td>
<td>0.5</td>
</tr>
<tr>
<td>DOWNY MILDEW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mandipropamid (Micora)</td>
<td>40</td>
<td>5.5 to 8 fl oz/acre</td>
<td>—</td>
<td>4 hr</td>
</tr>
<tr>
<td>PHYTOPHTHORA BLIGHT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cyazofamid (Ranman)</td>
<td>21</td>
<td>2.1 to 2.75 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>ethaboxam (Elumin)</td>
<td>22</td>
<td>8 fl oz/acre</td>
<td>2</td>
<td>0.5</td>
</tr>
<tr>
<td>fluazinam (various)</td>
<td>29</td>
<td>16 to 24 fl oz/acre</td>
<td>30</td>
<td>0.5</td>
</tr>
<tr>
<td>flucpicolide (Presidio)</td>
<td>43</td>
<td>3 to 4 fl oz/acre</td>
<td>2</td>
<td>0.5</td>
</tr>
<tr>
<td>oxathiapiprolin + mandipropamid (Oronis Ultra)</td>
<td>49+40</td>
<td>5.5 to 8 fl oz/acre</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>POWDERY MILDEW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cyflufenamid (Fastback)</td>
<td>U6</td>
<td>3.4 oz/acre</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>pyriofenone (Proline 300 SC)</td>
<td>50</td>
<td>4 to 5 fl oz/acre</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>sulfur (various)</td>
<td>M2</td>
<td>3 to 10 lb/acre</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>POWDERY MILDEW, ANTHRACNOSE, CERCOSPORA LEAF SPOT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>azoxystrobin + flutriafol (Topguard EQ)</td>
<td>3+11</td>
<td>4 to 8 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>flutriafol (Topguard)</td>
<td>3</td>
<td>14 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>RHIZOCTONIA SEEDLING ROT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>azoxystrobin (various)</td>
<td>11</td>
<td>0.4 to 0.8 fl oz/ 1,000 row feet</td>
<td>—</td>
<td>4</td>
</tr>
</tbody>
</table>

TABLE 3-22. DISEASE CONTROL PRODUCTS FOR ONION

N. Gauthier and E. Fealko, Plant Pathologists, University of Kentucky

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material Formulation</th>
<th>Minimum Days</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ONION (GREEN)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAMPING OFF (PYTHIUM SPP.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mefenoxam (Ridomil Gold 4 SL)</td>
<td>4</td>
<td>0.5 to 1 pt/trt acre</td>
<td>—</td>
<td>2</td>
</tr>
<tr>
<td>metalaxyl (Metastar)</td>
<td>4</td>
<td>2 to 4 pt/trt acre</td>
<td>—</td>
<td>2</td>
</tr>
<tr>
<td>DOWNY MILDEW (PERONOSPORA DESTRUCTOR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ametordan + dimethomorph (Zampro)</td>
<td>45+40</td>
<td>14.0 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>chlorothalonil (various)</td>
<td>M</td>
<td>See labels</td>
<td>14</td>
<td>2</td>
</tr>
<tr>
<td>chlorothalonil + cymoxanil (Ariston)</td>
<td>M+27</td>
<td>2.0 to 2.4 pt/acre</td>
<td>14</td>
<td>0.5</td>
</tr>
<tr>
<td>fixed copper (various)</td>
<td>M</td>
<td>See labels</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
TABLE 3-22. DISEASE CONTROL PRODUCTS FOR ONION (CONT’d)

ONION (GREEN) (CONT’D)

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material Formulation</th>
<th>Minimum Days</th>
<th>Harv.</th>
<th>Reentry</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOWNY MILDEW (PERONOSPOR A DESTRUCT) (CONT’D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dimethomorph (Forum)</td>
<td>40</td>
<td>6 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Do not make more than one sequential application</td>
<td></td>
</tr>
<tr>
<td>famoxadone + cymoxanil (Tanno)</td>
<td>11+27</td>
<td>8 oz/acre</td>
<td>3</td>
<td>0.5</td>
<td>Must be tank-mixed with a contact fungicide such as mancozeb. Do not make more than one sequential application before rotating to a different mode of action.</td>
<td></td>
</tr>
<tr>
<td>fenamidone (Reason 500SC)</td>
<td>11</td>
<td>5.5 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
<td>Begin applications when conditions favor disease development and continue on 5- to 10-day interval. Do not apply more than 22 fl oz per growing season. Alternate with fungicide from different resistance group.</td>
<td></td>
</tr>
<tr>
<td>fluazinam (Omega 500)</td>
<td>29</td>
<td>1.0 pt/acre</td>
<td>7</td>
<td>1</td>
<td>Initiate sprays when conditions are favorable for disease or at disease onset. Spray on a 7- to 10-day schedule.</td>
<td></td>
</tr>
<tr>
<td>mandipropamid (Revus 2.0BF)</td>
<td>40</td>
<td>8 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
<td>Apply prior to disease development and continue throughout season at 7- to 10-day intervals; maximum 24 fl oz per season.</td>
<td></td>
</tr>
<tr>
<td>mefenoxam + chlorothalonil (Ridomil Gold/Bravo)</td>
<td>4+M</td>
<td>2.5 lb/acre</td>
<td>14</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>oxathiapiprolin + mandipropamid (Orondis Ultra)</td>
<td>49+40</td>
<td>5.5 to 8.0 fl oz/acre</td>
<td>7</td>
<td>4hr</td>
<td>Use higher rate if disease is present. For best results, begin the disease resistance program with an initial treatment at planting or transplanting with a fungicide registered for its use. Apply Orondis Ultra as a foliar spray in a mixture with copper-based fungicide beginning at first appearance of symptoms.</td>
<td></td>
</tr>
<tr>
<td>potassium phosphate + tebuconazole (Viathon)</td>
<td>49+3</td>
<td>2 to 3 pt/acre</td>
<td>7</td>
<td>0.5</td>
<td>Use as a preventative treatment.</td>
<td></td>
</tr>
<tr>
<td>LEAF BLIGHT (BOTRYTIS SPP.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>aoxystrobin (Quadris)</td>
<td>11</td>
<td>9.0 to 15.5 fl oz/acre</td>
<td>0</td>
<td>4 hr</td>
<td>Make no more than two sequential applications before alternating with fungicides that have a different mode of action. Apply no more 90 fl oz Quadris per crop per acre per season. See individual labels for application instructions and rates.</td>
<td></td>
</tr>
<tr>
<td>aoxystrobin + difenoconazole (Quadris Top)</td>
<td>11+3</td>
<td>12 to 14 oz/acre</td>
<td>7</td>
<td>0.5</td>
<td>Make no more than one application before alternating with a fungicide with a different mode of action.</td>
<td></td>
</tr>
<tr>
<td>aoxystrobin + chlorothalonil (Quadris Opti)</td>
<td>11+M</td>
<td>1.6 to 3.6 pts/acre</td>
<td>14</td>
<td>2</td>
<td>Applications should begin prior to disease onset and subsequent applications should be made on a 7- to 14-day interval.</td>
<td></td>
</tr>
<tr>
<td>aoxystrobin + propiconazole (Quilt Xcel)</td>
<td>11+3</td>
<td>17.5 to 21 fl oz</td>
<td>0</td>
<td>0.5</td>
<td>Make only one application before rotating to a non-group 11 fungicide.</td>
<td></td>
</tr>
<tr>
<td>aoxystrobin + tebuconazole (Custodia)</td>
<td>11+3</td>
<td>8.6 to 12.9 fl oz</td>
<td>7</td>
<td>0.5</td>
<td>Use higher rate and shorter interval when disease conditions are severe.</td>
<td></td>
</tr>
<tr>
<td>benzoindiflupyr + difenoconazole (Aprovia Top)</td>
<td>7+3</td>
<td>10.5 oz/acre</td>
<td>7</td>
<td>0.5</td>
<td>Cladosporium, powdery mildew, purple blotch, rust, and Stemphylium. Spreading/penetrating type adjuvant recommended.</td>
<td></td>
</tr>
<tr>
<td>boscalid (Endura 70 WG)</td>
<td>7</td>
<td>6.8 oz/acre</td>
<td>7</td>
<td>0.5</td>
<td>Do not make more than 2 sequential applications or more than 6 applications per season.</td>
<td></td>
</tr>
<tr>
<td>chlorothalonil (various)</td>
<td>M</td>
<td>See labels</td>
<td>14</td>
<td>0.5</td>
<td>Spray at first appearance. Maximum of three sprays.</td>
<td></td>
</tr>
<tr>
<td>cyprodinil (Vanguard WG)</td>
<td>9</td>
<td>10 oz/acre</td>
<td>7</td>
<td>0.5</td>
<td>Do not make more than 2 sequential applications before alternating to a different mode of action.</td>
<td></td>
</tr>
<tr>
<td>cyprodinil + fluiloxuronil (Switch)</td>
<td>9+12</td>
<td>11 to 14 oz/acid</td>
<td>7</td>
<td>0.5</td>
<td>Do not plant rotational crops other than onions or strawberries for 12 months following the last application.</td>
<td></td>
</tr>
<tr>
<td>difenoconazole + cyprodinil (Inspire Super)</td>
<td>3+9</td>
<td>16 to 20 fl oz/acre</td>
<td>14</td>
<td>0.5</td>
<td>Make no more than two applications before alternating with a fungicide with a different mode of action.</td>
<td></td>
</tr>
<tr>
<td>fixed copper (various)</td>
<td>M</td>
<td>See labels</td>
<td>1</td>
<td>1</td>
<td>May also reduce bacterial rots.</td>
<td></td>
</tr>
<tr>
<td>fluopyram + pyrimethanil (Luna Tranquility)</td>
<td>7+9</td>
<td>16 to 27 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
<td>When disease pressure is high, use higher rates and shorter intervals.</td>
<td></td>
</tr>
<tr>
<td>fluopyram + tebuconazole (Luna Experience)</td>
<td>7+3</td>
<td>8.0 to 12.8 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
<td>Observe seasonal application limits for both group 7 and group 3 fungicides.</td>
<td></td>
</tr>
<tr>
<td>fluxapyroxad + pyraclostrobin (Merivon)</td>
<td>7+11</td>
<td>4 to 11 fl oz/acet</td>
<td>7</td>
<td>0.5</td>
<td>Apply at disease onset; continue on 7- to 14-day schedule. No more than 3 applications/season.</td>
<td></td>
</tr>
<tr>
<td>penthiopyrad (For delay)</td>
<td>7</td>
<td>16 to 24 fl oz/acre</td>
<td>3</td>
<td>0.5</td>
<td>Begin sprays prior to disease development and continue on a 7- to 14-day schedule.</td>
<td></td>
</tr>
<tr>
<td>propiconazole (Quilt)</td>
<td>3</td>
<td>14 to 27.5 oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Alternate with a different mode of action.</td>
<td></td>
</tr>
<tr>
<td>pyraclostrobin (Cabrio)</td>
<td>11</td>
<td>8 to 12 oz/acre</td>
<td>7</td>
<td>0.5</td>
<td>Make no more than 2 sequential applications and no more than 6 applications per season.</td>
<td></td>
</tr>
<tr>
<td>pyraclostrobin + boscalid (Pristine)</td>
<td>11+7</td>
<td>14.5 to 18.5 oz/acre</td>
<td>7</td>
<td>1</td>
<td>Make a maximum of 6 applications per season.</td>
<td></td>
</tr>
<tr>
<td>pyrimethanil (Scala)</td>
<td>9</td>
<td>9 or 18 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
<td>Use lower rate in a tank mix with broad-spectrum fungicide and higher rate when applied alone. Do not apply more than 54 fl oz per crop.</td>
<td></td>
</tr>
<tr>
<td>Disease/Material</td>
<td>FRAC Code</td>
<td>Rate of Material Formulation</td>
<td>Minimum Days Harv.</td>
<td>Reentry</td>
<td>Method, Schedule, and Remarks</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>----------</td>
<td>-----------------------------</td>
<td>-------------------</td>
<td>--------</td>
<td>----------------------------</td>
<td></td>
</tr>
<tr>
<td>PURPLE BLOTCH (ALTERNARIA PORRI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>azoxystrobin (Quadris)</td>
<td>11+3</td>
<td>12 to 14 oz/acre</td>
<td>7</td>
<td>0.5</td>
<td>Make no more than one application before alternating with a fungicide with a different mode of action.</td>
<td></td>
</tr>
<tr>
<td>azoxystrobin + difenoconazole (Quadris Top)</td>
<td>11+3</td>
<td>12 to 14 oz/acre</td>
<td>7</td>
<td>0.5</td>
<td>Make no more than one application before alternating with a fungicide with a different mode of action.</td>
<td></td>
</tr>
<tr>
<td>azoxystrobin + chlorothalonil (Quadris Opt)</td>
<td>11+M</td>
<td>1.6 to 3.2 pt/acre</td>
<td>14</td>
<td>0.5</td>
<td>Make no more than one application before alternating with a fungicide with a different mode of action.</td>
<td></td>
</tr>
<tr>
<td>azoxystrobin + propiconazole (Quint Xcel)</td>
<td>11+3</td>
<td>14 to 21 fl oz</td>
<td>0</td>
<td>0.5</td>
<td>Make only one application before rotating to a non-group 11 fungicide.</td>
<td></td>
</tr>
<tr>
<td>azoxystrobin + tebuconazole (Custodia)</td>
<td>11+3</td>
<td>8.6 to 12.9 fl oz</td>
<td>7</td>
<td>0.5</td>
<td>Use higher rate and shorter interval when disease conditions are severe.</td>
<td></td>
</tr>
<tr>
<td>boscalid (Endura) 70WG</td>
<td>7</td>
<td>6.8 oz/acre</td>
<td>7</td>
<td>0.5</td>
<td>Do not make more than 2 sequential applications or more than 6 applications per season.</td>
<td></td>
</tr>
<tr>
<td>chlorothalonil (various)</td>
<td>M</td>
<td>See labels</td>
<td>14</td>
<td>2</td>
<td>Spray at first appearance. Maximum of three sprays.</td>
<td></td>
</tr>
<tr>
<td>chlorothalonil + cyloxanil (Aniston)</td>
<td>M+27</td>
<td>2.0 to 2.4 pt/acre</td>
<td>14</td>
<td>0.5</td>
<td>Apply prior to favorable infection periods; continue on 7- to 9-day interval; alternate with a different mode of action.</td>
<td></td>
</tr>
<tr>
<td>chlorothalonil + tebuconazole (Muscle ADV)</td>
<td>M+3</td>
<td>1.1 to 1.6 pt/acre</td>
<td>7</td>
<td>0.5</td>
<td>Apply in a protective schedule or when weather is favorable for disease.</td>
<td></td>
</tr>
<tr>
<td>cyprodinil (Vanguard WG)</td>
<td>9</td>
<td>10 oz/acre</td>
<td>7</td>
<td>0.5</td>
<td>Do not make more than 2 sequential applications before alternating to a different mode of action.</td>
<td></td>
</tr>
<tr>
<td>cyprodinil + fludioxonil (Switch)</td>
<td>9+12</td>
<td>11 to 14 oz/acre</td>
<td>7</td>
<td>0.5</td>
<td>Do not plant rotational crops other than onions or strawberries for 12 months following the last application.</td>
<td></td>
</tr>
<tr>
<td>difenoconazole + benzovindiflupyr (Aprovia Top)</td>
<td>3+7</td>
<td>10.5 oz/acre</td>
<td>7</td>
<td>0.5</td>
<td>Also, for Stenphylium leaf blight. Use preventatively with a penetrating spreader.</td>
<td></td>
</tr>
<tr>
<td>difenoconazole + cyprodinil (Inspire Super)</td>
<td>3+9</td>
<td>16 to 20 fl oz/acre</td>
<td>14</td>
<td>0.5</td>
<td>Make no more than two applications before alternating with a fungicide with a different mode of action.</td>
<td></td>
</tr>
<tr>
<td>fenamidone (Reason)</td>
<td>11</td>
<td>5.5 to 8.2 fl oz</td>
<td>7</td>
<td>0.5</td>
<td>Begin applications when conditions favor disease development and continue on 5- to 10-day interval. Do not apply more than 22 fl oz per growing season. Alternate with fungicide from different resistance management group.</td>
<td></td>
</tr>
<tr>
<td>fixed copper (various)</td>
<td>M</td>
<td>See labels</td>
<td>1</td>
<td>1</td>
<td>May also reduce bacterial rots.</td>
<td></td>
</tr>
<tr>
<td>fluopyram + pyrimethanil (Luna Tranquility)</td>
<td>7+9</td>
<td>16 to 27 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
<td>When disease pressure is high, use higher rates and shorter intervals.</td>
<td></td>
</tr>
<tr>
<td>fluopyram + tebuconazole (Luna Experience)</td>
<td>7+3</td>
<td>8.0 to 12.8 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
<td>Observe seasonal application limits for both group 7 and group 3 fungicides.</td>
<td></td>
</tr>
<tr>
<td>fluxapyroxad + pyraclostrobin (Merivon)</td>
<td>7+11</td>
<td>4 to 11 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
<td>Apply at disease onset; continue on 7- to 14-day schedule. No more than 3 applications/season.</td>
<td></td>
</tr>
<tr>
<td>mefenoxam + chlorothalonil (Ridomil Gold/Bravo)</td>
<td>4+M</td>
<td>2.5 lb/acre</td>
<td>14</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>penthiopyrad (Fontelis)</td>
<td>7</td>
<td>16 to 24 fl oz/acre</td>
<td>3</td>
<td>0.5</td>
<td>Begin sprays prior to disease development and continue on a 7- to 14-day schedule.</td>
<td></td>
</tr>
<tr>
<td>potassium phosphate + tebuconazole (Vathiaron)</td>
<td>49+3</td>
<td>2 to 3 pt/acre</td>
<td>7</td>
<td>0.5</td>
<td>Use as a preventative treatment.</td>
<td></td>
</tr>
<tr>
<td>propiconazole (Quint)</td>
<td>3</td>
<td>14 to 27.5 fl oz</td>
<td>0</td>
<td>0.5</td>
<td>Alternate with a different mode of action.</td>
<td></td>
</tr>
<tr>
<td>pyraclostrobin (Cabrio)</td>
<td>11</td>
<td>8 to 12 oz/acre</td>
<td>7</td>
<td>0.5</td>
<td>Make no more than 2 sequential applications and no more than 6 applications per season.</td>
<td></td>
</tr>
<tr>
<td>pyraclostrobin + boscalid (Pristine)</td>
<td>11+7</td>
<td>10.5 to 18.5 oz/acre</td>
<td>7</td>
<td>1</td>
<td>Make a maximum of 6 applications per season.</td>
<td></td>
</tr>
<tr>
<td>pyrimethanil (Scala)</td>
<td>9</td>
<td>9 or 18 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
<td>Use lower rate in a tank mix with broad-spectrum fungicide and higher rate when applied alone. Do not apply more than 54 fl oz per crop.</td>
<td></td>
</tr>
<tr>
<td>STEMPHYLIUM LEAF BLIGHT (STEMPHYLIUM VESICARIUM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>azoxystrobin (Quadris)</td>
<td>11</td>
<td>6 to 12 fl oz/acre</td>
<td>0</td>
<td>4 hr</td>
<td>Make no more than two sequential applications before alternating with fungicides that have a different mode of action. Apply no more 90 fl oz Quadris per crop per acre per season. See individual labels for application instructions and rates.</td>
<td></td>
</tr>
<tr>
<td>azoxystrobin + difenoconazole (Quadris Top)</td>
<td>11+3</td>
<td>12 to 14 oz/acre</td>
<td>7</td>
<td>0.5</td>
<td>Make no more than one application before alternating with a fungicide with a different mode of action.</td>
<td></td>
</tr>
<tr>
<td>Disease/Material</td>
<td>FRAC Code</td>
<td>Rate of Material</td>
<td>Minimum Days</td>
<td>Method, Schedule, and Remarks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-----------</td>
<td>------------------</td>
<td>--------------</td>
<td>------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ONION (GREEN) (CONT’D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STEMPHYLIUM LEAF BLIGHT (STEMPHYLIUM VESICARIIUM) (CONT’D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>azoxystrobin + propiconazole (Quint Xcel)</td>
<td>11+3</td>
<td>14 to 26 fl oz</td>
<td>0</td>
<td>0.5</td>
<td>Make only one application before rotating to a non-group 11 fungicide.</td>
<td></td>
</tr>
<tr>
<td>fluopyram + pyrimethanil (Luna Tranquility)</td>
<td>7 + 9</td>
<td>16 to 27 oz/acre</td>
<td>7</td>
<td>0.5</td>
<td>See label</td>
<td></td>
</tr>
<tr>
<td>difenoconazole + cyprodinil (Inspire Super)</td>
<td>3+9</td>
<td>16 to 20 fl oz/acre</td>
<td>14</td>
<td>0.5</td>
<td>Make no more than two applications before alternating with a fungicide with a different mode of action.</td>
<td></td>
</tr>
<tr>
<td>fluopyram + pyrimethanil (Luna Tranquility)</td>
<td>7+9</td>
<td>16 to 27 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
<td>When disease pressure is high, use higher rates and shorter intervals.</td>
<td></td>
</tr>
<tr>
<td>fluxapyroxad + pyraclostrobin (Merivon)</td>
<td>7+11</td>
<td>4 to 11 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
<td>Apply at disease onset; continue on 7- to 14-day schedule. No more than 3 applications/season.</td>
<td></td>
</tr>
<tr>
<td>pyraclostrobin + boscalid (Pristine)</td>
<td>11+7</td>
<td>10.5 to 18.5 oz/acre</td>
<td>7</td>
<td>1</td>
<td>Make no more than 6 applications per season.</td>
<td></td>
</tr>
<tr>
<td>ONION (DRY)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAMPING OFF (PYTHIUM SPP.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mefenoxam (Ridomil Gold)</td>
<td>4</td>
<td>0.5 to 1 pt/trt acre</td>
<td>—</td>
<td>2</td>
<td>See label for row rates. Also, for green onion.</td>
<td></td>
</tr>
<tr>
<td>metalaxyl (MetaStar)</td>
<td>4</td>
<td>2 to 4 pt/trt acre</td>
<td>—</td>
<td>2</td>
<td>Preplant incorporated or soil surface spray.</td>
<td></td>
</tr>
<tr>
<td>azoxystrobin + mefenoxam (Uniform)</td>
<td>11+4</td>
<td>0.34 fl oz /1000 ft</td>
<td>—</td>
<td>0</td>
<td>In-furrow treatment.</td>
<td></td>
</tr>
<tr>
<td>DOWNY MILDEW (PERONOSPORA DESTRUCTOR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ametracordin + dimethomorph (Zampro)</td>
<td>45+40</td>
<td>14.0 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Begin applications prior to disease development and continue on a 5- to 7-day spray interval.</td>
<td></td>
</tr>
<tr>
<td>chlorothalonil + cymoxanil (Ariston)</td>
<td>M+27</td>
<td>1.6 to 2.4 pt/acre</td>
<td>7</td>
<td>0.5</td>
<td>Apply prior to favorable infection periods; continue on a 7- to 9-day interval; alternate with a different mode of action.</td>
<td></td>
</tr>
<tr>
<td>chlorothalonil + zoxamide (Zing!)</td>
<td>M+22</td>
<td>30 fl oz</td>
<td>7</td>
<td>0.5</td>
<td>Do not apply to exposed bulbs.</td>
<td></td>
</tr>
<tr>
<td>cyazofamid (Ranman)</td>
<td>21</td>
<td>2.75 to 3.0 oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Use a surfactant for best results.</td>
<td></td>
</tr>
<tr>
<td>dimethomorph (Forum)</td>
<td>40</td>
<td>6 fl oz</td>
<td>0</td>
<td>0.5</td>
<td>Do not make more than one sequential application</td>
<td></td>
</tr>
<tr>
<td>famoxadone + cymoxanil (Tanos)</td>
<td>11+27</td>
<td>8.0 oz/acre</td>
<td>3</td>
<td>0.5</td>
<td>Must be tank-mixed with a contact fungicide such as mancozeb. Do not make more than one sequential application before rotating to a different mode of action.</td>
<td></td>
</tr>
<tr>
<td>fenamidone (Reason)</td>
<td>11</td>
<td>5.5 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
<td>Use as soon as environmental conditions become favorable.</td>
<td></td>
</tr>
<tr>
<td>fluazinam (Omega 500F)</td>
<td>29</td>
<td>1.0 pt/acre</td>
<td>7</td>
<td>1</td>
<td>Initiate sprays when conditions are favorable for disease or at disease onset. Spray on a 7- to 10-day schedule.</td>
<td></td>
</tr>
<tr>
<td>mancozeb + zoxamide (Gavel 75 DF)</td>
<td>M+22</td>
<td>1.5 to 2 lb/acre</td>
<td>7</td>
<td>2</td>
<td>Do not make more than 8 applications per season. Do not apply to exposed bulbs.</td>
<td></td>
</tr>
<tr>
<td>mancozeb + azoxystrobin + tebuconazole (Dexter Xcel)</td>
<td>M+11+3</td>
<td>56 to 72 fl oz/acre</td>
<td>14</td>
<td>1</td>
<td>Do not make more than 2 sequential applications before rotating with a product other than FRAC 11.</td>
<td></td>
</tr>
<tr>
<td>mandipropamid (Revis 2.08 F)</td>
<td>40</td>
<td>8 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
<td>Apply prior to disease development and continue throughout season at 7- to 10-day intervals; maximum 24 fl oz per season.</td>
<td></td>
</tr>
<tr>
<td>mefenoxam + chlorothalonil (Ridomil Gold/Bravo)</td>
<td>4+M</td>
<td>2.5 lb/acre</td>
<td>14</td>
<td>2</td>
<td>Use with a suitable adjuvant.</td>
<td></td>
</tr>
<tr>
<td>oxathiapiprolin + mandipropamid (Orondis Ultra)</td>
<td>49+40</td>
<td>5.5 to 8.0 fl oz/acre</td>
<td>7</td>
<td>4hr</td>
<td>Use higher rate if disease is present. For best results, begin the disease resistance program with an initial treatment at planting or transplanting with a fungicide registered for its use. Apply Orondis Ultra as a foliar spray in a mixture with copper-based fungicide beginning at first appearance of symptoms.</td>
<td></td>
</tr>
<tr>
<td>potassium phosphite + tebuconazole (Viathon)</td>
<td>49+3</td>
<td>2 to 3 pt/acre</td>
<td>7</td>
<td>0.5</td>
<td>Use as a preventative treatment.</td>
<td></td>
</tr>
<tr>
<td>LEAF BLIGHT (BOTRYTIS SPP.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>azoxystrobin (Quadris)</td>
<td>11</td>
<td>9 to 15.5 fl oz/acre</td>
<td>7</td>
<td>4 hr</td>
<td>Make no more than two sequential applications before alternating with fungicides with a different mode of action. Apply no more than 90 fl oz of Quadris per crop per acre per season. See individual labels for application instructions and rates.</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 3-22. DISEASE CONTROL PRODUCTS FOR ONION (cont’d)

N. Gauthier and E. Fealko, Plant Pathologists, University of Kentucky

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material Formulation</th>
<th>Minimum Days Harv.</th>
<th>Reentry</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ONION (DRY) (CONT’D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEAF BLIGHT (BOTRYTIS SPP.) (CONT’D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>azoxystrobin + chlorothalonil (Quadris Opti)</td>
<td>11+M</td>
<td>1.6 to 3.2 pt/acre</td>
<td>14</td>
<td>0.5</td>
<td>Make no more than one application before alternating with a fungicide with a different mode of action.</td>
</tr>
<tr>
<td>azoxystrobin + tebuconazole (Custodia)</td>
<td>11+3</td>
<td>12.9 fl oz</td>
<td>7</td>
<td>0.5</td>
<td>Use higher rate and shorter interval when disease conditions are severe.</td>
</tr>
<tr>
<td>chlorothalonil + zoxamide (Zing)</td>
<td>M+22</td>
<td>30 fl oz</td>
<td>7</td>
<td>0.5</td>
<td>Do not apply to exposed bulbs.</td>
</tr>
<tr>
<td>cyprodinil (Vanguard WG)</td>
<td>9</td>
<td>10 oz/acre</td>
<td>7</td>
<td>0.5</td>
<td>Do not make more than 2 sequential applications before alternating to a different mode of action.</td>
</tr>
<tr>
<td>cyprodinil + fludioxonil (Switch)</td>
<td>9+12</td>
<td>11 to 14 oz/acre</td>
<td>7</td>
<td>0.5</td>
<td>Do not plant rotational crops other than onions or strawberries for 12 months following the last application.</td>
</tr>
<tr>
<td>dicloran (Botran)</td>
<td>14</td>
<td>1.5 to 2.7 lb/acre</td>
<td>14</td>
<td>0.5</td>
<td>Use lower rate in a tank mix with broad-spectrum fungicide and higher rate when applied alone. Do not apply more than 54 fl oz per crop.</td>
</tr>
<tr>
<td>difenoconazole + cyprodinil (Inspire Super)</td>
<td>3+9</td>
<td>16 to 20 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
<td>Make no more than two applications before alternating with a fungicide with a different mode of action.</td>
</tr>
<tr>
<td>fixed copper (various)</td>
<td>M</td>
<td>See labels</td>
<td></td>
<td></td>
<td>Spray at first appearance, 7- to 10-day intervals. Do not apply to exposed bulbs.</td>
</tr>
<tr>
<td>fluopyram + pyrimethanil (Luna Tranquility)</td>
<td>7+9</td>
<td>16 to 27 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
<td>When disease pressure is high, use higher rates and shorter intervals.</td>
</tr>
<tr>
<td>mancozeb + azoxystrobin + tebuconazole (Dexter Xcel)</td>
<td>M+11+3</td>
<td>56 to 72 fl oz/acre</td>
<td>14</td>
<td>1</td>
<td>Do not make more than 2 sequential applications before rotating with a product other than FRAC 11.</td>
</tr>
<tr>
<td>mancozeb + zoxamide (Gavel 75 DF)</td>
<td>M+22</td>
<td>1.5 to 2 lb/acre</td>
<td>7</td>
<td>2</td>
<td>Do not make more than 8 applications per season. Do not apply to exposed bulbs.</td>
</tr>
<tr>
<td>penthiopyrad (Fonteis)</td>
<td>7</td>
<td>16 to 24 fl oz/acre</td>
<td>3</td>
<td>0.5</td>
<td>Begin sprays prior to disease development and continue on a 7- to 14-day schedule.</td>
</tr>
<tr>
<td>pyraclostrobin (Cabrio)</td>
<td>11</td>
<td>12 oz/acre</td>
<td>7</td>
<td>0.5</td>
<td>Make no more than 2 sequential applications and no more than 6 applications per season.</td>
</tr>
<tr>
<td>pyrimethanil (Scala)</td>
<td>9</td>
<td>9 or 18 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
<td>Use lower rate in a tank mix with broad-spectrum fungicide and higher rate when applied alone. Do not apply more than 54 fl oz per crop.</td>
</tr>
<tr>
<td>NECK ROT (BOTRYTIS SPP.), PURPLE BLotch (ALTERNARIA PORRI), DOWNY MILDEW (PERONOSPORA DESTRUCTOR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>azoxystrobin (Quadris and various)</td>
<td>11</td>
<td>9 to 15.5 fl oz/acre</td>
<td>7</td>
<td>4 hr</td>
<td>Make no more than two sequential applications before alternating with fungicides with a different mode of action. Apply no more than 90 fl oz of Quadris per crop per acre per season. See individual labels for application instructions and rates.</td>
</tr>
<tr>
<td>azoxystrobin + chlorothalonil (Quadris Opti)</td>
<td>11+M</td>
<td>1.6 to 3.2 pt/acre</td>
<td>14</td>
<td>0.5</td>
<td>Make no more than one application before alternating with a fungicide with a different mode of action.</td>
</tr>
</tbody>
</table>
| azoxystrobin + mancozeb (Dexter Max) | 11+M | 3.2 lb/acre | 7 | 0.5 | Follow protective 7-day schedule. Observe season limit for azoxystrobin applica-
<p>| azoxystrobin + propiconazole (various) | 11+3 | 14 to 26 oz./acre | 14 | 0.5 | tions. |
| azoxystrobin + tebuconazole (various) | 11+3 | See labels | 7 | 0.5 | See labels for specific rates and application instructions. |
| boscalid (Endura) | 7 | 6.8 oz/acre | 7 | 0.5 | Not for downy mildew. Do not make more than 2 sequential applications or more than 6 applications per season. |
| chlorothalonil (various) | M | 0.9 to 1 lb/acre | 7 | 0.5 | Will only suppress neck rot and downy mildew. |
| chlorothalonil + tebuconazole (Muscle ADV) | M+3 | 1.1 to 1.6 pt/acre | 7 to 14 | 0.5 | Rust and purple blotch only. |
| chlorothalonil + zoxamide (Zing) | M+22 | 30 fl oz | 7 | 0.5 | Follow protective spray schedule when diseases are in the area. |
| cyprodinil (Vanguard) | 12 | 10 oz/acre | 7 | 0.5 | Suppressive only on neck rot. |
| difenoconazole + benzovindiflupyr (Aprovia Top) | 3+7 | 10.5 oz/acre | 7 | 0.5 | Purple blotch and Stemphylium leaf blight. Use with a preventatively tank-mixed with a penetrating spreader. Cladosporium, powdery mildew, purple blotch, rust, and Stemphylium. Spreading/penetrating type adjuvant recommended. |
| difenoconazole + cyprodinil (Inspire Super) | 3+9 | 16 to 20 oz/acre | 7 | 0.5 | Make no more than two applications before alternating with a fungicide with a different mode of action. |
| fixed copper (various) | M | See labels | 1 | 1 | May reduce bacterial rots. |</p>
<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material Formulation</th>
<th>Minimum Days</th>
<th>Harv.</th>
<th>Reentry</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ONION (DRY) (CONT’D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NECK ROT (BOTRYTIS SPP.), PURPLE BLOTCH (ALTERNARIA PORRI), DOWNY MILDEW (PERONOSPORA DESTRUCTOR) (CONT’D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fluzinam (Omega 500)</td>
<td>29</td>
<td>1.0 pt/acre</td>
<td>7</td>
<td>1</td>
<td></td>
<td>Initiate sprays when conditions are favorable for disease or at disease onset. Spray on a 7- to 10-day schedule.</td>
</tr>
<tr>
<td>fluzinam + tebuconazole (Luna Experience)</td>
<td>7+3</td>
<td>8 to 12.8 oz/acre</td>
<td>7</td>
<td>0.5</td>
<td></td>
<td>Not for downy mildew. Suppresses Sclerotium spp.</td>
</tr>
<tr>
<td>fluzinam + pyrimethanol (Luna Tranquility)</td>
<td>7+9</td>
<td>16 to 27 oz/acre</td>
<td>7</td>
<td>0.5</td>
<td></td>
<td>Not for downy mildew. Suppresses Sclerotium spp.</td>
</tr>
<tr>
<td>fluzinam + pyraclostrobin (Mervin)</td>
<td>7+11</td>
<td>4 to 11 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
<td></td>
<td>Use higher rates for downy mildew suppression. Apply at disease onset; continue on a 7- to 14-day schedule. No more than 3 applications per season.</td>
</tr>
<tr>
<td>iprodione (Rovral 4F)</td>
<td>2</td>
<td>1.5 lb/acre</td>
<td>7</td>
<td>0.5</td>
<td></td>
<td>Not for downy mildew. Apply when conditions are favorable; 14-day intervals.</td>
</tr>
<tr>
<td>mancozeb (various)</td>
<td>M</td>
<td>2 to 3 lb/acre</td>
<td>7</td>
<td>1</td>
<td></td>
<td>Do not exceed 30 lb per acre per crop.</td>
</tr>
<tr>
<td>mancozeb + zoxamide (Gavel 75 DF)</td>
<td>M+22</td>
<td>1.5 to 2 lb/acre</td>
<td>7</td>
<td>2</td>
<td></td>
<td>Do not make more than 8 applications per season. Do not apply to exposed bulbs.</td>
</tr>
<tr>
<td>mancozeb + azoxystrobin (Dexter Max)</td>
<td>M3+11</td>
<td>3.2 lb/acre</td>
<td>7</td>
<td>1</td>
<td></td>
<td>Do not apply to exposed bulbs.</td>
</tr>
<tr>
<td>mancozeb + azoxystrobin + tebuconazole (Dexter Xcel)</td>
<td>M+11+3</td>
<td>48 to 72 fl oz/acre</td>
<td>14</td>
<td>1</td>
<td></td>
<td>Do not make more than 2 sequential applications before rotating with a product other than FRAC 11.</td>
</tr>
<tr>
<td>melenoxam + chlorothalonil (Ridomil Gold/Bravo)</td>
<td>4+M</td>
<td>2.5 pt/acre</td>
<td>7</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pencytomyrld (Fontelis)</td>
<td>7</td>
<td>16 to 24 fl oz/acre</td>
<td>3</td>
<td>12 hr</td>
<td></td>
<td>Begin sprays prior to disease development and continue on a 7- to 14-day schedule.</td>
</tr>
<tr>
<td>propiconazole (various)</td>
<td>3</td>
<td>4 to 8 oz/acre</td>
<td>14</td>
<td>0.5</td>
<td></td>
<td>Not for downy mildew. Alternate with a different mode of action.</td>
</tr>
<tr>
<td>pyraclostrobin + boscalid (Pristine)</td>
<td>11+7</td>
<td>14.5 to 18.5 oz/acre</td>
<td>7</td>
<td>1</td>
<td></td>
<td>Make no more than 6 applications per season.</td>
</tr>
<tr>
<td>tebuconazole (Toledo 36F)</td>
<td>3</td>
<td>4 to 6 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
<td></td>
<td>Not for downy mildew or Botrytis. Suppresses Sclerotium spp.</td>
</tr>
<tr>
<td>tebuconazole + chlorothalonil (Muscle)</td>
<td>3+M</td>
<td>1.1 to 1.6 pt/acre</td>
<td>7 to 14</td>
<td>0.5</td>
<td></td>
<td>Not for downy mildew or Botrytis.</td>
</tr>
<tr>
<td>tebuconazole + potassium phosphate (Viathon)</td>
<td>3+33</td>
<td>2 to 3 pts/acre</td>
<td>7</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>zoxamide + mancozeb (Zing!)</td>
<td>22+M</td>
<td>1.5 to 2 lb/acre</td>
<td>7</td>
<td>0.5</td>
<td></td>
<td>Use preventatively.</td>
</tr>
<tr>
<td>pencytomyrld (Fontelis)</td>
<td>7</td>
<td>24 oz/acre</td>
<td>3</td>
<td>0.5</td>
<td></td>
<td>GA only. Apply as a broadcast or banded spray over seeds or seedlings.</td>
</tr>
<tr>
<td>mancozeb (various)</td>
<td>M</td>
<td>3 lb/29,000 ft row</td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>azoxystrobin + difenoconazole (Quadris Top)</td>
<td>11+3</td>
<td>14 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
<td></td>
<td>Begin sprays prior to disease onset and spray on a 7- to 14-day schedule. Do not rotate with Group 11 fungicides.</td>
</tr>
<tr>
<td>difenoconazole + cyprodinil (Inspire Super)</td>
<td>3+9</td>
<td>16 to 20 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
<td></td>
<td>Make no more than two applications before alternating with a fungicide with a different mode of action.</td>
</tr>
<tr>
<td>fluxapyroxad + pyraclostrobin (Mervin)</td>
<td>7+11</td>
<td>4 to 11 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
<td></td>
<td>Apply at disease onset; continue on 7- to 14-day schedule. No more than 3 applications/season.</td>
</tr>
<tr>
<td>PINK ROOT (PHOMA SPP.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>iprodione (various)</td>
<td>2</td>
<td>1.5 lb/acre 50 to 100 gal/acre</td>
<td>7</td>
<td>0</td>
<td></td>
<td>Start 7-day foliar sprays at first appearance of favorable conditions.</td>
</tr>
<tr>
<td>SMUT (UROCYSTIS SPP.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pyraclostrobin + boscalid (Pristine)</td>
<td>11+7</td>
<td>10.5 to 18.5 oz/acre</td>
<td>7</td>
<td>1</td>
<td></td>
<td>Make no more than 6 applications per season.</td>
</tr>
<tr>
<td>STEMPHYLIUM LEAF BLIGHT (STEMPHYLIUM VESICARIUM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>azoxystrobin (Quadris and various)</td>
<td>11</td>
<td>9 to 15.5 fl oz/acre</td>
<td>7</td>
<td>4 hr</td>
<td></td>
<td>Make no more than two sequential applications before alternating with fungicides with a different mode of action. Apply no more than 90 fl oz of Quadris per crop per acre per season. See individual labels for application instructions and rates.</td>
</tr>
<tr>
<td>fluzinam (Omega 500F)</td>
<td>29</td>
<td>1.0 pt/acre</td>
<td>7</td>
<td>2</td>
<td></td>
<td>Initiate sprays when conditions are favorable for disease or at disease onset. Spray on a 7- to 10-day schedule.</td>
</tr>
<tr>
<td>iprodione (Rovral 4F)</td>
<td>2</td>
<td>1.5 lb/acre</td>
<td>7</td>
<td>0.5</td>
<td></td>
<td>Not for downy mildew. Apply when conditions are favorable; 14-day intervals.</td>
</tr>
</tbody>
</table>
TABLE 3-22. DISEASE CONTROL PRODUCTS FOR ONION (cont’d)

N. Gauthier and E. Fealko, Plant Pathologists, University of Kentucky

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material Formulation</th>
<th>Minimum Days Harv.</th>
<th>Reentry</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ONION (DRY) (cont’d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NECK ROT (BOTRYTIS SPP.), PURPLE BLOTCH (ALTERNARIA PORRI), DOWNY MILDEW (PERONOSPORA DESTRUCTOR) (cont’d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>penthiopyrad (Fontela)</td>
<td>7</td>
<td>16 to 24 fl oz/acre</td>
<td>3</td>
<td>0.5</td>
<td>Begin sprays prior to disease development and continue on a 7- to 14-day sched.</td>
</tr>
<tr>
<td>WHITE ROT (SCLEROTIUM CEPIVORUM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>azoxystrobin + chlorothalonil (Quadris Opti)</td>
<td>11+M</td>
<td>1.6 to 3.2 pt/acre</td>
<td>14</td>
<td>0.5</td>
<td>Make no more than one application before alternating with a fungicide with a different mode of action.</td>
</tr>
<tr>
<td>azoxystrobin + tebuconazole (Custodia)</td>
<td>11+3</td>
<td>32 fl oz</td>
<td>7</td>
<td>0.5</td>
<td>Make one application at 32 fl oz per acre in furrow at planting. Additional control may be obtained by including two foliar applications at 8.6 to 12.9 fl oz/acre.</td>
</tr>
<tr>
<td>dicloran (Botran)</td>
<td>14</td>
<td>5.3 lb/acre</td>
<td>14</td>
<td>0.5</td>
<td>Apply 5-in. band over seed row and incorporate in top 1.5 to 3 in. of soil, 1 to 2 weeks before seeding.</td>
</tr>
<tr>
<td>fluazinam (Cannonball WG)</td>
<td>12</td>
<td>7 oz/acre</td>
<td>7</td>
<td>0.5</td>
<td>In furrow treatment only.</td>
</tr>
<tr>
<td>penthiopyrad (Fontela)</td>
<td>7</td>
<td>16 to 24 fl oz/acre</td>
<td>3</td>
<td>0.5</td>
<td>Begin sprays prior to disease development and continue on a 7- to 14-day sched.</td>
</tr>
<tr>
<td>tebuconazole (Toledo 36F and various)</td>
<td>3</td>
<td>20.5 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
<td>Make one application in furrow at time of planting.</td>
</tr>
<tr>
<td>thiophanate-methyl (various)</td>
<td>1</td>
<td>See label</td>
<td></td>
<td></td>
<td>Spray into open furrow at time of seeding or planting in a row.</td>
</tr>
</tbody>
</table>

TABLE 3-23. EFFICACY OF PRODUCTS FOR DISEASE CONTROL IN ONION

N. Gauthier and E. Fealko, Plant Pathologists, University of Kentucky

| Active Ingredient 1 | Product 1 | Fungicide group 2 | Preharvest interval (Days) | Bacterial Streak (Pseudomonas viridiflava) | Black mold (Aspergillus niger) | Botrytis Leaf Blight (F. oxysporum) | Botrytis Neck Rot (B. allii) | Damping off (Botrytis spp.) | Downy Mildew (P. destructor) | Fusarium Basal Rot (F. oxysporum) | Other Soot (Urocystis polychroa) | Center Rot (Pantoea ananatis) | Pink Root (Phoma terrestris) | Purple Blotch (Alternaria porri) | Stemblyrium Leaf Blight and Stalk Rot | White Rot (Sclerotium cepivorum) |
|---------------------|-----------|-------------------|---------------------------|--|-------------------------------|----------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|---------------------------------|-------------------------------|-----------------------------|-----------------------------|---------------------------------|---------------------------------|-------------------------------|
| ametoctradin + dimethomorph | Zampro | 40+45 | 0 | NC | NC | NC | ND | NC | NC | NC | NC | NC | NC | NC | NC | NC |
| azoxystrobin | Quadris | 11+7 | 7 | NC | NC | NC | ND | ND | NC | NC | NC | ND | ND | ND | ND | ND |
| azoxystrobin + difenoconazole | Quadris Top | 11+3 | 1 | NC | NC | NC | ND | NC | NC | NC | NC | NC | G-F | F | NC | ND |
| boscalid | Endura | 7 | 7 | ND | ND | F | ND | ND | ND | ND | G | ND | P | ND | ND | ND |
| chlorothalonil | Bravo | M | 14 | NC | NC | F | NC | ND | ND | NC | ND | ND | NC | F | ND | ND |
| chlorothalonil + zoamide | Zing! | M+22 | 7 | ND | ND | ND | F-P | ND | ND | ND | ND | ND | ND | ND | ND | ND |
| chlorothalonil + cyanaxil | Ariston | M+27 | 7 | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND |
| cyprodinil + fludioxonil | Switch | 9+12 | 7 | NC | NC | F | ND | ND | NC | NC | NC | NC | NC | F | NC | ND |
| cyprodinil + difenoconazole | Inspire Super | 9+3 | 7 | ND | ND | G | ND | ND | ND | ND | ND | ND | ND | G | ND | ND |
| dichlorpropene + chloropicrin, fumigant | Telone C-1 | — — | NC | NC | NC | NC | NC | P | NC | F | NC | F | NC | NC | F | ND |
| difenoconazole + benzoindiflupyr | Aprovia Top | 3+7 | 7 | ND | ND | G | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND |
| dimethomorph | Forum | 40 | 0 | NC | NC | NC | NC | NC | NC | NC | NC | NC | NC | NC | NC | NC |
| fenamidone | Reason | 11+7 | 7 | NC | NC | P | NC | NC | NC | NC | NC | NC | NC | P | NC | NC |
| famoxadone + cyanaxil | Tanos | 11+27 | 3 | NC | NC | P | NC | NC | NC | NC | NC | NC | F | P | NC | NC |
| fixed copper | various | M | 1 | F | NC | F | NC | F | NC | F | NC | F | NC | F | NC | NC |
| fluazinam | Omega 50 | 29 | 2 | NC | NC | G | NC | NC | NC | G-F | NC | NC | NC | E | G | NC |
| fluopyram + pyrimethanil | Luna Tranquility | 7+9 | 7 | ND | ND | G-F | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND |
| fluopyram + tebuconazole | Luna Experience | 7+3 | 7 | ND | ND | ND | ND | ND | ND | ND | ND | F | ND | ND | ND | ND |
| fluxapyroxad + pyraclostrobin | Merivon | 7+11 | 7 | ND | ND | G | ND | ND | ND | ND | ND | ND | ND | G | ND | ND |

Scale: E, excellent; G, good; F, fair; P, poor; NC, no control; ND, no data.
TABLE 3-23. EFFICACY OF PRODUCTS FOR DISEASE CONTROL IN ONION (cont’d)

N. Gauthier and E. Fealko, Plant Pathologists, University of Kentucky

Scale: E, excellent; G, good; F, fair; P, poor; NC, no control; ND, no data.

<table>
<thead>
<tr>
<th>Active Ingredient</th>
<th>Product 1</th>
<th>Fungicide group ²</th>
<th>Preharvest interval (Days)</th>
<th>Fungicide group ³</th>
<th>Preharvest interval (Days)</th>
<th>Efficacy Ratings</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>iprodione</td>
<td>various</td>
<td>2</td>
<td>7</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>F-P</td>
</tr>
<tr>
<td>mancozeb</td>
<td>various</td>
<td>M</td>
<td>7</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>F-P</td>
</tr>
<tr>
<td>mancozeb + copper</td>
<td>ManKocide</td>
<td>M+M</td>
<td>7</td>
<td>F</td>
<td>NC</td>
<td>E</td>
<td>NC-F-P</td>
</tr>
<tr>
<td>mandipropamid</td>
<td>Revus</td>
<td>40</td>
<td>7</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC-F-P</td>
</tr>
<tr>
<td>mefenoxam</td>
<td>Ridomil Gold EC</td>
<td>4</td>
<td>7</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>NC-F-P</td>
</tr>
<tr>
<td>mefenoxam + chlorothalonil</td>
<td>Ridomil Gold Bravo</td>
<td>4+M</td>
<td>14</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC-F-P</td>
</tr>
<tr>
<td>mefenoxam + copper</td>
<td>Ridomil Gold/ Copper</td>
<td>4+M</td>
<td>7</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>NC-F-P</td>
</tr>
<tr>
<td>mefenoxam + mancozeb</td>
<td>Ridomil Gold MZ</td>
<td>4+M</td>
<td>7</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC-F-P</td>
</tr>
<tr>
<td>metam sodium, fumigant</td>
<td>Vapam</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>penthiopyrad</td>
<td>Fontelis</td>
<td>7</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>NC</td>
<td>NC-F-P</td>
</tr>
<tr>
<td>potassium phosphite + tebuconazole</td>
<td>Viathon</td>
<td>33+3</td>
<td>7</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND-G</td>
</tr>
<tr>
<td>pyraclostrobin</td>
<td>Cabrio</td>
<td>11</td>
<td>7</td>
<td>ND</td>
<td>NC</td>
<td>NC</td>
<td>NC-G</td>
</tr>
<tr>
<td>pyraclostrobin + boscalid</td>
<td>Pristine</td>
<td>11+7</td>
<td>7</td>
<td>NC</td>
<td>F</td>
<td>F</td>
<td>F-G-N</td>
</tr>
<tr>
<td>pyrimethanil</td>
<td>Scala</td>
<td>9</td>
<td>7</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>F-N</td>
</tr>
<tr>
<td>tebuconazole</td>
<td>Toledo</td>
<td>3</td>
<td>7</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>F-N</td>
</tr>
<tr>
<td>oxathiapiprolin + mandipropamid</td>
<td>Orondis Ultra</td>
<td>49+40</td>
<td>7</td>
<td>NC</td>
<td>NC</td>
<td>ND</td>
<td>G-F</td>
</tr>
</tbody>
</table>

¹ Efficacy ratings do not necessarily indicate a labeled use for every disease.
² To prevent resistance in pathogens, alternate fungicides within a group with fungicides in another group. Fungicides in the “M” group are generally considered “low risk” with no signs of resistance developing to most fungicides.
³ Resistance reported in the pathogen.

TABLE 3-24. DISEASE CONTROL PRODUCTS FOR PARSLEY AND CILANTRO

A. Keinath, Plant Pathologist, Clemson University

Note: Some fungicides are registered on parsley but not on cilantro; check Remarks section before applying any product to cilantro.

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material Formulation</th>
<th>Minimum Days</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAMPING OFF AND ROOT ROT (PYTHIUM, PHYTOPHTHORA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fenamidone (Reason 500SC)</td>
<td>11</td>
<td>8.2 fl oz/acre</td>
<td>14</td>
<td>0.5</td>
</tr>
<tr>
<td>mefenoxam (Ridomil Gold 4 SL) (Ultra Flourish 2 EC)</td>
<td>4</td>
<td>1 to 2 pt/treated acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>metalaxyl (MetaStar 2 E)</td>
<td>4</td>
<td>2 to 8 pt/treated acre</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>SEEDLING BLIGHT, DAMPING OFF, ROOT ROT (PYTHIUM SPP., RHIZOCTONIA SOLANI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>azaoxystrobin + mefenoxam (Uniform 3.72 SC)</td>
<td>11+4</td>
<td>0.34 fl oz/1,000 row ft</td>
<td>—</td>
<td>0</td>
</tr>
</tbody>
</table>
TABLE 3-24. DISEASE CONTROL PRODUCTS FOR PARSLEY AND CILANTRO (cont’d)

A. Keinath, Plant Pathologist, Clemson University

Note: Some fungicides are registered on parsley but not on cilantro; check Remarks section before applying any product to cilantro.

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material Formulation</th>
<th>Minimum Days</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALTERNARIA LEAF SPOT</td>
<td>11</td>
<td>See labels</td>
<td>0</td>
<td>4 hr</td>
</tr>
<tr>
<td>CERCOSPORA LEAF SPOT (EARLY BLIGHT)</td>
<td>11</td>
<td>See labels</td>
<td>0</td>
<td>4 hr</td>
</tr>
<tr>
<td>POWDERY MILDEW, SEPTORIA LEAF SPOT (LATE BLIGHT)</td>
<td>11</td>
<td>See labels</td>
<td>0</td>
<td>4 hr</td>
</tr>
<tr>
<td>azoxystrobin (various)</td>
<td>11</td>
<td>See labels</td>
<td>0</td>
<td>4 hr</td>
</tr>
<tr>
<td>azoxystrobin + flu罢triafol (Topguard EQ 4.3 SC)</td>
<td>11+3</td>
<td>6 to 8 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
</tr>
<tr>
<td>bosalid (Endura 70 WG)</td>
<td>7</td>
<td>4.5 to 9 oz/acre</td>
<td>14</td>
<td>0.5</td>
</tr>
<tr>
<td>cyprodinil + fludioxonil (Switch 62.5WG)</td>
<td>9+12</td>
<td>11 to 14 oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>fenamidone (Reason 500SC)</td>
<td>11</td>
<td>5.5-8.2 fl oz/acre</td>
<td>14</td>
<td>0.5</td>
</tr>
<tr>
<td>fixed copper (generic)</td>
<td>M1</td>
<td>See label</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>fluazinam + pydiflumetofen (Miravis Prime 2.09 SC)</td>
<td>12+7</td>
<td>9.2 to 13.4 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>fludioxonil (Rhyme 2.08SC)</td>
<td>3</td>
<td>5 to 7 fl oz</td>
<td>7</td>
<td>0.5</td>
</tr>
<tr>
<td>fluxapyroxad + pyraclostrobin (Merivon 500 SC)</td>
<td>7+11</td>
<td>4 to 11 fl oz/acre</td>
<td>3</td>
<td>0.5</td>
</tr>
<tr>
<td>penthiopyrad (Fontels 1.67 F)</td>
<td>7</td>
<td>14 to 24 fl oz</td>
<td>3</td>
<td>0.5</td>
</tr>
<tr>
<td>propiconazole (various)</td>
<td>3</td>
<td>3 to 4 fl oz/acre</td>
<td>14</td>
<td>0.5</td>
</tr>
<tr>
<td>pydiflumetofen + fludioxonil (Miravis Prime 2.09 SC)</td>
<td>7+12</td>
<td>9.2 to 13.4 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
</tr>
<tr>
<td>pyraclostrobin (Cabrio 20 EG, Pyrac 2 EC)</td>
<td>11</td>
<td>12 to 16 oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>trifloxystrobin (Flint Extra 42.6 SC)</td>
<td>11</td>
<td>3.0 to 3.8 fl oz/acre</td>
<td>0 (broad-cast) 20 (banded)</td>
<td>0.5</td>
</tr>
<tr>
<td>triflumizole (Procure 480SC)</td>
<td>3</td>
<td>6 to 8 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>GRAY MOLD, POWDERY MILDEW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fluopyram + trifloxystrobin (Luna Sensation 500 SC)</td>
<td>7+11</td>
<td>5.0 to 7.6 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
</tr>
<tr>
<td>pydiflumetofen + fludioxonil (Miravis Prime 2.09 SC)</td>
<td>7+12</td>
<td>9.2 to 13.4 fl oz/acre (high rate for gray mold)</td>
<td>7</td>
<td>0.5</td>
</tr>
<tr>
<td>ROOT ROT (PHYTOPHTHORA SPP.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>potassium phosphate (various)</td>
<td>P07</td>
<td>2.5 to 5.0 pints/acre</td>
<td>0</td>
<td>4 hr</td>
</tr>
<tr>
<td>WEB BLIGHT AND ROOT ROT (RHIZOCTONIA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>azoxystrobin (Quadris 2.08F)</td>
<td>11</td>
<td>0.125 to 0.25 oz/1000 row ft soil application or 6.0 to 15.5 fl oz/acre foliar application</td>
<td>0</td>
<td>4 hr</td>
</tr>
<tr>
<td>fluopyram + trifloxystrobin (Luna Sensation 500 SC)</td>
<td>7+11</td>
<td>7.6 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
</tr>
</tbody>
</table>
TABLE 3-24. DISEASE CONTROL PRODUCTS FOR PARSLEY AND CILANTRO (cont’d)

A. Keinath, Plant Pathologist, Clemson University

Note: Some fungicides are registered on parsley but not on cilantro; check Remarks section before applying any product to cilantro.

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material</th>
<th>Minimum Days</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHITE MOLD (SCLEROTINIA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>boscalid (Endura 70 WG)</td>
<td>7</td>
<td>4.5 to 9 oz/acre</td>
<td>14</td>
<td>0.5 Make no more than 2 sequential applications before alternating with fungicides that have a different mode of action. Limit of 16 oz/acre per year. Do not use on cilantro. Do not use in greenhouses.</td>
</tr>
<tr>
<td>cyprodinil + fludioxonil (Switch 62.5 WG)</td>
<td>9+12</td>
<td>11 to 14 oz/acre</td>
<td>0</td>
<td>0.5 Make no more than two sequential applications before alternating with fungicides that have a different mode of action for two applications. Apply no more than 56 oz per crop per acre per season. First application at thinning and second application 2 weeks later.</td>
</tr>
<tr>
<td>fludioxonil (various)</td>
<td>12</td>
<td>7 oz/acre</td>
<td>0</td>
<td>0.5 Make no more than 4 applications per crop per year. Applying excessive water after application may decrease efficacy. Do not use on cilantro.</td>
</tr>
<tr>
<td>fludioxonil + pydiflumetofen (Miravis Prime 2.09 SC)</td>
<td>12+7</td>
<td>13.4 fl oz/acre</td>
<td>0</td>
<td>0.5 Make no more than 2 sequential applications of Miravis Prime or other Group 7 and 12 fungicides before rotating to another effective fungicide with a different mode of action. Limit of 2 applications per crop per year. Do not use in greenhouses. Do not use on cilantro.</td>
</tr>
<tr>
<td>penthiopyrad (Fontelis 1.67 F)</td>
<td>7</td>
<td>16 to 30 fl oz</td>
<td>3</td>
<td>0.5 Do not make more than two sequential applications. Maximum of 72 fl oz/acre per year.</td>
</tr>
<tr>
<td>Coniothyrium minitans (Contans WG)</td>
<td>NA</td>
<td>1 to 4 lb/acre</td>
<td>0</td>
<td>4 hr OMRI listed product. Apply to soil surface and incorporate no deeper than 2 inches. Works best when applied prior to planting or transplanting. Do not apply other fungicides for 3 weeks after applying Contans.</td>
</tr>
</tbody>
</table>

TABLE 3-25. IMPORTANCE OF ALTERNATIVE MANAGEMENT PRACTICES FOR DISEASE CONTROL IN PARSLEY AND CILANTRO

A. Keinath, Plant Pathologist, Clemson University

Scale: E, excellent; G, good; F, fair; P, poor; NC, no control; ND, no data.

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Alternaria leaf spot</th>
<th>Cercospora leaf spot</th>
<th>Rhinocystis leaf spot</th>
<th>Pythium damping off and root rot</th>
<th>Rhizoctonia damping off and root rot</th>
<th>Rhabdotus nematode</th>
<th>Sclerotinia white mold</th>
<th>Septoria leaf blight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avoid field operations when leaves are wet</td>
<td>G</td>
<td>G</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>P</td>
<td>G</td>
</tr>
<tr>
<td>Avoid overhead irrigation</td>
<td>G</td>
<td>G</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>Biofungicide</td>
<td>ND</td>
<td>ND</td>
<td>F</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>F</td>
<td>ND</td>
</tr>
<tr>
<td>Change planting date</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>E (early)</td>
<td>E (early)</td>
<td>G (late)</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>Suppressive cover crops</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>Crop rotation with non-host</td>
<td>E</td>
<td>E</td>
<td>NC</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>F</td>
<td>E</td>
</tr>
<tr>
<td>Deep plowing</td>
<td>G</td>
<td>G</td>
<td>P</td>
<td>NC</td>
<td>F</td>
<td>P</td>
<td>F</td>
<td>G</td>
</tr>
<tr>
<td>Destroy crop residue</td>
<td>G</td>
<td>G</td>
<td>P</td>
<td>NC</td>
<td>F</td>
<td>P</td>
<td>P</td>
<td>G</td>
</tr>
<tr>
<td>Encourage air movement</td>
<td>G</td>
<td>G</td>
<td>P</td>
<td>NC</td>
<td>NC</td>
<td>E</td>
<td>G</td>
<td>E</td>
</tr>
<tr>
<td>Flooding (where feasible)</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>G</td>
<td>G</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>Increase soil organic matter</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>P</td>
<td>P</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>Hot water seed treatment</td>
<td>ND</td>
<td>ND</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>E</td>
</tr>
<tr>
<td>Plant in well-drained soil</td>
<td>P</td>
<td>P</td>
<td>NC</td>
<td>E</td>
<td>G</td>
<td>NC</td>
<td>F</td>
<td>P</td>
</tr>
<tr>
<td>Plant on raised beds</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>E</td>
<td>G</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
</tr>
<tr>
<td>Plastic mulch bed covers</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>NC</td>
<td>P</td>
<td>NC</td>
</tr>
<tr>
<td>Postharvest temperature control</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>E</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>Reduce mechanical injury</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>P</td>
<td>NC</td>
<td>G</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>Soil solarization</td>
<td>F</td>
<td>F</td>
<td>NC</td>
<td>P</td>
<td>F</td>
<td>P</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>Pathogen-free seed</td>
<td>E</td>
<td>E</td>
<td>P</td>
<td>NC</td>
<td>NC</td>
<td>P</td>
<td>E</td>
<td>NC</td>
</tr>
<tr>
<td>Resistant/tolerant cultivars</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>P</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>Weed control</td>
<td>P</td>
<td>P</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>F</td>
<td>P</td>
</tr>
</tbody>
</table>
TABLE 3-26. DISEASE CONTROL PRODUCTS FOR PEA

E. Sikora, Plant Pathologist, Auburn University

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material Formulation</th>
<th>Minimum Days</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEA (ENGLISH, GARDEN)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANTHRACNOSE</td>
<td>11 11+7</td>
<td>6.2 to 15.4 fl oz/acre 4.0 to 8.0 fl oz/acre 8 to 11 oz/acre 2.0 to 4.75 fl oz/acre 0.5 to 1 pt/trt acre</td>
<td>0 0 0 7 0</td>
<td>Do not make more than two sequential applications. Maximum of 72 fl oz/acre per crop. Do not make more than two sequential applications. Maximum of 16 fl oz/acre per crop. Do not make more than two sequential applications. Maximum of 16 fl oz/acre per crop. Begin applications preventively and continue as needed on a 7- to 14-day interval. To be grown for pea and bean, dry seed only. Seed treatment for seed Decay, Seedling Blight and Damping-off caused by Rhizoctonia solani only. Purchase treated seed for control of Rhizoctonia solani only.</td>
</tr>
<tr>
<td>ASCOCYTA LEAF SPOT AND BLIGHT</td>
<td>11 11+7</td>
<td>6.2 to 15.4 fl oz/acre 4.0 to 8.0 fl oz/acre 8 to 11 oz/acre 2.0 to 4.75 fl oz/acre</td>
<td>0 7 7 7</td>
<td>Do not make more than two sequential applications. Maximum of 16 fl oz/acre per crop. Do not make more than two sequential applications. Maximum of 16 fl oz/acre per crop. Do not make more than two sequential applications. Maximum of 16 fl oz/acre per crop. Begin applications preventively and continue as needed on a 7- to 14-day interval. To be grown for pea and bean, dry seed only. Seed treatment for seed Decay, Seedling Blight and Damping-off caused by Rhizoctonia solani only. Purchase treated seed for control of Rhizoctonia solani only.</td>
</tr>
<tr>
<td>GRAY MOLD (BOTRYTIS), WHITE MOLD (SCLerotinia)</td>
<td>7</td>
<td>8 to 11 oz/acre 17 fl oz/acre 14 to 30 fl oz 4.0 to 8.0 fl oz/acre</td>
<td>0 0 0 7</td>
<td>Maximum of 2 applications per crop. Maximum of 2 applications per crop. Maximum of 2 applications per crop. Do not make more than two sequential applications. Maximum of 72 fl oz/acre per year. Do not make more than two sequential applications. Maximum of 16 fl oz/acre per crop. Do not make more than two sequential applications. Maximum of 16 fl oz/acre per crop.</td>
</tr>
<tr>
<td>WHITE MOLD (SCLerotinia)</td>
<td>7</td>
<td>8 to 11 oz/acre 17 fl oz/acre 14 to 30 fl oz</td>
<td>0 0 0</td>
<td>Maximum of 2 applications per crop. Maximum of 2 applications per crop. Maximum of 2 applications per crop. Do not make more than two sequential applications. Maximum of 72 fl oz/acre per year. Do not make more than two sequential applications. Maximum of 16 fl oz/acre per crop. Do not make more than two sequential applications. Maximum of 16 fl oz/acre per crop.</td>
</tr>
<tr>
<td>POWDERY MILDEW</td>
<td>7</td>
<td>8 to 11 oz/acre 17 fl oz/acre 14 to 30 fl oz</td>
<td>0 0 0</td>
<td>Maximum of 2 applications per crop. Maximum of 2 applications per crop. Maximum of 2 applications per crop. Do not make more than two sequential applications. Maximum of 72 fl oz/acre per year. Do not make more than two sequential applications. Maximum of 16 fl oz/acre per crop. Do not make more than two sequential applications. Maximum of 16 fl oz/acre per crop.</td>
</tr>
<tr>
<td>PYTHIUM DAMPING OFF</td>
<td>7</td>
<td>8 to 11 oz/acre 17 fl oz/acre 14 to 30 fl oz</td>
<td>0 0 0</td>
<td>Maximum of 2 applications per crop. Maximum of 2 applications per crop. Maximum of 2 applications per crop. Do not make more than two sequential applications. Maximum of 72 fl oz/acre per year. Do not make more than two sequential applications. Maximum of 16 fl oz/acre per crop. Do not make more than two sequential applications. Maximum of 16 fl oz/acre per crop.</td>
</tr>
<tr>
<td>RHIZOCTONIA ROOT ROT</td>
<td>7</td>
<td>8 to 11 oz/acre 17 fl oz/acre 14 to 30 fl oz</td>
<td>0 0 0</td>
<td>Maximum of 2 applications per crop. Maximum of 2 applications per crop. Maximum of 2 applications per crop. Do not make more than two sequential applications. Maximum of 72 fl oz/acre per year. Do not make more than two sequential applications. Maximum of 16 fl oz/acre per crop. Do not make more than two sequential applications. Maximum of 16 fl oz/acre per crop.</td>
</tr>
<tr>
<td>RHIZOCTONIA SEED DECAY AND SEEDLING BLIGHT</td>
<td>7</td>
<td>8 to 11 oz/acre 17 fl oz/acre 14 to 30 fl oz</td>
<td>0 0 0</td>
<td>Maximum of 2 applications per crop. Maximum of 2 applications per crop. Maximum of 2 applications per crop. Do not make more than two sequential applications. Maximum of 72 fl oz/acre per year. Do not make more than two sequential applications. Maximum of 16 fl oz/acre per crop. Do not make more than two sequential applications. Maximum of 16 fl oz/acre per crop.</td>
</tr>
<tr>
<td>RUST (UROMYCES)</td>
<td>7</td>
<td>8 to 11 oz/acre 17 fl oz/acre 14 to 30 fl oz</td>
<td>0 0 0</td>
<td>Maximum of 2 applications per crop. Maximum of 2 applications per crop. Maximum of 2 applications per crop. Do not make more than two sequential applications. Maximum of 72 fl oz/acre per year. Do not make more than two sequential applications. Maximum of 16 fl oz/acre per crop. Do not make more than two sequential applications. Maximum of 16 fl oz/acre per crop.</td>
</tr>
</tbody>
</table>

- **E. Sikora, Plant Pathologist, Auburn University**
- **Table cont'd**
- **OMRI listed product.**
- **Apply to soil surface and incorporate no deeper than 2 inches.**
- **Spray at first appearance, 10- to 14-day intervals. Do not use sulfur on wet plants or on hot days (more than 90°F).**
- **Incorporate in soil. See label for row rates.**
- **Purchase treated seed for control of Rhizoctonia solani only.**
<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material</th>
<th>Minimum Days</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEA (SOUTHERN)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEED DECAY (PHOMOPSIS, FUSARIUM); SEEDLING BLIGHT (FUSARUM, RHIZOCTONIA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>thiophanate-methyl (various)</td>
<td>1</td>
<td>0.14 to 0.28 fl oz/100 lbs seed</td>
<td>Seed treatment.</td>
<td></td>
</tr>
<tr>
<td>ANTHRACNOSE, RUST</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>azoxystrobin (various)</td>
<td>11</td>
<td>2 to 5 oz/acre</td>
<td>14 (dry) 0 hr 7 (succulent)</td>
<td>Make no more than 2 sequential applications before alternating with a fungicide with a different mode of actions. Use no more than 1.5 lb a.i. per acre per season.</td>
</tr>
<tr>
<td>ASCOCHYTA BLIGHT, GRAY MOLD, WHITE MOLD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>boscalid (Endura 70 WG)</td>
<td>7</td>
<td>8 to 11 oz/acre</td>
<td>21 (dry) 0.5 hr</td>
<td>Maximum of 2 applications per season.</td>
</tr>
<tr>
<td>ASCOCHYTA BLIGHT, RUST, WHITE MOLD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>prothioconazole (various)</td>
<td>3</td>
<td>5.7 fl oz/acre</td>
<td>7 0.5</td>
<td>Maximum of 3 applications per year. Use no more than 17.1 fl oz per acre per year.</td>
</tr>
<tr>
<td>ASCOCHYTA BLIGHT, WHITE MOLD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>metconazole (Quash)</td>
<td>3</td>
<td>4 oz/acre</td>
<td>21 (dry) 0.5</td>
<td>For dried shelled pea and beans only. Do not make more than 2 applications per year, but applications may be sequential. Do not apply to cowpea and field pea used for livestock feed. For suppression of white mold only.</td>
</tr>
<tr>
<td>DOWNY MILDEW, BACTERIAL BLIGHTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fixed copper (various)</td>
<td>M</td>
<td>See label</td>
<td>See label</td>
<td>See label</td>
</tr>
<tr>
<td>DOWNY MILDEW, CERCOSPORA, ANTHRACNOSE, RUST</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chlorothalonil (various)</td>
<td>M</td>
<td>1.4 to 2 pt/acre</td>
<td>14 2</td>
<td>Spray early bloom; repeat at 7- to 10-day intervals; for dry beans only.</td>
</tr>
<tr>
<td>ALTERNARIA, ANTHRACNOSE, ASCOCHYTA, POWDERY MILDEW, RUST, CERCOSPORA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>difenoconazole + benzoindiflupyr (Aprovia Top)</td>
<td>3+7</td>
<td>10.5 to 11 fl oz</td>
<td>14 0.5</td>
<td>Begin prior to disease development and continue on 14-day schedule.</td>
</tr>
<tr>
<td>ALTERNARIA, ASCOCHYTA, CERCOSPORA, POWDERY MILDEW, MYCOSPHAERELLA, RUST</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pydiflumetofen + difenoconazole (Miravis Top)</td>
<td>3+7</td>
<td>13.7 fl oz/acre</td>
<td>14 0.5</td>
<td>For dried shelled peas only. Begin applications prior to disease development. Continue applications on a 14-day interval. Do not make more than 4 applications per season. DO NOT feed or harvest cowpeas for forage and hay.</td>
</tr>
<tr>
<td>ALTERNARIA, ANTHRACNOSE, ASCOCHYTA, RUST, SOUTHERN BLIGHT, WEB BLIGHT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>azoxystrobin + propiconazole (various)</td>
<td>3+11</td>
<td>10.5 to 14 oz/acre</td>
<td>7 (succulent) 14 (dry) 0.5</td>
<td>Apply when conditions are conducive for disease. Up to three applications may be made on 7- to 14-day intervals</td>
</tr>
<tr>
<td>ALTERNARIA, ANTHRACNOSE, ASCOCHYTA, DOWNY MILDEW, POWDERY MIL- DEW, RUST, CERCOSPORA, WHITE MOLD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pyraclostrobin (Approach)</td>
<td>11</td>
<td>6 to 12 fl oz</td>
<td>14 0.5</td>
<td>Do not apply more than three sequential applications. For white mold, use higher rates.</td>
</tr>
<tr>
<td>DOWNY MILDEW, CERCOSPORA, ANTHRACNOSE, RUST, POWDERY MILDEW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sulfur (various)</td>
<td>M</td>
<td>See label</td>
<td>0 1</td>
<td>Spray at first appearance; 7- to 10-day interval.</td>
</tr>
<tr>
<td>PYTHIUM DAMPING OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mefenoxam (various)</td>
<td>4</td>
<td>0.5 to 1 pt/ treated acre</td>
<td>— 0.5</td>
<td>Broadcast or banded over the row as a soil spray at planting or preplant incorporation into the top 2 inches of soil.</td>
</tr>
<tr>
<td>metalaxyl (various)</td>
<td>4</td>
<td>2 to 4 pt/ treated acre</td>
<td>— 2</td>
<td>Broadcast or banded over the row as a soil spray at planting or preplant incorporation into the top 2 inches of soil.</td>
</tr>
<tr>
<td>RHIZOCTONIA ROOT ROT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>azoxystrobin (various)</td>
<td>11</td>
<td>0.4 to 0.8 fl oz/1,000 row feet</td>
<td>— 4 hr</td>
<td>Make in-furrow or banded application shortly after plant emergence.</td>
</tr>
<tr>
<td>penthiopyrad (Evergol Prime)</td>
<td>7</td>
<td>0.05 to 0.1 fl oz of the product per 100,000 seeds.</td>
<td>— 0.5</td>
<td>Apply using commercial slurry or mist-type seed treatment equipment.</td>
</tr>
</tbody>
</table>
TABLE 3-26. DISEASE CONTROL PRODUCTS FOR PEA (cont’d)

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material Formulation</th>
<th>Minimum Days</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEA (SOUTHERN) (CONT’D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RHIZOCTONIA AND FUSARIUM SEED AND SEEDLING DECAY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fluxapyroxad (various)</td>
<td>7</td>
<td>0.24 to 0.47 fl oz/100 lbs seed</td>
<td>—</td>
<td>Seed treatment</td>
</tr>
<tr>
<td>sedaxane (Vibrance)</td>
<td>7</td>
<td>0.08 0.16 fl oz/100 lbs seed</td>
<td>-</td>
<td>Seed treatment for seed decay, seedling blight and damping-off caused by Rhizoctonia solani</td>
</tr>
<tr>
<td>DOWNY MILDEW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mefenoxam + copper hydroxide (Romold Gold Copper)</td>
<td>4+M1</td>
<td>5 lb/2.5 acres</td>
<td>3</td>
<td>For black-eyed, southern and cowpea. Begin foliar applications at onset of disease and continue on 7-day interval. Do not exceed 4 applications per season.</td>
</tr>
<tr>
<td>WHITE MILDEW (SCLerotinia)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coniothyrium minitans (Contans WG)</td>
<td></td>
<td></td>
<td>4 hr</td>
<td>OMRI listed product. Apply to soil surface and incorporate no deeper than 2 inches. Works best when applied prior to planting or transplanting. Do not apply other fungicides for 3 weeks after applying Contans.</td>
</tr>
<tr>
<td>COTTONY LEAK (PYThium SPP.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fenamidone (Reason 500 C)</td>
<td>11</td>
<td>See label</td>
<td>0</td>
<td>Begin applications as soon as crop and/or environmental conditions become favorable for disease development. DO NOT use on cowpeas used for livestock feed.</td>
</tr>
<tr>
<td>azoxystrobin + difenoconazole (Quadris Top)</td>
<td>11+3</td>
<td>8 to 14 fl oz/acre</td>
<td>0</td>
<td>Limit of 55.3 fl oz per acre per season. Make no more than two consecutive applications before rotating to another effective fungicide with a different mode of action.</td>
</tr>
<tr>
<td>azoxystrobin + flutriafol (Topguard EQ)</td>
<td>11+3</td>
<td>See label</td>
<td>12 hr</td>
<td>Application instructions vary by disease; please follow label directions. DO NOT apply to cowpeas used for livestock feed.</td>
</tr>
<tr>
<td>mancozeb + azoxystrobin (Dexter Max)</td>
<td>M3+11</td>
<td>1.7 to 3.4 lb/acre</td>
<td>7</td>
<td>For states East of the Mississippi and including Mississippi, do not exceed 20.5 lbs of product/acre/season. States West of Mississippi use 1.7 to 2.25 lbs of product/acre/season; do not exceed 13.7 lbs of product/acre/season. Do not make more than one application before alternating with a fungicide not in Group 11. Tank mixture with dimethoate may cause crop injury.</td>
</tr>
<tr>
<td>mancozeb + copper (ManKocide)</td>
<td>M3+M1</td>
<td>2 to 3 lb/acre</td>
<td>7</td>
<td>SUPPRESSION ONLY. Limit of 39 lbs per acre per season.</td>
</tr>
</tbody>
</table>

TABLE 3-27. DISEASE CONTROL PRODUCTS FOR PEPPER

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material Formulation</th>
<th>Minimum Days</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>APHID-TRANSMITTED VIRUSES: PVY, TEV, WMV, CMV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JMS Stylet-Oil</td>
<td></td>
<td>3 qt/100-gal water</td>
<td>0</td>
<td>Dry. Use in 50 to 200 gal per acre depending on plant size. Spray weekly when winged aphids first appear.</td>
</tr>
<tr>
<td>ANTHRACNOSE FRUIT ROT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>azoxystrobin (various)</td>
<td>11</td>
<td>See label</td>
<td>0</td>
<td>4 hr</td>
</tr>
<tr>
<td>azoxystrobin + difenoconazole (Quadris Top)</td>
<td>11+3</td>
<td>8 to 14 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>azoxystrobin + flutriafol (Topguard EQ)</td>
<td>11+3</td>
<td>See label</td>
<td>12 hr</td>
<td>Apply preventatively or when conditions are favorable for disease development. Repeat on a 7- to 14-day interval as necessary if conditions are favorable for disease development.</td>
</tr>
<tr>
<td>chlorothalonil (various)</td>
<td>M5</td>
<td>See labels</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>difenoconazole + benzoavindiflupyr (Aprovia Top)</td>
<td>11+3</td>
<td>10.5 to 13.5 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>mancozeb (various)</td>
<td>M3</td>
<td>See labels</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>mancozeb + azoxystrobin (Dexter Max)</td>
<td>M3+11</td>
<td>1.7 to 3.4 lb/acre</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>mancozeb + copper (ManKocide)</td>
<td>M3+M1</td>
<td>2 to 3 lb/acre</td>
<td>7</td>
<td>2</td>
</tr>
</tbody>
</table>
TABLE 3-27. DISEASE CONTROL PRODUCTS FOR PEPPER (cont’d)

Disease/Material	**FRAC Code**	**Rate of Material Formulation**	**Minimum Days**	**Harv.**	**Reentry**	**Method, Schedule, and Remarks**
ANTHRACNOSE FRUIT ROT (CONT’D)
penitroxyram (Fontelis) | 7 | 24 fl oz/acre | 0 | 0.5 | SUPPRESSION ONLY. Limit of 72 fl oz per acre per year. Make no more than two consecutive applications before rotating to another effective fungicide with a different mode of action.
pyraclostrobin (Cabrio EG) | 11 | 8 to 12 fl oz/acre | 0 | 4 hr | Apply at flowering to manage green fruit rot. Limit of 96 oz per acre per season. Make no more than one sequential application before alternating with fungicides that have a different mode of action.
pyraclostrobin + fluxapyroxad (Priorax Xemium) | 11+7 | 4.0 to 8.0 fl oz/acre | 0 | 0.5 | RIPE ROT ONLY. Limit of 24 fl oz per acre per season. Make no more than two consecutive applications before rotating to another effective fungicide with a different mode of action.
trifloxystrobin (Flint) | 11 | 3 to 4 oz/acre | 3 | 0.5 | SUPPRESSION ONLY. Limit of 16 oz per acre per year. Make no more than one application before alternating with fungicides that have a different mode of action.

BACTERIAL SPOT (FIELD)
acibenzolar-S-methyl (Actigard 50-WG) | 21 | 0.33 oz to 0.75 oz/acre | 14 | 0.5 | FOR CHILI PEPPERS ONLY EXCEPT IN THE STATE OF GEORGIA². Begin applications within one week of transplanting or emergence. Make up to six weekly, consecutive applications.

Bacillus amyloliquefaciens (Serief) | 44 | 4 to 16 oz/acre | 0 | 4 hr | Begin applications shortly after emergence or transplanting and continue on 2- to 7-day intervals if conditions are conducive to disease development. For improved suppression of bacterial spot and speck, tank mix or rotate with labeled copper-based bactericides.

fixed copper (various) | M1 | See labels | 0 | 2 | See label. Rates vary depending on the formulation. Make first application 7-10 days after transplanting. Carefully examine field for disease to deter mine need for additional applications. If disease is present, make additional applications at 5-day intervals. Applying mancozeb with copper significantly enhances bacterial spot control. **Do not spray copper when temperatures are above 90°F.**

mancozeb (various) | M3 | See labels | 7 | 1 | See label. Rates vary depending on the formulation.

mancozeb + copper (ManKocide) | M3+M1 | 2 to 3 lb/acre | 7 | 2 | Limit of 39 lbs per acre per season.

methyl salicylate + Bacillus thuringiensis subsp. kurstaki (Leap) | BM02 | 16 to 64 fl oz/acre | See label | 0.5 | Apply preventatively on a 5- to 10-day schedule. For best disease control, Leap should be used in tank mix or rotation with other registered pathogen control products, especially if disease is already observed in the crop.

quinxyoxfen (Quintec) | 13 | 6.0 fl oz/acre | 3 | 0.5 | Use 6 oz of product per acre in no less than 30 gallons of water per acre. **NOTE:** May only be used to manage bacterial spot in Florida, Georgia, North Carolina, and South Carolina (Section 2(ee)).

BACTERIAL SPOT (TRANSPLANTS)
fixed copper (various) | M1 | See labels | 0 | 2 | See label. Rates vary depending on the formulation. Begin applications when conditions first favor disease development and repeat at 3- to 10-day intervals if needed depending on disease severity. Use the higher rates when conditions favor disease. Do not spray copper when temperatures are above 90°F.

streptomycin sulfate (Agri-Mycin 17, Firewall, Streptrol) | 25 | 1 lb/100 gal | — | 1 | **MAY ONLY BE APPLIED TO TRANSPLANTS.** Spray when seedlings are in the 2-leaf stage and continue at 5- to 10-day intervals until transplanted into field. **NOTE:** Some pathogen strains are resistant to streptomycin sulfate.

BACTERIAL SPOT (SEED)
sodium hypochlorite (Clorox 5.25%, regular formulation) | — | 1 pt + 4 pt water | — | — | Add 1 TSP of surfactant (Tween-20 or 80, Silwet) to improve coverage on the seed.

CERCOSPORA LEAF SPOT
azoxystrin + difenoconazole (Quadris Top 29.6SC) | 11+3 | 8 to 14 fl oz/acre | 0 | 0.5 | Limit of 55.3 fl oz per acre per season. Make no more than two consecutive applications before rotating to another effective fungicide with a different mode of action. The addition of non-ionic based surfactant or oil concentrate is recommended.

azoxystrin + flutriafol (Topguard EQ) | 11+3 | See label | 0 | 0.5 | Apply preventatively or when conditions are favorable for disease development. Repeat on a 7- to 14-day interval as necessary if conditions are favorable for disease development.

benzovindiflupyr + difenoconazole (Aprovia Top) | 7+3 | 10.5 to 13.5 fl oz/acre | 0 | 0.5 | Limit of 24 fl oz per acre per season. Make no more than two consecutive applications before rotating to another effective fungicide with a different mode of action. Begin applications prior to disease development and continue throughout the season on a 7- to 14-day interval. For resistance management, do not apply more than two consecutive applications before switching to a non-Group 7 fungicide.

fixed copper (various) | M01 | See labels | 0 | 2 | See label. Rates vary depending on the formulation. Begin applications when conditions first favor disease development and repeat at 3- to 10-day intervals if needed depending on disease severity. Use the higher rates when conditions favor disease. Do not spray copper when temperatures are above 90 °F.

mancozeb (various) | M3 | See labels | 7 | 1 | See label. Rates vary depending on the formulation.
TABLE 3-27. DISEASE CONTROL PRODUCTS FOR PEPPER (cont’d)

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material Formulation</th>
<th>Minimum Days Harv. Reentry</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>CERCOSpora LEAF SPOT (CONT’D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mancozeb + copper (ManKocide)</td>
<td>M3+M1</td>
<td>2 to 3 lb/acre</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>mancozeb + azoxystrobin (Dexter Max)</td>
<td>M03+11</td>
<td>1.7 to 3.4 lb/acre</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>pyraclostrobin (Cabrio)</td>
<td>11</td>
<td>8 to 12 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>PHYTOPHthora FOLIAR BLIGHT AND FRUIT ROT (PHYTOPHthora CAPSICci)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ametericadrin + dimethomorph (Zamporo)</td>
<td>45+40</td>
<td>14 fl oz/acre</td>
<td>4</td>
<td>0.5</td>
</tr>
<tr>
<td>dimethomorph (Acrobat, Forum)</td>
<td>40</td>
<td>6 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>ethaboxam (Elumin)</td>
<td>22</td>
<td>8 fl oz/acre</td>
<td>2</td>
<td>0.5</td>
</tr>
<tr>
<td>famoxadone + cyheximide (Tanos)</td>
<td>11+27</td>
<td>8 to 10 oz/acre</td>
<td>3</td>
<td>0.5</td>
</tr>
<tr>
<td>fenamidone (Reason 500 SC)</td>
<td>11</td>
<td>8.2 fl oz/acre</td>
<td>14</td>
<td>0.5</td>
</tr>
<tr>
<td>fluazinam (Omega 500F, Lektivar 40SC)</td>
<td>29</td>
<td>1 to 1.5 pt/acre</td>
<td>30</td>
<td>0.5</td>
</tr>
<tr>
<td>fluopicolide (Presidio)</td>
<td>43</td>
<td>3 to 4 fl oz/acre</td>
<td>2</td>
<td>0.5</td>
</tr>
<tr>
<td>mandipropamid (Revin, Micora)</td>
<td>40</td>
<td>8 fl oz/acre</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>oxathiapiprolin + mephenoxam (Orondis Gold)</td>
<td>49+4</td>
<td>4.8 to 9.6 fl oz/acre</td>
<td>0</td>
<td>4 hr</td>
</tr>
<tr>
<td>oxathiapiprolin + mandipropamid (Orondis Ultra; premix)</td>
<td>49+40</td>
<td>5.5 to 8.0 fl oz/acre</td>
<td>See label</td>
<td>4 hr</td>
</tr>
<tr>
<td>PHYTOPHthora OR Pythium ROOT ROT (FIELD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mefenoxam (Ridomil Gold, Ultra Flourish)</td>
<td>4</td>
<td>See label</td>
<td>—</td>
<td>2</td>
</tr>
<tr>
<td>metalaxyl (MetaStar 2E)</td>
<td>4</td>
<td>4 to 8 pt/ treated acre</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>oxathiapiprolin + mefenoxam (Orondis Gold)</td>
<td>49+4</td>
<td>28 to 55 fl oz/acre</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>POwdery MIlDEw</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chlorothalonil + cyheximide (Ariston)</td>
<td>M5+27</td>
<td>2 to 2.44 pt/acre</td>
<td>3</td>
<td>0.5</td>
</tr>
<tr>
<td>difenoconazole + benzovindiflupyr (Aprovia Top)</td>
<td>7+3</td>
<td>10.5 to 13.5 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
</tbody>
</table>
TABLE 3-27. DISEASE CONTROL PRODUCTS FOR PEPPER (cont’d)

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material</th>
<th>Minimum Days</th>
<th>Harv.</th>
<th>Reentry Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>POWDERY MILDEW (CONT'D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>penthiopyrad (Fontelis)</td>
<td>7</td>
<td>16 to 24 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Limit of 72 fl oz per acre per year. Make no more than two consecutive applications before rotating to another effective fungicide with a different mode of action.</td>
</tr>
<tr>
<td>pyraclostrobin + fluxapyroxad (Prixor Xernium)</td>
<td>11+7</td>
<td>6.0 to 8.0 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Limit of 24 fl oz per acre per season. Make no more than two consecutive applications before rotating to another effective fungicide with a different mode of action.</td>
</tr>
<tr>
<td>pydifenofen + fluixadiol (Miravis Prime)</td>
<td>7+12</td>
<td>9.2 to 11.4 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Limit to 22.8 fl oz/acre per year. Begin applications prior to disease development. Continue applications through season on a 7- to 10-day interval.</td>
</tr>
<tr>
<td>pyrofentone (Probo 300SC)</td>
<td>50 (U08)</td>
<td>4 to 5 fl oz</td>
<td>0</td>
<td>4 hr</td>
<td>Do not exceed 16 fl oz/acre/year. Do not make more than 2 sequential applications of Probo or of another FRAC 50-containing fungicide before alternating to a fungicide with a different mode of action. Do not exceed 4 applications/year.</td>
</tr>
<tr>
<td>quinoxyfen (Quintec)</td>
<td>13</td>
<td>4.0 to 6.0 fl oz/acre</td>
<td>3</td>
<td>0.5</td>
<td>Limit of 24 fl oz per acre per year. Make no more than two consecutive applications before alternating with fungicides that have a different mode of action. NOTE: Under certain environmental conditions leaf spotting or chlorosis may occur after application; discontinue use if symptoms occur.</td>
</tr>
<tr>
<td>sulfur (various)</td>
<td>M2</td>
<td>See label</td>
<td>See label</td>
<td>See</td>
<td>See labels. Rates vary depending on the formulation. Apply at first appearance and repeat at 14-day intervals as needed.</td>
</tr>
<tr>
<td>trifloxystrobin (Flint)</td>
<td>11</td>
<td>1.5 to 2 oz/acre</td>
<td>3</td>
<td>0.5</td>
<td>Limit of 16 oz per acre per year. Make no more than one application before alternating with fungicides that have a different mode of action.</td>
</tr>
<tr>
<td>SOUTHERN BLIGHT (SCLEROTIUM ROLFSII)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacillus amyloliquefaciens (Serfen)</td>
<td>44</td>
<td>4 to 16 oz/acre</td>
<td>0</td>
<td>4 hr</td>
<td>See label Soil Application Instructions for In-Furrow, Drench, Shanked-In and Injected Applications.</td>
</tr>
<tr>
<td>fluoxastrobilan (Aftershock, Evito 280SC)</td>
<td>11</td>
<td>2 to 5.7 fl oz/acre</td>
<td>3</td>
<td>0.5</td>
<td>Limit of 22.8 fl oz per acre per year. Make no more than one application before alternating with fungicides that have a different mode of action. NOTE: Do not overlap irrigate for 24 hours following a spray application.</td>
</tr>
<tr>
<td>penthiopyrad (Fontelis)</td>
<td>7</td>
<td>16 to 24 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Limit of 19.2 fl oz per acre per year. Make no more than two sequential applications of Fontelis before switching to a fungicide with different mode of action. For non-bell peppers only.</td>
</tr>
<tr>
<td>PCNB (Blocker 4F) Transplanting</td>
<td>14</td>
<td>4.5 to 7.5 pt/100-gal (Use 0.5 pt of solution per plant)</td>
<td>NA</td>
<td>0.5</td>
<td>Transplanting: Apply at the time of transplanting for Southern blight suppression. The solution should be agitated often to maintain a uniform mixture to assure proper dosage. Limit of 7.5 lb a.i. per acre per season.</td>
</tr>
<tr>
<td>PCNB (Blocker 4F) In-furrow</td>
<td>14</td>
<td>1.2 to 1.9 gal (10.6 to 16.7 fl oz/1,000 fl of row)</td>
<td>NA</td>
<td>0.5</td>
<td>In furrow: Apply in 8 to 10 gal of water per acre based on 36-inch row spacing. Apply as in-furrow sprays to the open "V" trench just prior to planting. When culti-vating, set plows as flat as possible to avoid getting non-treated soil against stems or plants. Limit of 7.5 a.i. per acre per season.</td>
</tr>
<tr>
<td>pyraclostrobin (Cabrio 20 EG)</td>
<td>11</td>
<td>12 to 16 oz/acre</td>
<td>0</td>
<td>4 hr</td>
<td>SUPPRESSION ONLY. Apply at flowering to manage green fruit rot. Limit of 96 oz per acre per season. Make no more than one sequential application before alternating with fungicides that have a different mode of action.</td>
</tr>
<tr>
<td>pyraclostrobin + fluxapyroxad (Prixor)</td>
<td>11+7</td>
<td>4.0 to 8.0 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>SUPPRESSION ONLY. Limit of 24 fl oz per acre per season. Make no more than two consecutive applications before rotating to another effective fungicide with a different mode of action.</td>
</tr>
<tr>
<td>TARGET SPOT (CORYNESPORA CASSICOLA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>boscalid (Endura)</td>
<td>7</td>
<td>3.5 oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Limit of 21 oz per acre per season. Make no more than two sequential applications before alternating with fungicides that have a different mode of action.</td>
</tr>
<tr>
<td>cyprodinil + difenoconazole (Inspire Super)</td>
<td>9+3</td>
<td>16 to 20 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Limit of 80 fl oz per acre per season.</td>
</tr>
<tr>
<td>fluoxastrobilan (Aftershock, Evito 480SC)</td>
<td>11</td>
<td>2 to 5.7 fl oz/acre</td>
<td>3</td>
<td>0.5</td>
<td>Limit of 22.8 fl oz per acre per season. Make no more than one application before alternating with fungicides that have a different mode of action. NOTE: Do not overlap irrigate for 24 hours following a spray application.</td>
</tr>
<tr>
<td>penthiopyrad (Fontelis)</td>
<td>7</td>
<td>16 to 24 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>SUPPRESSION ONLY. Limit of 72 fl oz per acre per year. Make no more than two sequential applications before rotating to another effective fungicide with a different mode of action.</td>
</tr>
<tr>
<td>pyraclostrobin (Cabrio 20 EG)</td>
<td>11</td>
<td>8 to 12 oz/acre</td>
<td>0</td>
<td>4 hr</td>
<td>Apply at flowering to manage green fruit rot. Limit of 96 oz per acre per season. Make no more than one sequential application before alternating with fungicides that have a different mode of action.</td>
</tr>
<tr>
<td>pyraclostrobin + fluxapyroxad (Prixor)</td>
<td>11+7</td>
<td>4.0 to 8.0 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Limit of 24 fl oz per acre per season. Make no more than two consecutive applications before rotating to another effective fungicide with a different mode of action.</td>
</tr>
<tr>
<td>pydifenofen + fluixadiol (Miravis Prime)</td>
<td>7+12</td>
<td>9.2 to 11.4 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Limit to 22.8 fl oz/acre per year. Begin applications prior to disease development. Continue applications through season on a 7- to 10-day interval.</td>
</tr>
</tbody>
</table>

1 A Special Local Need Label (24(c)) is available in the state of Georgia (EPA SLN No. GA_120006, Expires December 31, 2022) for use on sweet peppers (bell peppers, pimento, lamuyo, cubanelle, and banana peppers).
TABLE 3-28. EFFICACY OF PRODUCTS FOR DISEASE CONTROL IN PEPPER

B. Dutta, Plant Pathologist, University of Georgia; L. Quesada-Ocampo, Plant Pathologist, North Carolina State University; R. Singh, Plant Pathologist, Louisiana State University Agricultural Center

Scale: E, excellent; G, good; F, fair; P, poor; NC, no control; ND, no data.

<table>
<thead>
<tr>
<th>Active Ingredient ¹</th>
<th>Product</th>
<th>Fungicide group</th>
<th>Preharvest interval (Days)</th>
<th>Anthracnose (immature fruit rot)</th>
<th>Bacterial spot</th>
<th>Phytophthora blight (root and crown)</th>
<th>Phytophthora blight (fruit and foliage)</th>
<th>Pythium damping-off</th>
<th>Southern blight</th>
</tr>
</thead>
<tbody>
<tr>
<td>azoxystrobin</td>
<td>Quadris</td>
<td>11</td>
<td>0</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>ND</td>
</tr>
<tr>
<td>chlorothalonil</td>
<td>Various</td>
<td>M05</td>
<td>3</td>
<td>P</td>
<td>NC</td>
<td>NC</td>
<td>P</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>difenoconazole + benzovindiflupyrid</td>
<td>Aprovia Top</td>
<td>7+3</td>
<td>0</td>
<td>G-F</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>cyazofamid</td>
<td>Ranman</td>
<td>21</td>
<td>0</td>
<td>NC</td>
<td>NC</td>
<td>P</td>
<td>P</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>oxathiapiprolin + mefenoxam</td>
<td>Orondis Gold 200</td>
<td>49+4</td>
<td>0</td>
<td>NC</td>
<td>NC</td>
<td>G</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>oxathiapiprolin + chlorothalonil</td>
<td>Orondis Opti</td>
<td>49+M05</td>
<td>0</td>
<td>NC</td>
<td>NC</td>
<td>G-F</td>
<td>G</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>dimethomorph</td>
<td>Acrobat, Forum</td>
<td>40</td>
<td>4</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>P</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>dimethomorph + ametoctradin</td>
<td>Zapro</td>
<td>40+45</td>
<td>4</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>F</td>
<td>ND</td>
<td>NC</td>
</tr>
<tr>
<td>famoxidone + cymoxanil</td>
<td>Tanos</td>
<td>11+27</td>
<td>3</td>
<td>P</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>P</td>
<td>ND</td>
</tr>
<tr>
<td>fixed copper</td>
<td>Various</td>
<td>M01</td>
<td>See label</td>
<td>P</td>
<td>F</td>
<td>NC</td>
<td>P</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>fluopicolide</td>
<td>Presidio</td>
<td>43</td>
<td>2</td>
<td>NC</td>
<td>NC</td>
<td>F⁺</td>
<td>F⁺</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>fluoxastrobin</td>
<td>Evito</td>
<td>11</td>
<td>3</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>ND</td>
</tr>
<tr>
<td>fluxapyroxad + pyraclostrobin</td>
<td>Priaxor</td>
<td>11+7</td>
<td>7</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>P</td>
</tr>
<tr>
<td>mancozeb ²</td>
<td>Dithane, Manzate</td>
<td>M03</td>
<td>5</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>mandipropamid</td>
<td>Revus</td>
<td>40</td>
<td>1</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>mefenoxam ²</td>
<td>Ridomil Gold EC, Ultra Flourish</td>
<td>4+M01</td>
<td>14</td>
<td>P</td>
<td>F-P</td>
<td>NA</td>
<td>F</td>
<td>NC</td>
<td></td>
</tr>
<tr>
<td>mefenoxam ² + copper</td>
<td>Ridomil Gold + copper</td>
<td>4+M01</td>
<td>14</td>
<td>P</td>
<td>F-P</td>
<td>NA</td>
<td>F</td>
<td>NC</td>
<td></td>
</tr>
<tr>
<td>methyl salicylate + Bacillus thuringiensis subsp. kurstaki</td>
<td>Leap</td>
<td>BM02</td>
<td>See label</td>
<td>NC</td>
<td>G-F</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>penthiopyrad</td>
<td>Fontelis</td>
<td>7</td>
<td>0</td>
<td>ND</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>G-F</td>
</tr>
<tr>
<td>propamocarb (greenhouse use)</td>
<td>Previcur Flex</td>
<td>28</td>
<td>5</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
</tr>
<tr>
<td>pyraclostrobin</td>
<td>Cabrio</td>
<td>11</td>
<td>0</td>
<td>G-F</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>ND</td>
</tr>
<tr>
<td>quinoxyfen</td>
<td>Quintec</td>
<td>13</td>
<td>3</td>
<td>NC</td>
<td>NC</td>
<td>P</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>streptomycin sulfate ²</td>
<td>Agri-Mycin, Streptrol, Firewall</td>
<td>25</td>
<td>Not for field use</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
</tbody>
</table>

¹ Efficacy ratings do not necessarily indicate a labeled use for every disease.
² Copper tank-mixed with mancozeb enhances the efficacy against bacterial spot.
³ Streptomycin may only be used on transplants; not registered for field use.
⁴ To prevent resistance in pathogens, alternate fungicides within a group with fungicides in another group. Fungicides in the "M" group are generally considered "low risk" with no signs of resistance developing to most fungicides.
⁵ Resistance reported in the pathogen.
TABLE 3-29. IMPORTANCE OF ALTERNATIVE MANAGEMENT PRACTICES FOR DISEASE CONTROL IN PEPPER

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Anthracnose (immature fruit)</th>
<th>Aphid-transmitted viruses (PVX,CMV,TEV,AMV,PVY)</th>
<th>Bacterial soft rot of fruit</th>
<th>Bacterial spot</th>
<th>Blossom-end rot</th>
<th>Phytophthora blight (fruit and foliage)</th>
<th>Phytophthora blight (root and crown)</th>
<th>Pythium damping off</th>
<th>Root-knot nematode</th>
<th>Southern blight</th>
<th>Tomato spotted wilt virus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avoid field operations when foliage is wet</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>G</td>
<td>NC</td>
<td>F</td>
<td>P</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>Avoid overhead irrigation</td>
<td>G</td>
<td>NC</td>
<td>F</td>
<td>G</td>
<td>NC</td>
<td>G</td>
<td>G</td>
<td>P</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>Change planting date within a season</td>
<td>NC</td>
<td>F (early)</td>
<td>NC</td>
<td>F (early)</td>
<td>NC</td>
<td>P (late)</td>
<td>F (early)</td>
<td>P (early)</td>
<td>Variable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cover cropping with antagonist</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotation with non-host (2 to 3 years)</td>
<td>G</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>P</td>
<td>P</td>
<td>F</td>
<td>P</td>
<td>NC</td>
<td></td>
</tr>
<tr>
<td>Deep plowing</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>P</td>
<td>NC</td>
<td></td>
</tr>
<tr>
<td>Prompt destruction of crop residue</td>
<td>F</td>
<td>F</td>
<td>NC</td>
<td>P</td>
<td>NC</td>
<td>P</td>
<td>P</td>
<td>NC</td>
<td>F</td>
<td>P</td>
<td>NC</td>
</tr>
<tr>
<td>Promote air movement</td>
<td>P</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>P</td>
<td>P</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>Use of soil organic amendments</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Application of insecticidal/horticultural oils</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td></td>
</tr>
<tr>
<td>pH management (soil)</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td></td>
</tr>
<tr>
<td>Plant in well-drained soil/raised beds</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>G</td>
<td>G</td>
<td>NC</td>
</tr>
<tr>
<td>Eliminate standing water/saturated areas</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>G</td>
<td>G</td>
<td>NC</td>
</tr>
<tr>
<td>Postharvest temp control (fruit)</td>
<td>NC</td>
<td></td>
</tr>
<tr>
<td>Use of reflective mulch</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>G</td>
</tr>
<tr>
<td>Reduce mechanical injury</td>
<td>NC</td>
</tr>
<tr>
<td>Rogue diseased plants and/or fruit</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>Soil solarization</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>Use of pathogen-free planting stock</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>G</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td></td>
</tr>
<tr>
<td>Use of resistant cultivars</td>
<td>NC</td>
<td>NC</td>
<td>G</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>NC</td>
<td>G</td>
<td>NC</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>Weed management</td>
<td>P</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>P</td>
<td>P</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>P</td>
</tr>
</tbody>
</table>

TABLE 3-30. DISEASE CONTROL PRODUCTS FOR POTATO

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material Formulation</th>
<th>Minimum Days</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>azoxystrobin (various)</td>
<td>11</td>
<td>See label</td>
<td>See label</td>
<td>See labels. Rates may vary depending on the product. Apply in furrow at planting according to label direction. Do not apply more than one application without alternating away from fungicides in Group 11.</td>
</tr>
<tr>
<td>azoxystrobin + benzovindiflupyr (Gatus)</td>
<td>11+7</td>
<td>0.34 to 0.5 oz/1000 linear row feet</td>
<td>0.5 —</td>
<td>Limit 9.5 oz/acre per application.</td>
</tr>
<tr>
<td>fludioxonil (Maxim PSP)</td>
<td>12</td>
<td>0.5 lb/100 lb seed pieces</td>
<td>— 0.5</td>
<td>Ensure thorough coverage of each seed piece.</td>
</tr>
<tr>
<td>fludioxonil + mancozeb (Maxim MZ)</td>
<td>12+M</td>
<td>0.5 lb/100 lb seed pieces</td>
<td>— 0.5</td>
<td>Ensure thorough coverage of each seed piece.</td>
</tr>
<tr>
<td>fludioxonil + thiamethoxam (Cruiser Maxx Potato)</td>
<td>12+ insecticide</td>
<td>0.19 to 0.27 fl oz/100 lb seed pieces</td>
<td>— 0.5</td>
<td>Rate depends on seeding rate – see label. See label for additional restrictions.</td>
</tr>
<tr>
<td>fludioxonil + difenoconazole + sedazane + thiaramoxam (Cruiser Maxx Vibrance Potato)</td>
<td>12+3+7 insecticide</td>
<td>0.5 fl oz/100 lb seed pieces</td>
<td>— 0.5</td>
<td>See label for additional restrictions.</td>
</tr>
<tr>
<td>fluopyram (Luna Privilege)</td>
<td>7</td>
<td>5.47 fl oz/acre (ground) 2.82 oz/acre (aerial)</td>
<td>7 0.5</td>
<td>Use on a 5- to 7-day interval. Do not apply more than 10.95 oz/acre/season for ground application and no more than 8.46 oz/acre/season for aerial application. Do not make more than 2 applications before alternating with a fungicide with a different mode of action. Labeled for silver scurf only.</td>
</tr>
</tbody>
</table>
TABLE 3-30. DISEASE CONTROL PRODUCTS FOR POTATO (cont’d)

S. Rideout, Plant Pathologist, Virginia Tech

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material Formulation</th>
<th>Minimum Days</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLACK SCURF (RHIZOCTONIA SOLANI) AND SILVER SCURF (HELMINTHOSPORIUM SOLANI) (CONT’D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fluxastrobin (Aftershock, Evito 480 SC)</td>
<td>11</td>
<td>0.16 to 0.24 fl oz/1,000 ft of row</td>
<td>7</td>
<td>0.5</td>
</tr>
<tr>
<td>flutolanil (Moncut 70DF, Moncut SC)</td>
<td>7</td>
<td>0.71 to 1.1 lb/acre 16.0 to 25.0 fl oz/acre</td>
<td>—</td>
<td>0.5</td>
</tr>
<tr>
<td>flutolanil + mancozeb (MonCoat M2)</td>
<td>7+M</td>
<td>0.75 lb to 1 lb/100 lb seed piece</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>mancozeb (various)</td>
<td>M</td>
<td>See label</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>penthiopyrad (Vertisan)</td>
<td>7</td>
<td>0.7 to 1.6 fl oz/1,000 ft of row</td>
<td>7</td>
<td>0.5</td>
</tr>
<tr>
<td>thiophanate-methyl (various)</td>
<td>1</td>
<td>0.5 to 0.7 fl oz/100 lb seed pieces</td>
<td>—</td>
<td>0.5</td>
</tr>
<tr>
<td>FUSARIUM SEEDPIECE DECAY, RHIZOCTONIA STEM CANKER, STREPTOMYCES COMMON SCAB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fludioxonil (various)</td>
<td>12</td>
<td>See label</td>
<td>—</td>
<td>0.5</td>
</tr>
<tr>
<td>fludioxonil + mancozeb (Maxim M2)</td>
<td>12+M</td>
<td>0.5 lb/100 lb seed</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>mancozeb (various)</td>
<td>M</td>
<td>See label</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>penthiopyrad (Vertisan)</td>
<td>7</td>
<td>0.7 to 1.6 oz/1,000 ft of row</td>
<td>7</td>
<td>0.5</td>
</tr>
<tr>
<td>EARLY BLIGHT, WHITE MOLD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>azoxystrobin + difenoconazole (Quadris Top)</td>
<td>11+3</td>
<td>8 to 14 fl oz/acre</td>
<td>14</td>
<td>0.5</td>
</tr>
<tr>
<td>boscalid (Endura)</td>
<td>7</td>
<td>3.5 to 10 oz/acre</td>
<td>10</td>
<td>0.5</td>
</tr>
<tr>
<td>fluopyram + pyrimethanil (Luna Tranquility)</td>
<td>7+9</td>
<td>11.2 oz/acre</td>
<td>7</td>
<td>0.5</td>
</tr>
<tr>
<td>fluxapyroxad + pyraclostrobin (Priaxor Xemium)</td>
<td>7+11</td>
<td>4 to 8 oz/acre</td>
<td>7</td>
<td>0.5</td>
</tr>
<tr>
<td>iprodione (various)</td>
<td>2</td>
<td>See label</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>metconazole (Quash)</td>
<td>3</td>
<td>2.5 to 4 oz/acre</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>metiram + pyraclostrobin (Cabrio Plus)</td>
<td>M+11</td>
<td>2.0 to 2.9 lb/acre</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>penthiopyrad (Vertisan)</td>
<td>7</td>
<td>10 to 24 oz/acre</td>
<td>7</td>
<td>0.5</td>
</tr>
<tr>
<td>pyraclostrobin (Headline, Headline SC)</td>
<td>11</td>
<td>6 to 12 fl oz/acre</td>
<td>3</td>
<td>0.5</td>
</tr>
<tr>
<td>pyrimethanil (Scala SC)</td>
<td>9</td>
<td>7 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
</tr>
<tr>
<td>thiophanate-methyl (various)</td>
<td>1</td>
<td>See label</td>
<td>See label</td>
<td>0.5</td>
</tr>
</tbody>
</table>
TABLE 3-30. DISEASE CONTROL PRODUCTS FOR POTATO (cont’d)

<table>
<thead>
<tr>
<th>S. Rideout, Plant Pathologist, Virginia Tech</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISEASE/MATERIAL</td>
</tr>
<tr>
<td>----------------------</td>
</tr>
<tr>
<td>LATE BLIGHT, WHITE MOLD</td>
</tr>
<tr>
<td>fluazinam (Omega 500 F)</td>
</tr>
<tr>
<td>azoxystrobin (various)</td>
</tr>
<tr>
<td>azoxystrobin + chlorothalonil (Quadris Opti)</td>
</tr>
<tr>
<td>chlorothalonil (various)</td>
</tr>
<tr>
<td>chlorothalonil + cymoxanil (Ariston)</td>
</tr>
<tr>
<td>chlorothalonil + zoxamide (Zingf)</td>
</tr>
<tr>
<td>fixed copper (various)</td>
</tr>
<tr>
<td>cymoxanil + famoxadone (Tanos)</td>
</tr>
<tr>
<td>dimethomorph (Forum)</td>
</tr>
<tr>
<td>fenamidone (Reason 500SC)</td>
</tr>
<tr>
<td>fluazifopstrobil (Aftershock, Evito 480 SC)</td>
</tr>
<tr>
<td>fluxapyroxad + pyraclostrobin (Prixor Xemium)</td>
</tr>
<tr>
<td>mancozeb + azoxystrobin (Dexter Max)</td>
</tr>
<tr>
<td>mancozeb + chlorothalonil (Elixir)</td>
</tr>
<tr>
<td>metiram (Polyram 80DF)</td>
</tr>
<tr>
<td>mandipropamid + difenoconazole (Revus Top)</td>
</tr>
<tr>
<td>mancozeb + chlorothalonil (Ridomil Gold Bravo SC)</td>
</tr>
<tr>
<td>mancozeb + mancozeb (Ridomil Gold MZ WG)</td>
</tr>
<tr>
<td>propamocarb hydrochloride (Previcur Flex)</td>
</tr>
<tr>
<td>pyraclostrobin (Headline, Headline SC)</td>
</tr>
<tr>
<td>pyraclostrobin + chlorothalonil (Cabrio Plus)</td>
</tr>
<tr>
<td>pyrimethanil (Scala 5F)</td>
</tr>
<tr>
<td>trifloxystrobin (Gem 500SC)</td>
</tr>
</tbody>
</table>
TABLE 3-30. DISEASE CONTROL PRODUCTS FOR POTATO (cont’d)

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material Formulation</th>
<th>Minimum Days</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLACK SCURF (RHIZOCTONIA SOLANI) AND SILVER SCURF (HELMINTHOспорIUM SOLANI) (CONT’D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>triphenyltin hydroxide (Super Tin 4L)</td>
<td>30</td>
<td>4 to 6 fl oz/acre</td>
<td>2</td>
<td>For Super Tin 4L, the 3.0 fl oz rate may be used if tank mixed. Add to 3 to 15 gallons of water depending on method of application. Season application limits apply—see label.</td>
</tr>
<tr>
<td></td>
<td>(Super Tin 80WP, Agri Tin)</td>
<td>2.5 to 3.75 oz/acre</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>zoxamide + mancozeb (Gavel 75DF)</td>
<td>22 M</td>
<td>1.5 to 2.0 lb/acre</td>
<td>14</td>
<td>Do not make more than 6 applications or apply more than 12 lbs product/acre/season.</td>
</tr>
<tr>
<td>LATE BLIGHT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ametocrynad + dimethomorph (Zampro)</td>
<td>45+40</td>
<td>11 to 14 fl oz/acre</td>
<td>4</td>
<td>Do not make more than 2 applications without switching to a different mode of action. Do not exceed 42 fl oz/acre/season and 3 applications/season.</td>
</tr>
<tr>
<td>cyazofamid (Ramman 400SC)</td>
<td>21</td>
<td>1.4 to 2.75 fl oz/acre</td>
<td>7</td>
<td>Do not apply more than 10 sprays per crop. Make no more than 3 consecutive applications, and then follow with 3 applications of another mode of action.</td>
</tr>
<tr>
<td>cymoxanil (Curzate 60DF)</td>
<td>27</td>
<td>3.2 oz/acre</td>
<td>14</td>
<td>USE ONLY WITH A PROTECTANT FUNGICIDE such as mancozeb or chlorothalonil. No more than 7 applications/crop/year.</td>
</tr>
<tr>
<td>dimethomorph (Forum)</td>
<td>40</td>
<td>4 to 6 fl oz/acre</td>
<td>4</td>
<td>If applying at less than 6 fl oz rate, must tank mix with a non-Group 40 fungicide. Do not exceed 5 applications or 30 fl oz of product/acre/season.</td>
</tr>
<tr>
<td>fluazinam (Omega 500F, Omega Top MP)</td>
<td>29</td>
<td>5.5 to 8 fl oz/acre</td>
<td>14</td>
<td>Begin applications when plants are 6 to 8 in. tall or when conditions favor disease development. Repeat applications at 7- to 10-day intervals. For late blight, use the 5.5 fl oz rate. DO NOT apply more than 3.5 pt per acre during each growing season.</td>
</tr>
<tr>
<td>mefenoxam + copper hydroxide (Ridomil Gold/Copper)</td>
<td>4+M</td>
<td>2 lb/acre</td>
<td>14</td>
<td>MUST tank-mix with a protectant fungicide. Apply at 14-day intervals for up to 3 applications; alternated and followed by the full rate of a protectant.</td>
</tr>
<tr>
<td>mono- and di-potassium salts of phosphorous acid (various)</td>
<td>33</td>
<td>See label</td>
<td>0</td>
<td>Mix with a fungicide labeled for control of late blight. See label for in-furrow application or foliar application rates.</td>
</tr>
<tr>
<td>oxathiapiprolin + chlorothalonil (Orondis Opti A+ Orondis Opti B)</td>
<td>U15+M</td>
<td>1.6 to 4.8 fl oz/acre 0.75 to 1.5 pints/acre</td>
<td>5</td>
<td>Do not make more than 2 sequential applications without switching to a different mode of action and no more than 6 total applications per season. Do not mix soil applications and foliar applications. Apply no more than 27.2 fl oz of Orondis Opti A per season and no more than 15 pints of Orondis Opti B per season. See label for pre-mix.</td>
</tr>
<tr>
<td>oxathiapiprolin + mandipropamid (Orondis Ultra A + Orondis Ultra B)</td>
<td>U15+40</td>
<td>1.6 to 4.8 fl oz acre 8.0 fl oz/acre</td>
<td>5</td>
<td>Do not make more than 2 sequential applications without switching to a different mode of action and no more than 6 total applications per season. Do not mix soil applications and foliar applications. Apply no more than 27.2 fl oz of Orondis Ultra A per season and no more than 32 fl oz of Orondis Ultra B per season.</td>
</tr>
<tr>
<td>azoxystrobine + mefenoxam (Quadris Ridomil Gold SL)</td>
<td>11+4</td>
<td>0.82 fl oz / 1,000 ft of row</td>
<td>0</td>
<td>Apply as an in-furrow spray in 3 to 15 gal of water per acre at planting.</td>
</tr>
<tr>
<td>cyazofamid (Ramman 400SC)</td>
<td>21</td>
<td>1.4 to 2.75 fl oz/acre (foliar) 0.42 fl oz/1,000 ft (in-furrow)</td>
<td>7</td>
<td>For pink rot and Pythium leak, apply at the high rate. Do not apply more than 10 sprays per crop or more than 27.5 fl oz/acre/season. Make no more than 3 consecutive applications followed by 3 applications from a different resistance management group.</td>
</tr>
<tr>
<td>PINK ROT, PYTHIUM LEAK, TUBER ROT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ethaboxam (Elumin)</td>
<td>22</td>
<td>8 fl oz</td>
<td>N/A</td>
<td>0.5</td>
</tr>
<tr>
<td>mefenoxam (Ridomil Gold SL, Ultra Flourish)</td>
<td>4</td>
<td>0.42 fl oz/1,000 ft of row 0.84 fl oz/1,000 ft of row</td>
<td>7</td>
<td>See labels for maximum amount of product allowable per season. PHI is based on foliar application for Ultra Flourish.</td>
</tr>
<tr>
<td>mefenoxam + chlorothalonil (Ridomil Gold/Bravo)</td>
<td>4+M</td>
<td>2.5 pt/acre</td>
<td>14</td>
<td>Apply at flowering and then continue on a 14-day interval. Do not exceed more than four applications per crop.</td>
</tr>
<tr>
<td>mefenoxam + copper hydroxide (Ridomil Gold/Copper)</td>
<td>4+M</td>
<td>2 lb/acre</td>
<td>14</td>
<td>Apply at 14-day intervals for up to 3 applications. Alternate with a protectant fungicide.</td>
</tr>
<tr>
<td>mefenoxam + mancozeb (Ridomil Gold MZ)</td>
<td>4+M</td>
<td>2.5 lb/acre</td>
<td>14</td>
<td>Apply at 14-day intervals for up to 4 applications.</td>
</tr>
<tr>
<td>metalaxyl (Metalaxyl 2E AG, MetaStar 2E)</td>
<td>4</td>
<td>12.8 fl oz/acre</td>
<td>14</td>
<td>Preplant incorporated or soil surface spray</td>
</tr>
<tr>
<td>mono- and di-potassium salts of phosphorous acid (various)</td>
<td>33</td>
<td>2.5 to 10 pints/acre</td>
<td>0</td>
<td>See label for in-furrow application or foliar application rates.</td>
</tr>
</tbody>
</table>
TABLE 3-30. DISEASE CONTROL PRODUCTS FOR POTATO (cont’d)

S. Rideout, Plant Pathologist, Virginia Tech

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material Formulation</th>
<th>Minimum Days</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>POWDERY MILDEW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>azoxystrobin (various)</td>
<td>11</td>
<td>See label</td>
<td>14</td>
<td>4h See label. Rates may vary depending on the product. Apply in furrow at planting according to label direction. Do not apply more than one application without alternating away from fungicides in Group 11.</td>
</tr>
<tr>
<td>azoxystrobin + chlorothalonil (Quadris Opti)</td>
<td>11+M</td>
<td>1.6 pt/acre</td>
<td>14</td>
<td>0.5 Do not apply more than 1.5 lb a.i./acre/year of azoxystrobin; do not apply more than 11.25 lb a.i./acre/year of chlorothalonil. Do not make more than 1 application before alternating with a fungicide with a different mode of action. Do not apply this product or other fungicides in Group 11 more than 6 times in a season.</td>
</tr>
<tr>
<td>azoxystrobin + difenoconazole (Quadris Top)</td>
<td>11+3</td>
<td>8 to 14 fl oz/acre</td>
<td>14</td>
<td>0.5 Apply at 7- to 14-day intervals. Apply no more than 2 sequential applications without alternating with a fungicide with a different mode of action. Do not apply more than 55.3 lb product per acre per year. Do not apply more than 0.46 lb a.i./acre/year of difenoconazole-containing products; do not apply more than 2.0 lb a.i./acre/year of azoxystrobin-containing products.</td>
</tr>
<tr>
<td>fluopyram + pyrimethanil (Luna Tranquility)</td>
<td>7+9</td>
<td>11.2 fl oz/acre</td>
<td>7</td>
<td>0.5 Do not make more than 2 sequential applications without switching to a fungicide outside of Group 7 or Group 9. Limit 54.7 fl oz/acre/season.</td>
</tr>
<tr>
<td>fluxapyroxad + pyraclostrobin (Piaxor Xemium)</td>
<td>7+11</td>
<td>6 to 8 fl oz/acre</td>
<td>7</td>
<td>0.5 Limit 3 applications per season and no more than 2 applications before switching to a different mode of action. Do not apply more than 24 fl oz/acre/season including in furrow and foliar uses.</td>
</tr>
<tr>
<td>mancozeb + azoxystrobin (Dexter Max)</td>
<td>M+11</td>
<td>1.6 to 2.1 lb/acre</td>
<td>14</td>
<td>1 Do not exceed 16 lbs product/acre/crop. Season limits apply for azoxystrobin. For suppression of powdery mildew.</td>
</tr>
<tr>
<td>mandipropamid + difenoconazole (Revus Top)</td>
<td>40+3</td>
<td>5.5 to 7 fl oz/acre</td>
<td>14</td>
<td>0.5 Begin applications when conditions favor disease development, on 7- to 10-day intervals. Do not apply more than twice before alternating with fungicides that have a different mode of action. Do not apply more than 28 fl oz per acre per season.</td>
</tr>
<tr>
<td>metconazole (Quash)</td>
<td>3</td>
<td>2.5 to 4 oz/acre</td>
<td>1</td>
<td>0.5 Limit 16 oz/acre/season. Make no more than 2 applications before changing modes of action. Limit to 4 applications per year. Use the 4 oz rate for white mold.</td>
</tr>
<tr>
<td>metiram + pyraclostrobin (Cabrio Plus)</td>
<td>M+11</td>
<td>2.9 lb/acre</td>
<td>14</td>
<td>1 Apply at 7- to 14-day intervals. Do not apply more than 17.4 lb/acre product per season. Do not apply more than 2 sequential applications before alternating with a fungicide with a different mode of action.</td>
</tr>
<tr>
<td>penthiopyrad (Vertisan)</td>
<td>7</td>
<td>10 to 24 fl oz/acre</td>
<td>7</td>
<td>0.5 Apply at 7- to 14-day intervals. Make no more than 2 applications before alternating with a fungicide with a different mode of action. Do not exceed 72 oz per acre per year. Do not apply more than 11.25 oz a.i. per acre per year in total from any combination of seed, soil, or foliar applications.</td>
</tr>
<tr>
<td>pyraclostrobin (Headline; Headline SC)</td>
<td>11</td>
<td>6 to 12 fl oz/acre</td>
<td>3</td>
<td>0.5 DO NOT exceed more than six foliar applications or 72 total oz of product per acre per season. Do not apply more than one time before alternating with a fungicide with a different mode of action.</td>
</tr>
<tr>
<td>sulfur (various)</td>
<td>M2</td>
<td>See label</td>
<td>—</td>
<td>1 Rates vary among products; see label.</td>
</tr>
</tbody>
</table>

PUMPKIN SEE CUCURBITS

WINTER SQUASH SEE CUCURBITS

SUMMER SQUASH SEE CUCURBITS

RADISH SEE ROOT VEGETABLES

RUBARB SEE LEAFY PETIOLE VEGETABLES

SCALLION SEE ONION, GREEN

SHALLOT SEE ONION, DRY
TABLE 3-31. DISEASE CONTROL PRODUCTS FOR ROOT VEGETABLES (EXCEPT SUGAR BEET)

Z. Hansen, Plant Pathologist, University of Tennessee

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material Formulation</th>
<th>Minimum Days</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEET (RED, GARDEN, TABLE), CARROT, PARSNIP, RADISH, TURNIP – HARVESTED FOR ROOTS ONLY (UNLESS NOTED)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALTERNARIA LEAF BLIGHT, CERCOSpora LEAF SPOT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>azoxystrobin (various)</td>
<td>11</td>
<td>6 to 15.5 fl oz/acre</td>
<td>0</td>
<td>4 hr</td>
</tr>
<tr>
<td>azoxystrobin + chlorothalonil (Quadris Opt)</td>
<td>11+M</td>
<td>2.4 pt/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>azoxystrobin + difenoconazole (Quadris Top)</td>
<td>11+3</td>
<td>12 to 14 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
</tr>
<tr>
<td>azoxystrobin + propiconazole (various)</td>
<td>11+3</td>
<td>14 fl oz</td>
<td>14</td>
<td>0.5</td>
</tr>
<tr>
<td>boscalid (Endura)</td>
<td>7</td>
<td>4.5 oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>chlorothalonil (various)</td>
<td>M</td>
<td>1.5 to 2 pt/acre</td>
<td>Check</td>
<td>0.5</td>
</tr>
<tr>
<td>cyprodinil + fludioxonil (Switch)</td>
<td>9+12</td>
<td>11 to 14 oz/acre</td>
<td>7</td>
<td>0.5</td>
</tr>
<tr>
<td>fenamidone (Reason 500SC)</td>
<td>11</td>
<td>8.2 fl oz/acre</td>
<td>14</td>
<td>0.5</td>
</tr>
<tr>
<td>fixed copper (various)</td>
<td>M</td>
<td>See labels</td>
<td>0</td>
<td>1 to 2</td>
</tr>
<tr>
<td>fluazinam (Omega)</td>
<td>29</td>
<td>15.35 fl oz to 16 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
</tr>
<tr>
<td>fluopyram + trifloxystrobin (Luna Sensation)</td>
<td>7+11</td>
<td>4 to 7.6 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
</tr>
<tr>
<td>fluopyram + pyrimethanil (Luna Tranquility)</td>
<td>7+9</td>
<td>8 to 11.2 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
</tr>
<tr>
<td>fluxapyroxad + pyraclostrobin (Meriton)</td>
<td>7+11</td>
<td>4 to 5.5 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
</tr>
<tr>
<td>iprodione (various)</td>
<td>2</td>
<td>1 to 2 pt/acre</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>pencypiprad (Fontels)</td>
<td>7</td>
<td>16 to 30 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>propiconazole (various)</td>
<td>3</td>
<td>3 to 4 fl oz/acre</td>
<td>14</td>
<td>0.5</td>
</tr>
<tr>
<td>pyraclostrobin (Cabrio)</td>
<td>11</td>
<td>8 to 12 oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>pyraclostrobin + boscalid (Pristine)</td>
<td>11+7</td>
<td>8 to 10.5 oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>tebuconazole (various)</td>
<td>3</td>
<td>3 to 7.2 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
</tr>
<tr>
<td>trifloxystrobin (Flint) (Gem 500SC)</td>
<td>11</td>
<td>2 to 4 oz/acre</td>
<td>1.9 to 2.9 fl oz/acre</td>
<td>7</td>
</tr>
</tbody>
</table>

2022 Vegetable Crop Handbook for Southeastern United States 267
TABLE 3-31. DISEASE CONTROL PRODUCTS FOR ROOT VEGETABLES (EXCEPT SUGAR BEET) (CONT’D)

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material Formulation</th>
<th>Minimum Days</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEET (RED, GARDEN, TABLE), CARROT, PARSNIP, RADISH, TURNIP – HARVESTED FOR ROOTS ONLY (UNLESS NOTED) (CONT’D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CERCOSPORA LEAF SPOT OR BLIGHT, POWDERY MILDEW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>azoxystrobin + propiconazole (various)</td>
<td>11+3</td>
<td>14 fl oz</td>
<td>14</td>
<td>0.5 FOR USE ON CARROTS ONLY. No more than 1 application before alternating with a non-Group 11 fungicide. Make no more than 42 fl oz per acre per year.</td>
</tr>
<tr>
<td>boscalid (Endura)</td>
<td>7</td>
<td>4.5 oz/acre</td>
<td>0</td>
<td>0.5 Not for Cercospora. Do not make more than 2 consecutive applications or more than 5 applications per season. Also labeled for use on harvested radish leaves.</td>
</tr>
<tr>
<td>fixed copper (various)</td>
<td>M</td>
<td>See labels</td>
<td>0</td>
<td>1 to 2 CHECK LABEL FOR SPECIFIC CROP LISTINGS. Make sure product is labeled in state prior to use.</td>
</tr>
<tr>
<td>fluopyram + pyrimethanil (Luna Tranquility)</td>
<td>7+9</td>
<td>6.0 to 11.2 fl oz/acre</td>
<td>7</td>
<td>0.5 Not for Cercospora. Do not make more than 2 consecutive applications before rotating to a labeled non-Group 7 or non-Group 9 fungicide. Not labeled for use in Louisiana.</td>
</tr>
<tr>
<td>fluopyram + trifloxystrobin (Luna Sensation)</td>
<td>7+11</td>
<td>5.0 to 5.8 fl oz/acre</td>
<td>7</td>
<td>0.5 Not for Cercospora except on carrot. Do not make more than 2 consecutive applications before rotating to a labeled non-Group 7 or non-Group 11 fungicide. Carrot rate is 4.0 to 7.6 fl oz/acre.</td>
</tr>
<tr>
<td>fluxapyroxad + pyraclostrobin (Merivion)</td>
<td>7+11</td>
<td>4 to 5.5 fl oz/acre</td>
<td>7</td>
<td>0.5 Do not make more than 2 consecutive applications before rotating to a labeled non-Group 7 or non-Group 11 fungicide. Make no more than 3 applications per season. Use maximum rate for Cercospora leaf spot.</td>
</tr>
<tr>
<td>cyprodinil + fludioxonil (Switch)</td>
<td>9+12</td>
<td>11 to 14 oz/acre</td>
<td>7</td>
<td>0.5 Not for Cercospora. Apply when disease first appears and continue on 7- to 10-day intervals if conditions remain favorable for disease development. For radish, make no more than 2 applications per year. For other root crops, do not exceed 56 oz of product per acre per year. Also labeled for use on harvested garden beet, turnip, and radish leaves.</td>
</tr>
<tr>
<td>penthiopyrad (Fontelis)</td>
<td>7</td>
<td>16 to 30 fl oz/acre</td>
<td>0</td>
<td>0.5 Make no more than 2 consecutive applications before alternating with a fungicide with a different mode of action. Apply no more than 16 fl oz/acre/year. Also labeled for use on harvested garden beet, turnip, and radish leaves.</td>
</tr>
<tr>
<td>propiconazole (various)</td>
<td>3</td>
<td>3 to 4 fl oz/acre</td>
<td>14</td>
<td>0.5 Use higher rate for carrots. Make no more than 2 consecutive applications before alternating with a fungicide with a different mode of action. Apply no more than 16 fl oz/acre/year. Also labeled for use on harvested garden beet, turnip, and radish leaves.</td>
</tr>
<tr>
<td>pyraclostrobin (Cabrio)</td>
<td>11</td>
<td>8 to 12 oz/acre</td>
<td>0</td>
<td>0.5 Alternate with a fungicide with a different mode of action. Apply no more than 48 oz/acre/year. Also labeled for use on harvested garden beet, turnip, and radish leaves.</td>
</tr>
<tr>
<td>pyraclostrobin + boscalid (Pristine)</td>
<td>11+7</td>
<td>8 to 10.5 oz/acre</td>
<td>0</td>
<td>0.5 Make no more than 2 consecutive applications before alternating with a fungicide with a different mode of action. Use no more than 63 oz or make no more than 6 applications per season.</td>
</tr>
<tr>
<td>sulfur (various)</td>
<td>M</td>
<td>3 to 10 lb/acre</td>
<td>1</td>
<td>POWDERY MILDEW ONLY. Spray at first appearance. Avoid applying on days over 90°F. Also labeled for use on harvested garden beet and turnip leaves.</td>
</tr>
<tr>
<td>trifloxystrobin (Flint) (Gem 500 SC)</td>
<td>11</td>
<td>2 to 4 fl oz/acre 1.9 to 2.9 fl oz/acre</td>
<td>7</td>
<td>0.5 Make no more than 1 application before alternating with a fungicide with another mode of action. Make no more than 4 applications of trifloxystrobin or other strobilurin fungicides per season. Flint rate for radish is 2 to 4 oz/acre, other crops use 2 to 3 oz/acre. Gem 500SC not labeled for radish. Flint not labeled for powdery mildew on radish but may be used for Cercospora.</td>
</tr>
<tr>
<td>PHYTOPHTHORA BASAL STEM ROT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mefenoxam (Ridomil Gold 4 SL) (Ultra Flourish 2 EC)</td>
<td>4</td>
<td>1 to 2 pt/100 ft</td>
<td>—</td>
<td>2 Apply preplant incorporated into top 2 inches, as a soil spray at planting. Surface spray must be incorporated by rainfall or irrigation.</td>
</tr>
<tr>
<td>metalaxyl (various)</td>
<td>4</td>
<td>4 to 8 pt/100 ft</td>
<td>—</td>
<td>2 May be applied preplant incorporated or as a soil surface spray after planting.</td>
</tr>
<tr>
<td>fenamidone (Reason)</td>
<td>11</td>
<td>8.2 fl oz/acre</td>
<td>14</td>
<td>0.5 NOT LABELED FOR RADISH OR CARROT ROOTS. Make no more than 1 application before alternating with a mefenoxam-containing fungicide. Apply no more than 24.6 fl oz per growing season. Applied with sprayer or in sprinkler irrigation.</td>
</tr>
<tr>
<td>fluopicolide (Presidio)</td>
<td>43</td>
<td>3 to 4 fl oz/acre</td>
<td>7</td>
<td>0.5 Can be applied with a sprayer or in sprinkler irrigation. Regardless of method, must be applied in combination with fungicide with different mode of action and labeled for that method. No more than 2 consecutive applications before alternating with a Pythium fungicide with different mode of action. Maximum of 12 fl oz/ acre/year. For carrots only, may be applied preplant incorporated. Do not use on turnips intended for livestock. Not labeled for Phytophthora on carrot.</td>
</tr>
<tr>
<td>PYTHIUM ROOT ROT, ROOT DIEBACK, CAVITY SPOT (PYTHIUM SPP.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cyazofamid (Ranman)</td>
<td>21</td>
<td>6 fl oz/acre</td>
<td>14</td>
<td>0.5 FOR USE ON CARROTS ONLY. May be applied preplant incorporated, as a pre-emergent surface band, or in sprinkler irrigation. Applications can be repeated at 14- day intervals but must alternate with a Pythium fungicide with a different mode of action. Do not apply more than 30 fl oz per season. Do not use any adjuvant.</td>
</tr>
<tr>
<td>azoxystrobin + mefenoxam (Uniform)</td>
<td>11+4</td>
<td>0.34 fl oz/1000 row ft</td>
<td>—</td>
<td>0 NOT FOR CARROTS. In-furrow treatment only</td>
</tr>
</tbody>
</table>
TABLE 3-31. DISEASE CONTROL PRODUCTS FOR ROOT VEGETABLES (EXCEPT SUGAR BEET) (cont’d)

Z. Hansen, Plant Pathologist, University of Tennessee

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material Formulation</th>
<th>Minimum Days</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEAF BLIGHT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pythium (sclerotinia spp.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>azoxystrobin (various)</td>
<td>11</td>
<td>0.4 to 0.8 fl oz/1000 row ft</td>
<td>0</td>
<td>4 hr</td>
</tr>
<tr>
<td>fluopicolide (Presidio)</td>
<td>43</td>
<td>3 to 4 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
</tr>
<tr>
<td>fenamidone (Reason)</td>
<td>11</td>
<td>8.2 fl oz/acre</td>
<td>14</td>
<td>0.5</td>
</tr>
<tr>
<td>mefenoxam (Ridomil Gold 4 SL) (Ultra Flourish 2 EC)</td>
<td>4</td>
<td>1 to 2 pt/1000 lb</td>
<td>—</td>
<td>2</td>
</tr>
<tr>
<td>metalaxyl (various)</td>
<td>4</td>
<td>4 to 8 pt/1000 lb</td>
<td>—</td>
<td>2</td>
</tr>
<tr>
<td>RUST (pucinia spp.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>penthiopyrad (Fontelis)</td>
<td>7</td>
<td>16 to 30 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>sulfur (various)</td>
<td>M</td>
<td>see label</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>trifloxystrobin (Fint) (Gem 500SC)</td>
<td>11</td>
<td>2 to 3 oz/acre 1.9 to 2.9 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
</tr>
<tr>
<td>WHITE MOLD (sclerotinia spp.) AND GRAY MOLD (botrytis spp.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bosalid (Endura)</td>
<td>7</td>
<td>7.8 oz</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>chlorothalonil (various)</td>
<td>M</td>
<td>1.5 to 2 pt/acre</td>
<td>Check label</td>
<td>0.5</td>
</tr>
<tr>
<td>fluazinam (Omega)</td>
<td>29</td>
<td>1 pt/acre</td>
<td>7</td>
<td>0.5</td>
</tr>
<tr>
<td>fluopyram + pyrimethanil (Luna Tranquility)</td>
<td>7+9</td>
<td>11.2 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
</tr>
<tr>
<td>WHITE MOLD (sclerotinia spp.) AND GRAY MOLD (botrytis spp.) (POSTHARVEST) SOUTHERN BLIGHT (sclerotium rolfsii)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fluopyram + trifloxystrobin (Luna Sensation)</td>
<td>7+11</td>
<td>5.8 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
</tr>
<tr>
<td>penthiopyrad (Fontelis)</td>
<td>7</td>
<td>16 to 30 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>thiabendazole (Merect)</td>
<td>1</td>
<td>41 fl oz/100 gal</td>
<td>—</td>
<td>0.5</td>
</tr>
<tr>
<td>azoxystrobin (various)</td>
<td>11</td>
<td>0.4 to 0.8 fl oz/1000 row ft</td>
<td>0</td>
<td>4 hr</td>
</tr>
<tr>
<td>azoxystrobin + difenoconazole (Quadris Top)</td>
<td>11+3</td>
<td>12 to 14 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
</tr>
<tr>
<td>SOUTHERN BLIGHT (sclerotium rolfsii), WHITE RUST (albugo spp.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fluazinam (Omega)</td>
<td>29</td>
<td>1 pt/acre</td>
<td>7</td>
<td>0.5</td>
</tr>
<tr>
<td>penthiopyrad (Fontelis)</td>
<td>7</td>
<td>16 to 30 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>pyraclostrobin + boscalid (Pristine)</td>
<td>11+7</td>
<td>8 to 10.5 oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
</tbody>
</table>
TABLE 3-31. DISEASE CONTROL PRODUCTS FOR ROOT VEGETABLES (EXCEPT SUGAR BEET) (cont’d)

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material Formulation</th>
<th>Formulation</th>
<th>Minimum Days Harv.</th>
<th>Reentry Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEET (RED, GARDEN, TABLE), CARROT, PARSNIP, RADISH, TURNIP – HARVESTED FOR ROOTS ONLY (UNLESS NOTED) (CONT’D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>azoxystrobin (various)</td>
<td>11</td>
<td>6 to 15.5 fl oz/acre</td>
<td>0</td>
<td>4 hr</td>
<td>No more than 1 application before alternating with a fungicide with a different mode of action. Apply no more than 123 fl oz per acre per season.</td>
</tr>
<tr>
<td>WHITE RUST (ALBUGO SPP.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mefenoxam + copper hydroxide (Ridomil Gold/Copper)</td>
<td>4+M</td>
<td>1 to 2 pt/acre</td>
<td>7</td>
<td>1</td>
<td>FOR USE ON CARROTS AND RADISHES ONLY. Preplant or at-planting application.</td>
</tr>
<tr>
<td>pyraclostrobin (Cabrio EG)</td>
<td>11</td>
<td>8 to 16 oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Alternate with a fungicide with a different mode of action. Apply no more than 48 oz/acre/season. Also labeled for use on harvested garden beet, turnip, and radish leaves.</td>
</tr>
</tbody>
</table>

TABLE 3-32. IMPORTANCE OF ALTERNATIVE MANAGEMENT PRACTICES FOR DISEASE CONTROL IN CARROT

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Alternaria blight</th>
<th>Cercospora blight</th>
<th>Powdery mildew</th>
<th>Pythium cavity spot</th>
<th>Pythium damping off</th>
<th>Southern blight</th>
<th>Rhizoctonia cavity spot</th>
<th>Sclerotinia postharvest</th>
<th>Botrytis postharvest</th>
<th>Bacterial leaf blight</th>
<th>Root-knot nematode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avoid field operations when leaves wet</td>
<td>P</td>
<td>P</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
</tr>
<tr>
<td>Avoid overhead irrigation</td>
<td>F</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
</tr>
<tr>
<td>Change planting date</td>
<td>P</td>
<td>P</td>
<td>NC</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>Cover cropping with antagonist</td>
<td>NC</td>
<td>F</td>
</tr>
<tr>
<td>Crop rotation</td>
<td>F</td>
<td>F</td>
<td>NC</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>NC</td>
<td>F</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Deep plowing</td>
<td>G</td>
<td>G</td>
<td>P</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>P</td>
<td>G</td>
<td>NC</td>
</tr>
<tr>
<td>Destroy crop residue</td>
<td>E</td>
<td>E</td>
<td>P</td>
<td>NC</td>
<td>NC</td>
<td>P</td>
<td>NC</td>
<td>P</td>
<td>E</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Encourage air movement</td>
<td>F</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>Plant in well-drained soil</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>G</td>
<td>G</td>
<td>P</td>
<td>F</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>Plant on raised beds</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>Postharvest temperature control</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>E</td>
<td>E</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>Reduce mechanical injury</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>G</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>Destroy volunteer carrots</td>
<td>F</td>
<td>F</td>
<td>P</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>Pathogen-free planting material</td>
<td>E</td>
<td>E</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>Resistant cultivars</td>
<td>G</td>
<td>G</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
</tbody>
</table>
Table 3-33. Disease Control Products for Spinach

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material Formulation</th>
<th>Minimum Days</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Damping Off (Pythium spp.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cyazofamid (Ranman 400SC)</td>
<td>21</td>
<td>2.75 fl oz/acre</td>
<td>0</td>
<td>Apply to soil in a banded application or in transplant water at time of transplanting.</td>
</tr>
<tr>
<td>mefenoxam (Ridomil Gold SL)</td>
<td>4</td>
<td>1 to 2 pt/acre</td>
<td>21</td>
<td>Broadcast or banded over the row as a soil spray or pre-plant incorporation into the top two inches of soil. For Ultra Flourish, PHI=3 days only if soil applications do not exceed 4 pt/A and foliar mefenoxam applications do not exceed 0.25 lb a.i./A, otherwise PHI=21 days.</td>
</tr>
<tr>
<td>metalaxyl (various)</td>
<td>4</td>
<td>4 to 8 pt/acre</td>
<td>21</td>
<td>Broadcast or banded over the row as a soil spray or pre-plant incorporation into the top two inches of soil.</td>
</tr>
<tr>
<td>oxathiapiprolin + mefenoxam (Orondis Gold)</td>
<td>49+4</td>
<td>13.9 to 27.6 fl oz/acre</td>
<td>21</td>
<td>Apply using any of the following methods: in-furrow, transplant water, banded spray, and drip irrigation. If using drip irrigation, delay until after emergence. PHI is 3 days if soil application does not exceed 1.0 lb mefenoxam/acre/year and foliar application does not exceed 0.25 lb mefenoxam/acre/year.</td>
</tr>
<tr>
<td>phosphorous acid (mono- and di-potassium salts)</td>
<td>P07</td>
<td>1 to 2 qt/acre</td>
<td>0</td>
<td>4 hr Do not apply more than 6 times per crop cycle.</td>
</tr>
<tr>
<td>propamocarb hydrochloride (Previcur Flex)</td>
<td>F4</td>
<td>2 pt/acre</td>
<td>2</td>
<td>0.5 Do not exceed two applications per crop.</td>
</tr>
<tr>
<td>Seedling Blight, Damping Off, Root Rot (Pythium spp., Rhizoctonia solani)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>azoxystrobin + mefenoxam (Uniform)</td>
<td>11+4</td>
<td>0.34 fl oz/1,000 row ft</td>
<td>--</td>
<td>0 Apply as an in-furrow spray in 5 gal of water per acre prior to covering seed. Make only application per season.</td>
</tr>
<tr>
<td>fluopyram + trifloxystrobins (Luna Sensation)</td>
<td>7+11</td>
<td>7.6 fl oz/acre</td>
<td>0</td>
<td>0.5 Use a rotation partner outside of groups 7 and 11.</td>
</tr>
<tr>
<td>Downy Mildew (Peronospora fainosa f. sp. spinaciae)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ametoctradin + dimethomorph (Zampro)</td>
<td>45+40</td>
<td>14 fl oz/acre</td>
<td>0</td>
<td>0.5 Do not apply with or in rotation with mandipropamid or dimethomorph.</td>
</tr>
<tr>
<td>cymoxanil (Curzate)</td>
<td>27</td>
<td>5 oz/acre</td>
<td>1</td>
<td>0.5 Apply with a protectant fungicide. Apply no more than 30 oz per acre in a 12-month period. Not labeled for use in Louisiana.</td>
</tr>
<tr>
<td>dimethomorph (Forum)</td>
<td>40</td>
<td>6 fl oz/acre</td>
<td>0</td>
<td>0.5 Do not apply with or in rotation with mandipropamid.</td>
</tr>
<tr>
<td>fluopyram + trifloxystrobins (Luna Sensation)</td>
<td>7+11</td>
<td>7.6 fl oz/acre</td>
<td>0</td>
<td>0.5 Use a rotation partner outside of groups 7 and 11.</td>
</tr>
<tr>
<td>mandipropamid (Revus)</td>
<td>40</td>
<td>8 fl oz/acre</td>
<td>1</td>
<td>4 hr Make no more than 2 consecutive applications before alternating with a fungicide with a different mode of action. Apply no more than 32 fl oz/acre/season. Do not apply with or in rotation with dimethomorph.</td>
</tr>
<tr>
<td>oxathiapiprolin (Orondis Gold 200)</td>
<td>49+4</td>
<td>4.8 to 9.6 fl oz/acre</td>
<td>0</td>
<td>4 hr Apply at planting in furrow or by drip, or in subsequent drip irrigation. Make no more than 2 consecutive applications before alternating with a fungicide with a different mode of action. Do not apply more than 19.2 fl oz/acre per year.</td>
</tr>
<tr>
<td>phosphorous acid (mono- and di-potassium salts)</td>
<td>P07</td>
<td>1 to 2 qt/acre</td>
<td>0</td>
<td>4 hr Do not apply more than 6 times per crop cycle.</td>
</tr>
<tr>
<td>polyoxin D zinc salt (OSO 5%SC)</td>
<td>19</td>
<td>3.75 to 13 fl oz/acre</td>
<td>0</td>
<td>4 hr Do not make more than 6 applications per season at the maximum-labeled rate.</td>
</tr>
<tr>
<td>propamocarb hydrochloride (Previcur Flex)</td>
<td>F4</td>
<td>2 pt/acre</td>
<td>2</td>
<td>0.5 Use 1.33 to 2 pints per acre if mixing with another fungicide. Do not exceed two applications per crop.</td>
</tr>
<tr>
<td>Downy Mildew (Peronospora fainosa f. sp. spinaciae), White Rust (Albugo occidentalis)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>acibenzolar-S-methyl (Actigard)</td>
<td>P01</td>
<td>0.5 to 0.75 oz/acre</td>
<td>7</td>
<td>0.5 Do not apply to young seedlings or plants stressed due to drought, excessive moisture, cold weather, or herbicide injury.</td>
</tr>
<tr>
<td>aluminum tris (O-ethyl phosphonate) (Allette WDG)</td>
<td>P07</td>
<td>2 to 5 lbs/acre</td>
<td>3</td>
<td>0.5 Do not mix with copper. The lower rate (2 to 3 lbs/acre) can be used when mixed with another fungicide labeled for downy mildew. Otherwise, 3 to 5 lbs/acre should be used.</td>
</tr>
<tr>
<td>azoxystrobin + flutriafol (Topguard EQ)</td>
<td>11+3</td>
<td>6 to 8 fl oz/acre</td>
<td>7</td>
<td>0.5 Use a rotation partner outside of groups 3 and 11. Do not apply more than 4 applications per year.</td>
</tr>
<tr>
<td>cyazofamid (Ranman)</td>
<td>21</td>
<td>2.75 fl oz/acre</td>
<td>0</td>
<td>0.5 Do not make more than 3 consecutive applications before alternating with a fungicide with a different mode of action.</td>
</tr>
<tr>
<td>famoxadone + cymoxanil (Tanos)</td>
<td>11+27</td>
<td>8 to 10 oz/acre</td>
<td>1</td>
<td>0.5 Must be tank-mixed with a contact downy mildew fungicide with a different mode of action. Make no more than 1 application before alternating with a fungicide with a different mode of action. Apply no more than 84 oz/acre per cropping season.</td>
</tr>
<tr>
<td>fenamidone (Reason 500SC)</td>
<td>11</td>
<td>5.5 to 8.2 fl oz/acre</td>
<td>2</td>
<td>0.5 Make no more than 1 application before alternating with a fungicide with a different mode of action. Apply no more than 24.6 fl oz/acre per cropping season.</td>
</tr>
</tbody>
</table>
TABLE 3-33. DISEASE CONTROL PRODUCTS FOR SPINACH (cont’d)

Z. Hansen, Plant Pathologist, University of Tennessee

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material</th>
<th>Minimum Days</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOWNY MILDEW (PERONOSPORA FAJNOSA F. SP. SPINACIAE), WHITE RUST (ALBUGO OCCIDENTALIS) (cont’d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fixed copper (various)</td>
<td>M</td>
<td>See labels</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>fluopicolide (Presidio)</td>
<td>43</td>
<td>3 to 4 fl oz/acre</td>
<td>2</td>
<td>0.5</td>
</tr>
<tr>
<td>fluxapyroxad + pyraclostrobin (Merivon)</td>
<td>7+11</td>
<td>4 to 11 fl oz/acre</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>laminarin (Vacciplant)</td>
<td>P04</td>
<td>14 to 22 fl oz/acre</td>
<td>0</td>
<td>4 hr</td>
</tr>
<tr>
<td>mefenoxam (Ridomil Gold)</td>
<td>4</td>
<td>0.25 pt/acre 0.25 to 0.5 pt/acre</td>
<td>21</td>
<td>2</td>
</tr>
<tr>
<td>pyraclostrobin (Cabrio)</td>
<td>11</td>
<td>8 to 16 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>mefenoxam + copper hydroxide (Ridomil Gold/Copper)</td>
<td>4+M01</td>
<td>2 lb/acre</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>metalaxyl (various)</td>
<td>4</td>
<td>1 pt/trt acre</td>
<td>21</td>
<td>2</td>
</tr>
<tr>
<td>VARIUS LEAF SPOTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>azoxystrobin + flutialfol (Toppguard EQ)</td>
<td>11+3</td>
<td>6 to 8 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
</tr>
<tr>
<td>cyprodinil + fludioxonil (Switch 62.5WG)</td>
<td>9+12</td>
<td>11 to 14 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>fenamidone (Reason 500SC)</td>
<td>11</td>
<td>5.5 to 8.2 fl oz/acre</td>
<td>2</td>
<td>0.5</td>
</tr>
<tr>
<td>fixed copper (various)</td>
<td>M</td>
<td>See labels</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>fludioxonil (Cannonball WG)</td>
<td>12</td>
<td>7 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
</tr>
<tr>
<td>fluopyram + trifloxystrobin (Luna Sensation)</td>
<td>7+11</td>
<td>7.6 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>flutialfol (Rhyne)</td>
<td>3</td>
<td>5 to 7 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
</tr>
<tr>
<td>fluxapyroxad + pyraclostrobin (Merivon)</td>
<td>7+11</td>
<td>4 to 11 fl oz/acre</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>laminarin (Vacciplant)</td>
<td>P04</td>
<td>14 to 22 fl oz/acre</td>
<td>0</td>
<td>4 hr</td>
</tr>
<tr>
<td>penthiopyrad (Fontelis)</td>
<td>7</td>
<td>14 to 24 fl oz/acre</td>
<td>3</td>
<td>0.5</td>
</tr>
<tr>
<td>phosphorous acid (monoc- and di-potassium salts) (Reliant, Fungi-Phite)</td>
<td>P07</td>
<td>1.5 to 2 qt/acre</td>
<td>0</td>
<td>4 hr</td>
</tr>
<tr>
<td>polyoxin D zinc salt (OSO 5%SC)</td>
<td>19</td>
<td>3.75 to 13 fl oz/acre</td>
<td>0</td>
<td>4 hr</td>
</tr>
<tr>
<td>pyraclostrobin (Cabrio EG)</td>
<td>11</td>
<td>12 to 16 oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>pydiflumetofen + fludioxonil (Miravis Prime)</td>
<td>7+12</td>
<td>9.2 to 13.4 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>trifloxystrobin (Flint Extra)</td>
<td>11</td>
<td>3 to 3.8 fl oz/acre</td>
<td>0/20</td>
<td>0.5</td>
</tr>
</tbody>
</table>
TABLE 3-34. DISEASE CONTROL PRODUCTS FOR SWEETPOTATO

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>Rate of Material Formulation</th>
<th>Minimum Days</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLACK ROT (CERATOCYSTIS FIMBRIATA), SCURF (MONILIOCHAEITES INFUSCANS), AND FOOT ROT (PLENODOMUS DESTRUENS)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>thiabendazole (Mertect 340 F)</td>
<td>107 fl oz/100 gal</td>
<td>0.5</td>
<td>Dip seed roots 1 to 2 minutes and plant immediately.</td>
</tr>
<tr>
<td>POSTHARVEST BLACK ROT (CERATOCYSTIS FIMBRIATA)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>thiabendazole (Mertect 340 F)</td>
<td>0.42 fl oz per 2,000 lb of roots or 0.42 fl oz/gal</td>
<td>0.5</td>
<td>SECTION 18 LABEL ONLY IN NORTH CAROLINA. Postharvest treatment of sweetpotato for control of black rot. Limit to one application during packing. Mist washed roots on a conveyor line, with tumbling action, before packing with 0.42 fl oz of Mertect to each 2,000 lb of roots in sufficient water for complete coverage. Alternatively, dip the roots for 20 seconds in 0.42 fl oz of Mertect per gal of water. Ensure roots are dry before packing.</td>
</tr>
<tr>
<td>CIRCULAR SPOT (SCLEROTIUM ROLFSII), SCLEROTIAL BLIGHT (SCLEROTIUM ROLFSII), RHIZOCTONIA STEM CANKER (RHIZOCTONIA SOLANI), PYTHIUM ROOT ROT (PYTHIUM)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>azoxystrobin (Quadris) 2.08 F</td>
<td>0.4 to 0.8 fl oz/1,000 row feet</td>
<td>—</td>
<td>Make in-furrow or banded applications shortly after transplanting.</td>
</tr>
<tr>
<td>dichloran (Botran) 5F</td>
<td>0.6 qt/7.5 gal (Seed Dip) 5.73 oz in 14 gal/100 linear feet of plant bed (Plant bed spray)</td>
<td>—</td>
<td>Labeled for Southern blight (Sclerotium rolfsii). Seed dip: Dip seed sweetpotatoes 10 to 15 seconds in a well-agitated fungicide suspension. Drain sweet-potatoes and bed promptly. Prepare fresh fungicide suspension daily. Plant bed spray: Spray or sprinkle over bedded sweetpotatoes before covering them with soil. Note: Not for use in Virginia, Tennessee, or South Carolina.</td>
</tr>
<tr>
<td>flusilazin (Omega) 500F</td>
<td>5.5 to 8 fl oz/acre</td>
<td>14</td>
<td>Labeled for control of white mold (Sclerotinia). Begin applications when plants are 6 to 8 inches tall. Repeat applications at intervals of 7 to 10 days. See label for rate. Do not apply more than 3.5 pints per acre per year.</td>
</tr>
<tr>
<td>SEED-BORNE AND SOILBORNE FUNGI THAT CAUSE DECAY, DAMPING OFF OR SEEDLING BLIGHT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>azoxystrobin (Dynasty) 0.83 F</td>
<td>0.19 to 0.38 fl oz per 100 lb of propagating roots</td>
<td>—</td>
<td>Apply uniformly to seed roots as a water-based slurry.</td>
</tr>
<tr>
<td>fludioxonil (Maxim 4 FS)</td>
<td>0.08 to 0.16 fl oz/100 lb of propagating roots</td>
<td>—</td>
<td>Apply uniformly to seed roots as a water-based slurry.</td>
</tr>
<tr>
<td>DAMPING OFF (PYTHIUM SPP.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cyazofamid (Ranman 400SC)</td>
<td>6.1 fl oz/acre</td>
<td>7</td>
<td>Apply at planting. Refer to label for details.</td>
</tr>
<tr>
<td>ethabuxam (Elumin)</td>
<td>8 fl oz/acre</td>
<td>—</td>
<td>Apply in-furrow or as a side dressing over seed piece. Do not make more than two applications per year or apply more than 16 fl oz per acre per year.</td>
</tr>
<tr>
<td>fluopicolide (Presidio)</td>
<td>3 to 4 fl oz/acre</td>
<td>7</td>
<td>Must be tank mixed with a labeled rate of another fungicide active against the target pathogen, but with a different mode of action. Repeat applications at 10-day intervals.</td>
</tr>
<tr>
<td>mfenoxam (Ridomil Gold) 4 SL</td>
<td>1 to 2 pt/treated acre</td>
<td>—</td>
<td>Incorporate in soil. See label for row rate.</td>
</tr>
<tr>
<td>metalaxyl (Metsol) 2E</td>
<td>4 to 8 pt/treated acre</td>
<td>7</td>
<td>Preplant incorporated or soil surface spray.</td>
</tr>
<tr>
<td>FOLIAR DISEASES (ALTERNARIA)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>azoxystrobin (Aframe, generic)</td>
<td>6 to 15.5 fl oz/acre</td>
<td>0</td>
<td>Limit to 123 fl oz per acre per season. For soluble disease control, refer to label. Begin foliar applications prior to disease and continue on a 5- to 7-day interval.</td>
</tr>
<tr>
<td>cyprodinil + fludioxonil (Switch 62.5WG)</td>
<td>11 to 14 oz/acre</td>
<td>7</td>
<td>Begin foliar applications prior to disease and continue on a 7- to 10-day interval.</td>
</tr>
<tr>
<td>difenoconazole + benzoindiflupyr (Aprovia Top)</td>
<td>10.5 to 13.5 fl oz/acre</td>
<td>14</td>
<td>No more than two applications can be made at a 7-day interval; all other applications must be made at a 14-day interval. Apply no more than 27 fl oz per acre per year.</td>
</tr>
<tr>
<td>fenamidine (Reason 500SC)</td>
<td>5.5 to 8.2 fl oz/acre</td>
<td>14</td>
<td>Begin foliar applications prior to disease and continue on a 5- to 10-day interval.</td>
</tr>
<tr>
<td>fluoxastrobine (Athershock)</td>
<td>2 to 3.8 fl oz/acre</td>
<td>7</td>
<td>Limit to 22.8 fl oz per acre per year. For soluble disease control, refer to label. Begin foliar applications prior to disease and continue on a 7- to 10-day interval.</td>
</tr>
<tr>
<td>pydiflumetofen + fludioxonil (Miravis Prime)</td>
<td>6.8 fl oz/acre</td>
<td>7</td>
<td>Limit to 20.4 fl oz/acre per year. Begin applications prior to disease development. Continue applications through season on a 7- to 10-day interval.</td>
</tr>
<tr>
<td>pyraclostrobin (Cabrio) 20 WG</td>
<td>8 to 12 oz/acre</td>
<td>0</td>
<td>Do not apply more than 48 fl oz per acre per season. Alternate with a fungicide with a different mode of action after each use.</td>
</tr>
<tr>
<td>pyrimethanil (Scala SC)</td>
<td>7 fl oz/acre</td>
<td>7</td>
<td>Begin foliar applications prior to disease and continue on a 7- to 14-day interval.</td>
</tr>
<tr>
<td>Disease/Material</td>
<td>FRAC Code</td>
<td>Rate of Material Formulation</td>
<td>Minimum Days</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------</td>
<td>-----------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>FOLIAR DISEASES (ALTERNARIA) (CONT’D)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>thifluzamide</td>
<td>11</td>
<td>3 to 3.8 oz/acre</td>
<td>7</td>
</tr>
<tr>
<td>POSTHARVEST FUSARIUM ROT (FUSARIUM, ALBUGO IPOMOEA-PANDURATAE)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>azoxystrobin + fludioxonil + difenoconazole (Stadium)</td>
<td>11+12 +3</td>
<td>1 fl oz per 2,000 lbs of roots</td>
<td>–</td>
</tr>
<tr>
<td>MOTTLE NECROSIS (PYTHIUM POSTHARVEST)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>potassium phosphate (Allure)</td>
<td>P07</td>
<td>1 1/4 quarts/acre</td>
<td>0</td>
</tr>
<tr>
<td>POWDERY MILDEW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>azoxystrobin+ difenoconazole (Quadris Top)</td>
<td>11+3</td>
<td>8 to 14 fl oz/acre</td>
<td>14</td>
</tr>
<tr>
<td>cyprodinil + fludioxonil (Switch 62.5WG)</td>
<td>9+12</td>
<td>11 to 14 oz/acre</td>
<td>7</td>
</tr>
<tr>
<td>difenoconazole + benzoavindiflupyr (Aprovia Top)</td>
<td>7+3</td>
<td>10.5 to 13.5 fl oz/acre</td>
<td>14</td>
</tr>
<tr>
<td>fluopyram + pyrimethanol (Luna Tranquility)</td>
<td>7+9</td>
<td>11.2 fl oz/acre</td>
<td>7</td>
</tr>
<tr>
<td>metconazole (Quash)</td>
<td>3</td>
<td>2.5 to 4 oz/acre</td>
<td>1</td>
</tr>
<tr>
<td>penthiopyrad (Vertisan)</td>
<td>7</td>
<td>0.7 to 24 fl oz/acre</td>
<td>7</td>
</tr>
<tr>
<td>pyraclostrobin (Cabrio) 20 WG</td>
<td>11</td>
<td>8 to 12 oz/acre</td>
<td>0</td>
</tr>
<tr>
<td>pydiflumetofen + fludioxonil (Miravis Prime)</td>
<td>7+12</td>
<td>6.8 fl oz/acre</td>
<td>7</td>
</tr>
<tr>
<td>POSTHARVEST RHIZOPUS SOFT ROT (RHIZOPUS)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dicloran (Botran) 75 W</td>
<td>14</td>
<td>1 lb/100 gal</td>
<td>—</td>
</tr>
<tr>
<td>fludioxonil (Scholar 1.9 SC)</td>
<td>12</td>
<td>16 to 32 fl oz/100 gal</td>
<td>—</td>
</tr>
<tr>
<td>WHITE MOLD (SCLEROTINIA)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacillus amyloliquefaciens (Serfel)</td>
<td>44</td>
<td>4 to 16 oz/acre</td>
<td>0</td>
</tr>
<tr>
<td>boscalid (Endura)</td>
<td>7</td>
<td>5.5 to 10 oz/acre</td>
<td>10</td>
</tr>
<tr>
<td>Coniothyrium mimitans (Contans WG)</td>
<td>—</td>
<td>1 to 4 lb/acre</td>
<td>0</td>
</tr>
<tr>
<td>fluazinam (Omega 500F, Lektivar 40SC)</td>
<td>29</td>
<td>5.5 to 8 fl oz/acre</td>
<td>14</td>
</tr>
<tr>
<td>metconazole (Quash)</td>
<td>3</td>
<td>4 oz/acre</td>
<td>1</td>
</tr>
<tr>
<td>pydiflumetofen + difenoconazole (Miravis Top)</td>
<td>3+7</td>
<td>13.7 fl oz/acre</td>
<td>14</td>
</tr>
</tbody>
</table>
TABLE 3-34. DISEASE CONTROL PRODUCTS FOR SWEETPOTATO (cont’d)

L. Quesada-Ocampo, Plant Pathologist, North Carolina State University

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material Formulation</th>
<th>Minimum Days</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCURF (MONILIOCHAE TES INFUSCANS) AND SCLEROTIAL BLIGHT (SCLEROTIUM ROLFSII)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dicloran (Botran) 75 W</td>
<td>14</td>
<td>1 lb/100 gal</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>thiamendazole (Mertect 340 F)</td>
<td>3</td>
<td>107 fl oz/100 gal</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>SOUTHERN BLIGHT (SCLEROTIUM ROLFSII)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dicloran (Botran) 75 W</td>
<td>14</td>
<td>1 lb/100 gal</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>dicroconazole + benzovindiflupyr (Aprovia Top)</td>
<td>7+3</td>
<td>10.5 to 13.5 fl oz/acre</td>
<td>14</td>
<td>0.5</td>
</tr>
<tr>
<td>WHITE RUST (ALBUGO IPOMOEA-PANDURATAE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>azoxystrobin (Quadris) 2.08 F</td>
<td>11</td>
<td>6.2 to 15.4 fl oz/acre</td>
<td>7</td>
<td>4 hr</td>
</tr>
<tr>
<td>fenamidone (Reason 500SC)</td>
<td>11</td>
<td>5.5 to 8.2 fl oz/acre</td>
<td>14</td>
<td>0.5</td>
</tr>
<tr>
<td>pyraclostrobin (Cabrio) 20 WG</td>
<td>11</td>
<td>8 to 16 oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>NEMATODES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fluopyram (Velum Prime)</td>
<td>7</td>
<td>6.0 to 6.84 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
</tr>
</tbody>
</table>

STORAGE HOUSE SANITATION
SEE SANITATION

SWISS CHARD
SEE LEAFY PETIOLE VEGETABLES

TABLE 3-35. EFFICACY OF PRODUCTS FOR DISEASE CONTROL IN SWEETPOTATO

L. Quesada-Ocampo, Plant Pathologist, North Carolina State University

Scale: E, excellent; G, good; F, fair; P, poor; NC, no control; ND, no data.
TABLE 3-36. IMPORTANCE OF ALTERNATIVE MANAGEMENT PRACTICES FOR DISEASE CONTROL IN SWEETPOTATO

L. Quesada-Ocampo, Plant Pathologist, North Carolina State University

Scale: E, excellent; G, good; F, fair; P, poor; NC, no control; ND, no data.

<table>
<thead>
<tr>
<th>Active Ingredient</th>
<th>Product</th>
<th>Fungicide Group</th>
<th>Nematicide (N) or Nematicide (F)</th>
<th>Alternaria leaf spot</th>
<th>Black rot (C. fimbriata)</th>
<th>Fusarium</th>
<th>Java black rot (P. gossypina)</th>
<th>Nematodes</th>
<th>Pythium</th>
<th>Rhizopus soft rot (R. stolonifer)</th>
<th>Sclerotinia</th>
<th>Southern blight</th>
<th>Scurf (M. infuscans)</th>
<th>Soil rot/Pox</th>
<th>Sclerotinia</th>
<th>Sweetpotato Feathery Mottle virus</th>
</tr>
</thead>
<tbody>
<tr>
<td>azoxylosin + fludioxonil + difenoconazole</td>
<td>Stadium</td>
<td>11+12+3</td>
<td>F</td>
<td>ND</td>
<td>E</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>E</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>NC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>boscalid</td>
<td>Endura</td>
<td>7</td>
<td>F</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>E</td>
<td>ND</td>
<td>ND</td>
<td>NC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chlorine sanitizer postharvest</td>
<td></td>
</tr>
<tr>
<td>chloropicrin</td>
<td>N,F</td>
<td>ND</td>
<td>P</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>ND</td>
<td>ND</td>
<td>F</td>
<td>ND</td>
<td>F</td>
<td>NC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coniothyrium minitans</td>
<td>Contans WG</td>
<td>F</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>F</td>
<td>ND</td>
<td>ND</td>
<td>NC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cyazofamid</td>
<td>Ranman</td>
<td>21</td>
<td>F</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>NC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dicloran</td>
<td>Botran 75W</td>
<td>14</td>
<td>F</td>
<td>ND</td>
<td>P</td>
<td>ND</td>
<td>P</td>
<td>ND</td>
<td>F</td>
<td>P</td>
<td>G</td>
<td>F</td>
<td>NC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3-dichloropropene</td>
<td>Telone II</td>
<td>N</td>
<td>ND</td>
<td>ND</td>
<td>P</td>
<td>ND</td>
<td>G</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>NC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>difenoconazole + benzoindifluopyr</td>
<td>Aprovia Top</td>
<td>3+7</td>
<td>F</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>E</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>NC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ethaboxam</td>
<td>Elumin</td>
<td>22</td>
<td>F</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>G</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>NC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ethoprop</td>
<td>Mocap</td>
<td>12</td>
<td>F</td>
<td>ND</td>
<td>F</td>
<td>ND</td>
<td>NC</td>
<td>ND</td>
<td>F</td>
<td>NC</td>
<td>ND</td>
<td>NC</td>
<td>NC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fludioxonil</td>
<td>Scholar</td>
<td>12</td>
<td>F</td>
<td>ND</td>
<td>F</td>
<td>ND</td>
<td>NC</td>
<td>ND</td>
<td>F</td>
<td>NC</td>
<td>ND</td>
<td>NC</td>
<td>NC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fluopicolide</td>
<td>Presidio</td>
<td>43</td>
<td>F</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>G</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>NC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fluopyram</td>
<td>Velum Prime</td>
<td>7</td>
<td>N,F</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>G</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>NC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mefenoxam</td>
<td>Ridomil Gold</td>
<td>4</td>
<td>F</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>G</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>NC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>metaconazole</td>
<td>Quash</td>
<td>3</td>
<td>F</td>
<td>ND</td>
<td>E</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>NC</td>
<td>ND</td>
<td>NC</td>
<td>NC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>metam sodium</td>
<td>Vapam</td>
<td>N</td>
<td>ND</td>
<td>P</td>
<td>F</td>
<td>ND</td>
<td>F</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>NC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>metalaxyl</td>
<td>MetaStar</td>
<td>4</td>
<td>F</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>F</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>NC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>oxamyl</td>
<td>Vydate</td>
<td>N</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>F</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>NC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudomonas syringae</td>
<td>Bio-Save</td>
<td>F</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>P</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>NC</td>
<td>NC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>thiabendazole</td>
<td>Mertect 340-F</td>
<td>1</td>
<td>F</td>
<td>ND</td>
<td>E</td>
<td>P</td>
<td>F</td>
<td>ND</td>
<td>E</td>
<td>F</td>
<td>ND</td>
<td>P</td>
<td>NC</td>
<td>NC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5 Resistant cultivars for root knot nematode are susceptible to reniform nematode. Cultivars resistant to Southern root-knot nematode (Meloidogyne incognita) may not be resistant to Guava root-knot nematode (Meloidogyne enterolobii).

6 Cutting plants above soil line provides good reduction in movement in nematodes but will not control nematodes already established in soil.
TABLE 3-37. DISEASE CONTROL PRODUCTS FOR TOMATILLO

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material Formulation</th>
<th>Minimum Days Harv.</th>
<th>Reentry</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>EARLY BLIGHT (ALTERNARIA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>azoxystrobin (various)</td>
<td>11+3</td>
<td>8 fl oz/acre</td>
<td>0.5</td>
<td>4 h</td>
<td>Limit of 37 fl oz per crop per acre per season. Make no more than one application before alternating with fungicides that have a different mode of action.</td>
</tr>
<tr>
<td>azoxystrobin + difenoconazole</td>
<td>11</td>
<td>8 fl oz/acre</td>
<td>0.5</td>
<td>4 h</td>
<td>Limit of 47 fl oz per acre per season. Do not apply until 21 days after transplanting or 35 days after seeding.</td>
</tr>
<tr>
<td>bosalid</td>
<td>7</td>
<td>2.5 to 3.5 fl oz/acre</td>
<td>0.5</td>
<td>4 h</td>
<td>Limit of 21 oz per acre per season. Make no more than two sequential applications before alternating with fungicides that have a different mode of action.</td>
</tr>
<tr>
<td>cyprodinil + difenoconazole</td>
<td>9+3</td>
<td>16 to 20 fl oz/acre</td>
<td>0.5</td>
<td>4 h</td>
<td>Limit of 80 fl oz per acre per season.</td>
</tr>
<tr>
<td>cyprodinil + fludioxonil</td>
<td>9+12</td>
<td>11 to 14 oz/acre</td>
<td>0.5</td>
<td>4 h</td>
<td>Limit of 56 oz per acre per year. After two applications, rotate to another fungicide with a different mode of action for two applications.</td>
</tr>
<tr>
<td>difenoconazole + benzovindiflupyr</td>
<td>3 + 7</td>
<td>10.5 to 13.5 fl oz/acre</td>
<td>1</td>
<td>7</td>
<td>Limit of 28 fl oz per acre per season. Make no more than two consecutive applications per season before alternating with fungicides that have a different mode of action.</td>
</tr>
<tr>
<td>fenamidone</td>
<td>11</td>
<td>5.5 to 8.2 fl oz/acre</td>
<td>14</td>
<td>0.5</td>
<td>Limit of 24.8 fl oz per growing season. Make no more than one application before rotating to another effective fungicide with a different mode of action.</td>
</tr>
<tr>
<td>fluopyram + trifloxystrobin</td>
<td>7+11</td>
<td>5 to 7.5 fl oz/acre</td>
<td>3</td>
<td>0.5</td>
<td>Apply on a 7- to 14-day interval.</td>
</tr>
<tr>
<td>fluoxastrob (Athershd, Evito 408SC, 4F)</td>
<td>11</td>
<td>2.0 to 5.7 fl oz/acre</td>
<td>3</td>
<td>0.5</td>
<td>Limit of 22.8 fl oz per acre per season. Make no more than one application before alternating with fungicides that have a different mode of action.</td>
</tr>
<tr>
<td>mefentrifluconazole</td>
<td>3</td>
<td>3 to 5 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Maximum of 15 fl oz/acre/year.</td>
</tr>
<tr>
<td>penthiopyrad</td>
<td>7</td>
<td>10 to 24 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Do not exceed 72 fl oz of product per year. Make no more than two sequential applications per season before alternating with fungicides that have a different mode of action.</td>
</tr>
<tr>
<td>polyoxin D zing salt</td>
<td>19</td>
<td>6.2 oz/acre (Ph-D) 3.75 to 13.0 fl oz/acre</td>
<td>0</td>
<td>4 h</td>
<td>Limit of five applications per season. Make no more than one application before alternating with fungicides that have a different mode of action.</td>
</tr>
<tr>
<td>pydilumetofen + fludioxonil</td>
<td>7+12</td>
<td>9.2 to 11.4 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Do not make more than two applications of Miravis Prime or other Group 7 and 12 fungicides before alternation with a fungicide that is not in Group 7 or 12. Do not exceed 22.8 fl oz/acre/year. Apply by ground, air, or chemigation. Do not apply more than 16 fl oz or exceed 5 applications of Mettle per acre per year. Do not apply more than 0.125 lb/acre/year of tetraconazole containing products.</td>
</tr>
<tr>
<td>pyraclostrobin</td>
<td>11</td>
<td>8 to 16 oz/acre</td>
<td>4</td>
<td>0.5</td>
<td>Limit of 96 oz per acre per season. Make no more than one application before alternating with fungicides that have a different mode of action.</td>
</tr>
<tr>
<td>tetraconazole</td>
<td>3</td>
<td>6 to 8 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Make no more than 2 sequential applications per season before switching to a fungicide with a different mode of action. Can be applied by ground, air, or chemigation. Do not apply more than 16 fl oz or exceed 5 applications of Mettle per acre per year. Do not apply more than 0.125 lb/acre/year of tetraconazole containing products.</td>
</tr>
<tr>
<td>trifloxystrobin (Flint Extra)</td>
<td>11</td>
<td>3 fl oz/acre 3 oz/acre 2 to 3 oz/acre</td>
<td>3</td>
<td>0.5</td>
<td>Application limits apply – see label. Make no more than one application before alternating with a fungicide that has a different mode of action.</td>
</tr>
<tr>
<td>POWDERY MILDEW (LEVEILLULA, OIDUM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>azoxystrobin (various)</td>
<td>11</td>
<td>5 to 6.2 fl oz/acre</td>
<td>0</td>
<td>4 h</td>
<td>Limit of 37 fl oz per crop per acre per season. Make no more than one application before alternating with fungicides that have a different mode of action.</td>
</tr>
<tr>
<td>azoxystrobin + difenoconazole</td>
<td>11+3</td>
<td>8 fl oz/acre</td>
<td>0.5</td>
<td>4 h</td>
<td>Limit of 47 fl oz per acre per season. Do not apply until 21 days after transplanting or 35 days after seeding.</td>
</tr>
<tr>
<td>chlorothalonil</td>
<td>M5</td>
<td>1.5 pt/acre</td>
<td>3</td>
<td>0.5</td>
<td>Limit of 12 pints per acre per season.</td>
</tr>
<tr>
<td>chlorothalonil + cymoxanil</td>
<td>M5+27</td>
<td>2 to 2.44 pt/acre</td>
<td>3</td>
<td>0.5</td>
<td>Limit of 17.5 pt per acre per year.</td>
</tr>
<tr>
<td>cyflufenamid (Fastback)</td>
<td>U6</td>
<td>4 oz/acre</td>
<td>0</td>
<td>4 h</td>
<td>Make no more than 3 applications/year. Minimum application interval is 14 days.</td>
</tr>
<tr>
<td>cyprodinil + difenoconazole</td>
<td>9+3</td>
<td>16 to 20 fl oz/acre</td>
<td>0.5</td>
<td>4 h</td>
<td>Limit of 80 fl oz per acre per season.</td>
</tr>
<tr>
<td>cyprodinil + fludioxonil</td>
<td>9+12</td>
<td>11 to 14 oz/acre</td>
<td>0.5</td>
<td>4 h</td>
<td>Limit of 56 oz per acre per year. After two applications, rotate to another fungicide with a different mode of action for two applications.</td>
</tr>
<tr>
<td>difenoconazole + benzovindiflupyr (Aprovia Top)</td>
<td>3+7</td>
<td>10.5 to 13.5 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Apply on a 7- to 14-day interval. No more than 2 consecutive applications allowed before switching to a non-FRAC 7. Use of a spreading adjuvant is recommended.</td>
</tr>
</tbody>
</table>
TABLE 3-37. DISEASE CONTROL PRODUCTS FOR TOMATILLO (cont’d)

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material Formulation</th>
<th>Minimum Days</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>** POWDERY MILDEW (LEVEILLULA, OIDIUM) (CONT’D)**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fluopyram + trifloxystrobin (Luna Sensation)</td>
<td>7+11</td>
<td>5 to 7.5 fl oz/acre</td>
<td>3</td>
<td>0.5</td>
</tr>
<tr>
<td>mfenflurconazole (Cevya)</td>
<td>3</td>
<td>3 to 5 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>penthiopyrad (Fontelis 1.67F)</td>
<td>7</td>
<td>16 to 24 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>polyoxin D (Ph-D 11.3WDG)</td>
<td>19</td>
<td>6.2 oz/acre</td>
<td>0</td>
<td>4 h</td>
</tr>
<tr>
<td>pydiflumetofen + fludioxonil (Miravis Prime)</td>
<td>7+12</td>
<td>9.2 to 11.4 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>pyraclostrobin (Cabrio 20EG)</td>
<td>11</td>
<td>8 to 16 oz/acre</td>
<td>0</td>
<td>4 h</td>
</tr>
<tr>
<td>mancozeb (various)</td>
<td>40+3</td>
<td>5.5 to 7 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>tetracazoanol (Mettle125 ME)</td>
<td>3</td>
<td>6 to 8 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>trifloxystrobin (Flint Extra)</td>
<td>11</td>
<td>3 fl oz/acre</td>
<td>3</td>
<td>0.5</td>
</tr>
</tbody>
</table>

TABLE 3-38. DISEASE CONTROL PRODUCTS FOR TOMATO

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material Formulation</th>
<th>Minimum Days</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>** TOMATO (TRANSPLANTS produced in a greenhouse or other controlled environment)**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>** BACTERIAL CANKER (CLAVIBACTER)**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sodium hypochlorite (CPPC Ultra Bleach 2; 6.15%)</td>
<td>NC</td>
<td>1 qt+4 qt water</td>
<td>NA</td>
<td>0</td>
</tr>
<tr>
<td>streptomycin sulfate (various)</td>
<td>25</td>
<td>1 lb/100 gal</td>
<td>NA</td>
<td>0</td>
</tr>
<tr>
<td>** BACTERIAL SPOT (XANTHOMONAS), BACTERIAL SPECK (PSEUDOMONAS)**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bacteriophage (AgriPhage)</td>
<td>NC</td>
<td>3 to 8 oz/9,600 sq ft</td>
<td>NA</td>
<td>0</td>
</tr>
<tr>
<td>copper (various)</td>
<td>M1</td>
<td>See label</td>
<td>NA</td>
<td>0</td>
</tr>
<tr>
<td>mancozeb (various)</td>
<td>M3</td>
<td>See label</td>
<td>NA</td>
<td>1</td>
</tr>
<tr>
<td>streptomycin sulfate (various)</td>
<td>25</td>
<td>1 lb/100 gal</td>
<td>NA</td>
<td>0</td>
</tr>
<tr>
<td>** EARLY BLIGHT (ALTERNARIA), GRAY MOLD (BOTRYTIS), LATE BLIGHT (PHYTOPHTHORA INFESTANS)**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mancozeb (various)</td>
<td>M3</td>
<td>See label</td>
<td>NA</td>
<td>1</td>
</tr>
<tr>
<td>** GRAY MOLD (BOTRYTIS), BOTRYTIS STEM CANKER, EARLY BLIGHT (ALTERNARIA), POWDERY MILDEW (ERYSIPHE, OIDIUM)**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cyprodinil + fludioxonil (Alteny 62.5WG, Switch 62.5WG)</td>
<td>9+12</td>
<td>11 to 14 oz/acre</td>
<td>NA</td>
<td>0.5</td>
</tr>
<tr>
<td>fluopyram + pyrimethanil (Luna Tranquility)</td>
<td>7+9</td>
<td>11.2 fl oz/acre</td>
<td>NA</td>
<td>0.5</td>
</tr>
</tbody>
</table>
DISEASE CONTROL

See label

0.5

2

Refer to individual labels for rates and restrictions.

Apply as a soil drench to seedling tray or at the time of transplant.

5.5 to 8.0 fl oz/acre

Limit of 24 fl oz/acre/season. Do not make more than 2 consecutive applications

Can be used as a drench before or after transplanting.

3 to 5 fl oz/acre

4 h

0.5 to 0.75 fl oz/gal

0.8 to 1.6 lb/acre

0.5

Do not make more than 1 application before alternating to a fungicide with a

Do not use adjuvants or EC formulated tank mix partners on fresh market toma

0.5

10.5 to 13.5 fl oz/acre

1.6 pt/acre

8 oz/acre

0.7 to 1.5 pt/acre

Do not make more than 2 consecutive applications before alternating to a non-

NA

5

M5

M1

NA

DISEASE CONTROL ONLY. Do not exceed 5 applications or 27.1 fl oz/acre/ sea

Do not make more than 2 consecutive applications before alternating to a fungicide with a different mode of action.

Maximum of 15 fl oz/acre/year.

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material Formulation</th>
<th>Minimum Days</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOMATO (TRANSPLANTS produced in a greenhouse or other controlled environment) (CONT’D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRAY MOLD (BOTRYTIS), BOTRYTIS STEM CANKER, EARLY BLIGHT (ALTERNARIA), POWDERY MILDEW (ERYSIPHE, OIDUM) (CONT’D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>penthiopyrad (Fontein 1.67 SC)</td>
<td>7</td>
<td>0.5 to 0.75 fl oz/gal</td>
<td>NA</td>
<td>0.5</td>
</tr>
<tr>
<td>LATE BLIGHT (PHYTOPHTHORA INFESTANS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mandipropamid (Micora)</td>
<td>40</td>
<td>5.5 to 8.0 fl oz/acre (5,000 ft²)</td>
<td>NA</td>
<td>4 h</td>
</tr>
<tr>
<td>propamocarb (Previcur Flex 6F)</td>
<td>28</td>
<td>0.7 to 1.5 pt/acre</td>
<td>NA</td>
<td>0.5</td>
</tr>
<tr>
<td>PYTHIUM DAMPING OFF (PYTHIUM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cyzofamid (Ranman 400SC)</td>
<td>21</td>
<td>3.0 fl oz/100 gal</td>
<td>NA</td>
<td>0.5</td>
</tr>
<tr>
<td>propamocarb (Previcur Flex 6F)</td>
<td>28</td>
<td>1.5 pt/acre</td>
<td>NA</td>
<td>0.5</td>
</tr>
<tr>
<td>TOMATO (FIELD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANTHRACNOSE (COLLETOTRICHUM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>azoxystrobin (various)</td>
<td>11</td>
<td>See label</td>
<td>0</td>
<td>4 h</td>
</tr>
<tr>
<td>azoxystrobin + chlorothalonil (Quadris Opti)</td>
<td>11+M5</td>
<td>1.6 pt/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>azoxystrobin + difenoconazole (Quadris Top)</td>
<td>11+3</td>
<td>8 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>azoxystrobin + flutriafol (Topguard EQ)</td>
<td>11+3</td>
<td>4 to 8 fl oz</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>chlorothalonil (various)</td>
<td>M5</td>
<td>See label</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>copper (various)</td>
<td>M1</td>
<td>See label</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>cymoxanil + chlorothalonil (Ariston)</td>
<td>27+M5</td>
<td>1.9 pt/acre</td>
<td>3</td>
<td>0.5</td>
</tr>
<tr>
<td>difenoconazole + benzovindiflupyr (Aprovia Top)</td>
<td>7+3</td>
<td>10.5 to 13.5 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>difenoconazole + cyprodinil (Inspire Super)</td>
<td>3+9</td>
<td>16 to 20 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>fluopyram + trifloxystrobin (Luna Sensation)</td>
<td>7+11</td>
<td>7.6 fl oz/acre</td>
<td>3</td>
<td>0.5</td>
</tr>
<tr>
<td>flutriafol (Rhyme)</td>
<td>3</td>
<td>5 to 7 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>fluxapyroxad + pyraclostrobin (Priaxor Xemium)</td>
<td>7+11</td>
<td>4 to 8 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
</tr>
<tr>
<td>famoxadone + cymoxanil (Tanos)</td>
<td>11+27</td>
<td>8 oz/acre</td>
<td>3</td>
<td>0.5</td>
</tr>
<tr>
<td>mancozeb (various)</td>
<td>M3</td>
<td>See label</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>mancozeb + azoxystrobin (Dexter Max)</td>
<td>M3+11</td>
<td>0.8 to 1.6 lb/acre</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>mandipropamid + difenoconazole (Revus Top)</td>
<td>40+3</td>
<td>5.5 to 7 fl oz/acre</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>mefentrifluconazole (Cevya)</td>
<td>3</td>
<td>3 to 5 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
</tr>
</tbody>
</table>
TABLE 3-38. DISEASE CONTROL PRODUCTS FOR TOMATO (cont’d)

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material Formulation</th>
<th>Minimum Days Harv.</th>
<th>Reentry</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOMATO (FIELD) (CONT’D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANTHRACNOSE (COLLETOTRICHUM) (CONT’D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>penthiopyrad (Fontelis 1.67 SC)</td>
<td>7</td>
<td>24 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>DISEASE SUPPRESSION ONLY. Limit of 72 fl oz/acre/season. Do not make more than 2 consecutive applications before alternating to a fungicide with a different mode of action.</td>
</tr>
<tr>
<td>pydiflumetofen + fludioxonil (Miravis Prime)</td>
<td>7+12</td>
<td>9.2 to 11.4 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Do not make more than 2 applications of Miravis Prime or other Group 7 and 12 fungicides before alternating with a fungicide that is not in Group 7 or 12. Do not exceed 22.8 fl oz/acre/season. Apply by ground, air, or chemigation.</td>
</tr>
<tr>
<td>pyraclostrobin (Cabrio EG)</td>
<td>11</td>
<td>8 to 12 oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Limit of 96 fl oz/acre/season. Do not make more than 2 applications before alternating to a fungicide with a different mode of action.</td>
</tr>
<tr>
<td>tetraconazole (Mettle125 ME)</td>
<td>3</td>
<td>6 to 8 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Make no more than 2 sequential applications before switching to a fungicide with a different mode of action. Can be applied by ground, air, or chemigation. Do not apply more than 16 fl oz or exceed 5 applications of Mettle/acre/season. Do not apply more than 0.125 lb/acre/year of tetraconazole containing products.</td>
</tr>
<tr>
<td>trifloxystrobin (Flint Extra, Gem 500SC) (Flint)</td>
<td>11</td>
<td>3 to 3.8 fl oz/acre 3 to 4 oz/acre</td>
<td>3</td>
<td>0.5</td>
<td>DISEASE SUPPRESSION ONLY. Season limits apply – see label. Do not make more than 1 application before alternating to a fungicide with a different mode of action.</td>
</tr>
<tr>
<td>BACTERIAL SPOT (XANTHOMONAS), BACTERIAL SPECK (PSEUDOMONAS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>acibenzolar-S-methyl (Actigard 50WG)</td>
<td>21</td>
<td>0.33 to 0.75 oz/acre</td>
<td>14</td>
<td>0.5</td>
<td>Should only be applied to healthy, actively growing plants. Do not exceed 8 applications/crop/season.</td>
</tr>
<tr>
<td>Bacillus mycoides isolate J (LifeGard WG)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bacteriophage (AgriPhage)</td>
<td>NC</td>
<td>3 to 8 oz/9,600 sq ft</td>
<td>0</td>
<td>0</td>
<td>Consult your vegetable Extension Specialist for information on requirements needed to use bacteriophage. Bacteriophages are most effective when applied during or after last watering of the day.</td>
</tr>
<tr>
<td>copper (various)</td>
<td>M1</td>
<td>See label</td>
<td>0</td>
<td>0</td>
<td>Use a full rate of fixed copper in combination with mancozeb for best results.</td>
</tr>
<tr>
<td>mancozeb (various)</td>
<td>M3</td>
<td>See label</td>
<td>5</td>
<td>1</td>
<td>For states East of the Mississippi, use 1.5 to 3 lb of product/acre. States West of the Mississippi use 1.5 to lb of product/acre. NOTE: Use a full rate of fixed copper in combination with mancozeb. Mancozeb alone does not control bacteria.</td>
</tr>
<tr>
<td>GRAY MOLD (BOTRYTIS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>boscalid (Endura 70 WG)</td>
<td>7</td>
<td>9 to 12.5 oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Limit of 25 oz/acre/season. Do not make more than 2 consecutive applications and no more than 2 applications/crop/year.</td>
</tr>
<tr>
<td>chlorothalonil (various)</td>
<td>M5</td>
<td>See label</td>
<td>0</td>
<td>0.5</td>
<td>Refer to individual labels for rates and restrictions.</td>
</tr>
<tr>
<td>chlorothalonil + cymanoxanil (Ariston)</td>
<td>M5+27</td>
<td>1.9 pt/acre</td>
<td>3</td>
<td>0.5</td>
<td>Limit of 17.5 pt/acre/12-month period. If mixing with copper, check copper label for limitations.</td>
</tr>
<tr>
<td>cyprodinil + fludioxonil (Alterity 62.5WG, Switch 62.5WG)</td>
<td>9+12</td>
<td>11 to 14 oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Limit of 56 oz/acre/season. Do not make more than 2 consecutive applications before alternating to a fungicide with a different mode of action for 2 applications. Limits of each a.i. apply – see label.</td>
</tr>
<tr>
<td>difenoconazole + cyprodinil (Inspire Super)</td>
<td>3+9</td>
<td>16 to 20 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Limit of 80 fl oz/acre/season. Do not make more than 2 consecutive applications before alternating to a fungicide with a different mode of action.</td>
</tr>
<tr>
<td>fluopyram + pyrimethanil (Luna Tranquility)</td>
<td>7+9</td>
<td>11.2 fl oz/acre</td>
<td>1</td>
<td>0.5</td>
<td>See label for limits on application amounts per season. Do not make more than 2 applications of Group 7 or 9 fungicides without switching to a different mode of action. NOT REGISTERED FOR USE IN LA.</td>
</tr>
<tr>
<td>fluopyram + trifloxystrobin (Luna Sensation)</td>
<td>7+11</td>
<td>7.6 fl oz/acre</td>
<td>3</td>
<td>0.5</td>
<td>Do not exceed 5 applications or 27.1 fl oz/acre/season. Do not make more than 2 consecutive applications before alternating to a fungicide with different mode of action. Limits of each a.i. apply – see label.</td>
</tr>
<tr>
<td>fluxapyroxad + pyraclostrobin (Prixor Xemium)</td>
<td>7+11</td>
<td>4 to 8 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
<td>DISEASE SUPPRESSION ONLY. Limit of 24 fl oz and 3 applications/acre/season. Do not make more than 2 consecutive applications before alternating to a fungicide with a different mode of action.</td>
</tr>
<tr>
<td>penthiopyrad (Fontelis 1.67SC)</td>
<td>7</td>
<td>16 to 24 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Limit of 72 fl oz/acre/season. Do not make more than 2 consecutive applications before alternating to a fungicide with a different mode of action.</td>
</tr>
<tr>
<td>pydiflumetofen + fludioxonil (Miravis Prime)</td>
<td>7+12</td>
<td>11.4 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>DISEASE SUPPRESSION ONLY. Do not make more than 2 applications of Miravis Prime or other Group 7 and 12 fungicides before alternating with a fungicide that is not in Group 7 or 12. Do not exceed 22.8 fl oz/acre/season. Apply by ground, air, or chemigation.</td>
</tr>
<tr>
<td>pyraclostrobin (Cabrio EG)</td>
<td>11</td>
<td>12 to 16 oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>DISEASE SUPPRESSION ONLY. Do not make more than 2 consecutive applications before alternating to a fungicide with a different mode of action. Do not exceed 96 oz/acre/season.</td>
</tr>
<tr>
<td>pyrimethanil (Scala SC)</td>
<td>9</td>
<td>7 fl oz/acre</td>
<td>1</td>
<td>0.5</td>
<td>Limit of 35 fl oz/acre/season.</td>
</tr>
</tbody>
</table>
TABLE 3-38. DISEASE CONTROL PRODUCTS FOR TOMATO (cont’d)

I. Meadows, Plant Pathologist, North Carolina State University; R. Singh, Plant Pathologist, Louisiana State University Agricultural Center

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material Formulation</th>
<th>Minimum Days Harv.</th>
<th>Reentry</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUCKEYE ROT AND PHYTOPHTHORA FRUIT ROT (PHYTOPHTHORA SPP.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>aoxystrobin (various)</td>
<td>11</td>
<td>See label</td>
<td>0</td>
<td>4 h</td>
<td>Do not make more than one application before alternating to a fungicide with a different mode of action.</td>
</tr>
<tr>
<td>aoxystrobin + chlorothalonil (Quadris Opti)</td>
<td>11+M5</td>
<td>1.6 pt/acre</td>
<td>0</td>
<td>0.5</td>
<td>Limit of 5 applications of any Group 11 fungicide. Do not make more than 1 application before alternating to a fungicide with a different mode of action. Do not apply earlier than 21 days after transplant.</td>
</tr>
<tr>
<td>famoxadone + cymoxanil (Tanos)</td>
<td>11+27</td>
<td>8 oz/acre</td>
<td>3</td>
<td>0.5</td>
<td>DISEASE SUPPRESSION ONLY. Do not make more than 1 application before alternating to a fungicide with a different mode of action. NOTE: Must be tank-mixed with a contact fungicide that has a different mode of action.</td>
</tr>
<tr>
<td>mancozeb + aoxystrobin (Dexter Max)</td>
<td>M3+11</td>
<td>0.8 to 1.6 lb/acre</td>
<td>5</td>
<td>1</td>
<td>For states East of the Mississippi and including Mississippi, do not exceed 12 lb of product/acre/season. States West of Mississippi use 0.8 to 1.1 lb/acre and do not exceed 9.14 lb of product/acre/season. Do not make more than 1 application before alternation with a fungicide in Group 11. On fresh market tomato, do not tank-mix with an adjuvant or an EC formulation. Tank mixture with dimethoate may cause crop injury.</td>
</tr>
<tr>
<td>mancozeb + zoaxamide (Gavel 75DF)</td>
<td>M3+22</td>
<td>1.5 to 2 lb/acre</td>
<td>5</td>
<td>2</td>
<td>For states East of Mississippi, do not exceed 16 lb/acre/year. States West of Mississippi, do not exceed 8 lb/acre/year.</td>
</tr>
<tr>
<td>mefenoxam + copper hydroxide (Ridomil Gold Copper)</td>
<td>4+M3</td>
<td>2 lb/acre</td>
<td>14</td>
<td>2</td>
<td>Tank mix with 0.8 lb a.i./acre of either maneb or mancozeb. Make up to 3 applications; alternate with full rate of protectant.</td>
</tr>
<tr>
<td>oxathiapipronil + chlorothalonil (Orondis Opti)</td>
<td>49+M5</td>
<td>1.75 to 2.5 pt/acre</td>
<td>0</td>
<td>0.5</td>
<td>Do not make more than 2 consecutive applications before alternating to a fungicide with a different mode of action and no more than 6 total applications/season. Do not exceed 10 pints of product/acre/year. Do not mix soil applications and foliar applications. See labels for application limits.</td>
</tr>
<tr>
<td>oxathiapipronil + mefenoxam (Orondis Gold)</td>
<td>49+4</td>
<td>28 to 55 fl oz/acre</td>
<td>7</td>
<td>4h</td>
<td>Apply at-plant by in-furrow, transplant water, banded surface spray, or drip irrigation. Do not follow soil applications with foliar applications with any product containing FRAC 49 fungicide. Do not make more than one soil application per crop. Not for use in nursery production of transplants. NOT REGISTERED FOR USE in FL, GA, or MS.</td>
</tr>
<tr>
<td>oxathiapipronil + mandipropamid (Orondis Ultra)</td>
<td>40+49</td>
<td>5.5 to 8.0 fl oz/acre</td>
<td>1</td>
<td>4h</td>
<td>Do not make more than 2 consecutive applications before alternating to a fungicide with a different mode of action and no more than 6 total applications/season. Do not exceed 32 fl oz of product/acre/year. Do not mix soil applications and foliar applications. See labels for application limits.</td>
</tr>
<tr>
<td>DAMPING-OFF (PYTHIUM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fosetyl-Al (Aliette WDG, Linebacker WDG)</td>
<td>P7</td>
<td>2.5 to 5 lb/acre</td>
<td>14</td>
<td>0.5</td>
<td>Do not tank mix with copper. Do not exceed 20 lb product/season. Check label for specific counties in each state where use is prohibited</td>
</tr>
<tr>
<td>mefenoxam (various)</td>
<td>4</td>
<td>See label</td>
<td>7</td>
<td>2</td>
<td>Apply uniformly to soil at time of planting. Incorporate mechanically if rainfall is not expected before seeds germinate. A second application may be made up to 4 weeks before harvest. See labels for application limits.</td>
</tr>
<tr>
<td>oxathiapipronil + mefenoxam (Orondis Gold)</td>
<td>49+4</td>
<td>28 to 55 fl oz/acre</td>
<td>7</td>
<td>4 h</td>
<td>Apply at-plant by in-furrow, transplant water, banded surface spray, or drip irrigation. Do not follow soil applications with foliar applications with any product containing FRAC 49 fungicide. Do not make more than one soil application per crop. Not for use in nursery production of transplants. See label for season limits.</td>
</tr>
<tr>
<td>phosphorous acid, mono- and dipo-tassium salts (K-Phite 7LP)</td>
<td>P7</td>
<td>2 to 4 pt/acre (chemigation, soil application) See label for other application types</td>
<td>0</td>
<td>4 h</td>
<td>Do not apply at less than 3-day intervals. Do not apply to plants when plants will remain wet for longer than 4 hours.</td>
</tr>
<tr>
<td>propamocarb (Previcur Flex)</td>
<td>28</td>
<td>1.5 pt/acre</td>
<td>5</td>
<td>0.5</td>
<td>Limit of 7.5 pt/acre/season. Do not make more than 1 application before alternating to a fungicide with a different mode of action.</td>
</tr>
<tr>
<td>GRAY LEAF SPOT (STEMPHYLUM SPP.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>aoxystrobin + difenoconazole (Quadris Top)</td>
<td>11+3</td>
<td>8 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Do not apply until 21 days after transplanting or 35 days after seeding. Limit of 47 fl oz/acre/season. Do not make more than 2 consecutive applications before alternating to a fungicide with a different mode of action. See label for tank mix cautions.</td>
</tr>
<tr>
<td>chlorothalonil (various)</td>
<td>M5</td>
<td>See label</td>
<td>0</td>
<td>0.5</td>
<td>Refer to individual labels for rates and restrictions.</td>
</tr>
<tr>
<td>difenoconazole + benzovindiflupyr (Aprovia Top)</td>
<td>7+3</td>
<td>10.5 to 13.5 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Do not make more than 2 applications before alternating to a non-Group 7 fungicide. See label for application intervals and limits per season. Use of a spreading adjuvant is recommended.</td>
</tr>
<tr>
<td>difenoconazole + cyprodinil (Inspire Super)</td>
<td>3+9</td>
<td>16 to 20 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Limit of 80 fl oz/acre/season. Do not make more than 2 consecutive applications before alternating to a fungicide with a different mode of action.</td>
</tr>
<tr>
<td>fluopyram + trifloxystrobin (Luna Sensation)</td>
<td>7+11</td>
<td>7.6 fl oz/acre</td>
<td>3</td>
<td>0.5</td>
<td>Do not exceed 5 applications or 27.1 fl oz/acre/season. Do not make more than 2 consecutive applications before alternating to a fungicide with a different mode of action.</td>
</tr>
<tr>
<td>Disease/Material</td>
<td>FRAC Code</td>
<td>Rate of Material Formulation</td>
<td>Minimum Days Harv.</td>
<td>Reentry</td>
<td>Method, Schedule, and Remarks</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------</td>
<td>------------------------------</td>
<td>--------------------</td>
<td>---------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>TOMATO (FIELD) (CONT’D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRAY LEAF SPOT (STEMPHYLUM SPP.) (CONT’D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fluopyram + pyrimethanil (Luna Tranquility)</td>
<td>7+9</td>
<td>11.2 fl oz/acre</td>
<td>1</td>
<td>0.5</td>
<td>See label for limits on application amounts per season. Do not make more than 2 applications of Group 7 or 9 fungicides without switching to a different mode of action. NOT REGISTERED FOR USE IN L.A.</td>
</tr>
<tr>
<td>mancozeb (various)</td>
<td>M3</td>
<td>See label</td>
<td>5</td>
<td>1</td>
<td>See label for limits on application amounts per season.</td>
</tr>
<tr>
<td>mancozeb + azoxystrobin (Dexter Max)</td>
<td>M3+11</td>
<td>0.8 to 1.6 lb/acre</td>
<td>5</td>
<td>1</td>
<td>For states East of the Mississippi including Mississippi, do not exceed 12 lb of product/acre/season. States West of Mississippi use 0.8 to 1.1 lb/acre and do not exceed 9.14 lb of product/acre/season. Do not exceed 12 lbs of product/acre/season. Do not make more than 1 application before alternating to a fungicide not in Group 11. On fresh market tomato, do not tank mix with an adjuvant or an EC formulation. Tank mixture with dimethoate may cause crop injury.</td>
</tr>
<tr>
<td>mancozeb + copper (ManKocide)</td>
<td>M3+M1</td>
<td>1 to 3 lb/acre</td>
<td>5</td>
<td>2</td>
<td>Limit of 58 lb/acre/season East of the Mississippi River.</td>
</tr>
<tr>
<td>mancozeb + zoxyamide (Gavel 75DF)</td>
<td>M3+22</td>
<td>1.5 to 2 lb/acre</td>
<td>5</td>
<td>2</td>
<td>Limit of 16 lb/acre/season East of the Mississippi River.</td>
</tr>
<tr>
<td>mandipropamid + difenoconazole (Reusv Top)</td>
<td>40+3</td>
<td>5.5 to 7 fl oz/acre</td>
<td>1</td>
<td>0.5</td>
<td>Limit of 28 fl oz/acre/season. Do not make more than 2 consecutive applications before alternating to a fungicide with a different mode of action.</td>
</tr>
<tr>
<td>pydiflumetofen + fludioxonil (Mirisv Prime)</td>
<td>7+12</td>
<td>9.2 to 11.4 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Do not make more than two applications of Mirisv Prime or other Group 7 and 12 fungicides before alternating with a fungicide that is not in Group 7 or 12. Do not exceed 22.8 fl oz/acre/season. Apply by ground, air, or chemigation.</td>
</tr>
<tr>
<td>tetrachloranil (Mettes 125 ME)</td>
<td>3</td>
<td>6 to 8 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Make no more than 2 sequential applications before switching to a fungicide with a different mode of action. Can be applied by ground, air, or chemigation. Do not apply more than 16 fl oz or exceed 5 applications of Mettle/acre/year. Do not apply more than 0.125 lb/acre/year of tetrachloranil containing products.</td>
</tr>
<tr>
<td>trifloxystrobin (Flint Extra, Gem 500SC) (Flint)</td>
<td>11</td>
<td>3.8 fl oz/acre</td>
<td>3</td>
<td>0.5</td>
<td>Season limits apply – see label. Do not make more than 1 application before alternating to a fungicide with a different mode of action.</td>
</tr>
<tr>
<td>EARLY BLIGHT (ALTERNARIA), SEPTORIA LEAF SPOT (SEPTORIA), AND TARGET SPOT (CORYNESPORA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>azoxystrobin (various)</td>
<td>11</td>
<td>5 to 6.2 fl oz/acre</td>
<td>0</td>
<td>4 hr</td>
<td>Limit of 37 fl oz/acre/season. Do not make more than 1 application before alternating to a fungicide with a different mode of action. NOTE: Under high temperatures, azoxystrobin in combination with some additives or adjuvants may cause crop injury.</td>
</tr>
<tr>
<td>azoxystrobin + chlorothalonil (Quadris Opti)</td>
<td>11+M5</td>
<td>1.6 pt/acre</td>
<td>0</td>
<td>0.5</td>
<td>Must alternate with a non-FRAC code 11; use of an adjuvant may cause phytotoxicity. Do not make more than 5 applications of a Group 11 fungicide/acre/season.</td>
</tr>
<tr>
<td>azoxystrobin + difenoconazole (Quadris Top)</td>
<td>11+3</td>
<td>8 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Do not apply until 21 days after transplanting or 35 days after seeding. Limit of 47 fl oz per acre per season. Do not make more than 2 consecutive applications before alternating to a fungicide with a different mode of action.</td>
</tr>
<tr>
<td>azoxystrobin + fluotriafof (Topguard EQ)</td>
<td>11+3</td>
<td>4 to 8 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Do not use adjuvants or EC formulated mix partners on fresh market tomatoes. Do not exceed 4 applications per year. Limits on both a.i.’s apply – see label.</td>
</tr>
<tr>
<td>chlorothalonil (various)</td>
<td>M5</td>
<td>See label</td>
<td>0</td>
<td>0.5</td>
<td>Refer to individual labels for rates and restrictions.</td>
</tr>
<tr>
<td>chlorothalonil + cymoxanil (Ariston)</td>
<td>M5+27</td>
<td>1.9 pt/acre</td>
<td>3</td>
<td>0.5</td>
<td>Limit of 17.5 pt/acre/12-month period. If mixing with copper, check copper label for limitations.</td>
</tr>
<tr>
<td>cyprodinil + fludioxonil (Alteny 62.5WG, Switch 62.5WG)</td>
<td>9+12</td>
<td>11 to 14 oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Limit of 56 oz/acre/season. Do not make more than 2 consecutive applications before alternating to a fungicide with different mode of action for two applications. For early blight control only.</td>
</tr>
<tr>
<td>difenoconazole + benovindiflupyr (Aprovia Top)</td>
<td>7+3</td>
<td>10.5 to 13.5 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Do not make more than 2 consecutive applications before alternating a non-Group 7 fungicide. See label for application intervals and limits per season. Use of a spreading adjuvant is recommended.</td>
</tr>
<tr>
<td>difenoconazole + cyprodinil (Inspire Super)</td>
<td>3+9</td>
<td>16 to 20 fl oz</td>
<td>0</td>
<td>0.5</td>
<td>Limit of 80 fl oz/acre/season. Do not make more than 2 consecutive applications before alternating to a fungicide with a different mode of action.</td>
</tr>
<tr>
<td>famoxadone + cymoxanil (Tanos)</td>
<td>11+27</td>
<td>6 to 8 oz/acre</td>
<td>3</td>
<td>0.5</td>
<td>Limit of 72 fl oz/acre/season. Do not make more than 1 application before alternating to a fungicide with a different mode of action. Must be tank-mixed with a contact fungicide that has a different mode of action. For Septoria leaf spot and target spot use 8 oz/acre.</td>
</tr>
<tr>
<td>fenamidone (Reason 500SC)</td>
<td>11</td>
<td>5.5 to 8.2 fl oz/acre</td>
<td>14</td>
<td>0.5</td>
<td>Limit of 24.6 fl oz/acre/season. Do not make more than 1 application before alternating to a fungicide with a different mode of action. NOT labeled for target spot control.</td>
</tr>
<tr>
<td>fluopyram + trifloxystrobin (Luna Sensation)</td>
<td>7+11</td>
<td>5 to 7.6 fl oz/acre</td>
<td>3</td>
<td>0.5</td>
<td>Do not exceed 5 applications or 27.1 fl oz/acre/season. Do not make more than 2 consecutive applications before alternating to a fungicide with a different mode of action. Use 7.6 fl oz rate for gray leaf spot and target spot.</td>
</tr>
</tbody>
</table>
TABLE 3-38. DISEASE CONTROL PRODUCTS FOR TOMATO (cont’d)

I. Meadows, Plant Pathologist, North Carolina State University; R. Singh, Plant Pathologist, Louisiana State University Agricultural Center

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material Formulation</th>
<th>Minimum Days Harv.</th>
<th>Reentry</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOMATO (FIELD) (CONT’D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EARLY BLIGHT (ALTERNARIA), SEPTORIA LEAF SPOT (SEPTORIA), AND TARGET SPOT (CORYNEPSORA) (CONT’D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fluopyram + pyrimethanil (Luna Tranquility)</td>
<td>7+9</td>
<td>11.2 fl oz/acre</td>
<td>1</td>
<td>0.5</td>
<td>See label for limits on application amounts/season. Do not make more than 2 applications of Group 7 or 9 fungicides before alternating to a fungicide with a different mode of action. NOT REGISTERED FOR USE IN LA.</td>
</tr>
<tr>
<td>fluoxastribin (Aftershock, Evito 480SC)</td>
<td>11</td>
<td>2.0 to 5.7 fl oz/acre</td>
<td>3</td>
<td>0.5</td>
<td>Limit of 22.8 fl oz/acre/season. Do not make more than 1 application before alternating to a fungicide with a different mode of action. Controls target spot and early blight only.</td>
</tr>
<tr>
<td>flutriafol (Rhyme)</td>
<td>3</td>
<td>5 to 7 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Tank mix with mancozeb for improved early blight control. Do not exceed more than 4 applications or 28 fl oz product/acre/season. Not labeled for Septoria leaf spot control.</td>
</tr>
<tr>
<td>flupyradioxin + pyraclostrobins (Prixor Xemium)</td>
<td>7+11</td>
<td>4 to 8 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Limit of 24 fl oz/acre/season. Do not make more than 2 consecutive applications before alternating to a fungicide with a different mode of action.</td>
</tr>
<tr>
<td>mancozeb (various)</td>
<td>M3</td>
<td>See label</td>
<td>5</td>
<td>1</td>
<td>See label.</td>
</tr>
<tr>
<td>mancozeb + azoxystrobin (Dexter Max)</td>
<td>M3+11</td>
<td>0.8 to 1.6 lb/acre</td>
<td>5</td>
<td>1</td>
<td>For states East of the Mississippi and including Mississippi, do not exceed 12 lb of product/acre/season. States West of Mississippi use 0.8 to 1.1 lb/acre and do not exceed 9.14 lb of product/acre/season. Do not exceed 12 lb of product/acre/season. Do not make more than 1 application before alternating to a fungicide not in Group 11. On fresh market tomato, do not tank mix with an adjuvant or an EC formulation. Tank mixture with dimethoate may cause crop injury. For target spot control East of the Mississippi, use highest rate.</td>
</tr>
<tr>
<td>mancozeb + zoxamide (Gavel 75DF)</td>
<td>M3+22</td>
<td>1.5 to 2 lb/acre</td>
<td>5</td>
<td>2</td>
<td>For states East of the Mississippi, do not exceed 16 lb/acre/year. States West of the Mississippi do not exceed 8 lb/acre/year. Not labeled for target spot.</td>
</tr>
<tr>
<td>manidipropamid + difenoconazole (Rebus Top)</td>
<td>40+3</td>
<td>5.5 to 7 fl oz/acre</td>
<td>1</td>
<td>0.5</td>
<td>Limit of 28 fl oz/acre/season. Do not apply more than 2 consecutive applications before alternating to a fungicide with a different mode of action.</td>
</tr>
<tr>
<td>mefentrifluconazole (Ceva)</td>
<td>3</td>
<td>3 to 5 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Maximum of 15 fl oz/acre/year.</td>
</tr>
<tr>
<td>penthiopyrad (Fortels 1.67SC)</td>
<td>7</td>
<td>16 to 24 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Limit of 72 fl oz/acre/season. Do not make more than 2 consecutive applications before alternating to a fungicide with a different mode of action.</td>
</tr>
<tr>
<td>propamocarb (Previcur Flex)</td>
<td>28</td>
<td>0.7 to 1.5 pt/acre</td>
<td>5</td>
<td>0</td>
<td>Limit of 7.5 pt/acre/season. Do not make more than 1 application before alternating to a fungicide with a different mode of action. Tank-mix with a compatible fungicide for optimal early blight control. For early blight control only.</td>
</tr>
<tr>
<td>pydiflumetofen + fludioxonil (Miravis Prime)</td>
<td>7+12</td>
<td>9.2 to 11.4 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Do not make more than two applications of Miravis Prime or other Group 7 and 12 fungicides before alternating with a fungicide that is not in Group 7 or 12. Do not exceed 22.8 fl oz/acre/season. Apply by ground, air, or chemigation.</td>
</tr>
<tr>
<td>pyraclostrobins (Cabrio EG)</td>
<td>11</td>
<td>8 to 12 oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Limit of 96 fl oz/acre/season. Do not make more than 2 applications before alternating to a fungicide with a different mode of action.</td>
</tr>
<tr>
<td>pymethanil (Scala SC)</td>
<td>9</td>
<td>7 fl oz/acre</td>
<td>1</td>
<td>0.5</td>
<td>Limit of 35 fl oz/acre/season. Use only in a tank-mix with another fungicide recommended for early blight. For early blight control only.</td>
</tr>
<tr>
<td>tebuconazole (Mettel 125 ME)</td>
<td>3</td>
<td>6 to 8 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Make no more than 2 sequential applications before switching to a fungicide with a different mode of action. Can be applied by ground, air, or chemigation. Do not apply more than 16 fl oz or exceed 5 applications of Mettel per acre per year. Do not apply more than 0.125 lb/acre/year of tebuconazole containing products.</td>
</tr>
<tr>
<td>trifloxystrobin (Flint Extra, Gem 500SC) (Flint)</td>
<td>11</td>
<td>3 to 3.8 fl oz/acre</td>
<td>3</td>
<td>0.5</td>
<td>Limit of 16 fl oz or 5 applications/acre/season. Do not make more than 1 application before alternating to a fungicide with a different mode of action. Not labeled for target spot. Disease suppression for Septoria leaf spot.</td>
</tr>
<tr>
<td>zinc dimethyldithiocarbamate (Ziram 76 DF)</td>
<td>M3</td>
<td>3 to 4 lb/acre</td>
<td>7</td>
<td>2</td>
<td>Limit of 24 lb per acre per season. DO NOT USE ON CHERRY TOMATOES. For early blight and Septoria leaf spot only.</td>
</tr>
<tr>
<td>zoxamide + chlorothalonil (Zing!)</td>
<td>22+M3</td>
<td>36 fl oz/acre</td>
<td>5</td>
<td>0.5</td>
<td>Do not make more than 2 consecutive applications before alternating to a fungicide with a different mode of action. See label for application limits. For early blight and Septoria leaf spot only.</td>
</tr>
</tbody>
</table>

POWDERY MILDEW (LEVEILLULA, OIDIUM)

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material Formulation</th>
<th>Minimum Days Harv.</th>
<th>Reentry</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>azoxystrobin (various)</td>
<td>11</td>
<td>5 to 6.2 fl oz/acre</td>
<td>0</td>
<td>4 hr</td>
<td>Limit of 37 fl oz/acre/season. Do not make more than 1 application before alternating to a fungicide with a different mode of action. NOTE: Under high temperatures, azoxystrobin in combination with some additives or adjuvants may cause crop injury.</td>
</tr>
<tr>
<td>azoxystrobin + chlorothalonil (Quadris Opt)</td>
<td>11+M3</td>
<td>1.6 pt/acre</td>
<td>0</td>
<td>0.5</td>
<td>Must alternate with a non-FRAC code 11; use of an adjuvant may cause phytotoxicity. Do not make more than 5 applications of a Group 11 fungicide/acre/season.</td>
</tr>
<tr>
<td>azoxystrobin + difenoconazole (Quadris Top)</td>
<td>11+3</td>
<td>8 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Do not apply until 21 days after transplanting or 35 days after seeding. Limit of 47 fl oz/acre/season. Make no more than 2 consecutive applications before alternating to a fungicide with a different mode of action. See label for tank-mix precautions.</td>
</tr>
<tr>
<td>Disease/Material</td>
<td>FRAC Code</td>
<td>Rate of Material Formulation</td>
<td>Minimum Days Harvest</td>
<td>Reentry</td>
<td>Method, Schedule, and Remarks</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------</td>
<td>-----------------------------</td>
<td>----------------------</td>
<td>---------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>TOMATO (FIELD) (CONT’D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POWDERY MILDEW (LEVEILULLA, OIDIUM) (CONT’D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>azoxystrobin + flutriafol (Topguard EQ)</td>
<td>11+3</td>
<td>4 to 8 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Do not use adjuvants or EC formulated tank-mix partners on fresh market tomatoes. Do not exceed 4 applications/year. Limits on both a.i. apply-see label.</td>
</tr>
<tr>
<td>chlorothalonil (various)</td>
<td>M5</td>
<td>See label</td>
<td>0</td>
<td>0.5</td>
<td>Refer to individual labels for rates and restrictions.</td>
</tr>
<tr>
<td>cyflufenamid (Fastback)</td>
<td>U6</td>
<td>4 oz/acre</td>
<td>0</td>
<td>4 hr</td>
<td>Make no more than 3 applications/year. Minimum application interval is 14 days.</td>
</tr>
<tr>
<td>cyprodinil + fludioxonil (Alterity 62.5WG, Switch 62.5WG)</td>
<td>9+12</td>
<td>11 to 14 oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Limit of 56 oz/acre/season. Do not make more than 2 consecutive applications before alternating to a fungicide with different mode of action for two applications mixed.</td>
</tr>
<tr>
<td>difenoconazole + cyprodinil (Inspire Super)</td>
<td>3+9</td>
<td>16 to 20 fl oz</td>
<td>0</td>
<td>0.5</td>
<td>Limit of 80 fl oz/acre/season. Do not make more than 2 consecutive applications before alternating to a fungicide with a different mode of action.</td>
</tr>
<tr>
<td>difenoconazole + benzovindiflupyr (Aprovia Top)</td>
<td>7+3</td>
<td>10.5 to 13.5 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Do not make more than 2 consecutive applications before alternating a non-Group 7 fungicide. See label for application intervals and limits per season. Use of a spreading adjuvant is recommended.</td>
</tr>
<tr>
<td>fluopyram + trifloxystrobin (Luna Sensation)</td>
<td>7+11</td>
<td>5 to 7.6 fl oz/acre</td>
<td>3</td>
<td>0.5</td>
<td>Do not exceed 5 applications or 27.1 fl oz/acre/season. Do not make more than 2 consecutive applications before alternating to a fungicide with a different mode of action. Use 7.6 fl oz rate for gray leaf spot and target spot.</td>
</tr>
<tr>
<td>flutriafol (Rhyme)</td>
<td>3</td>
<td>5 to 7 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Tank-mix with mancozeb for improved disease control. Use lower rate if tank mixed. Do not exceed 4 applications/year or more than 28 fl oz of product/acre/year.</td>
</tr>
<tr>
<td>fluxapyroxad + pyraclostrobin (Prixor Xemium)</td>
<td>7+11</td>
<td>4 to 8 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
<td>Limit of 24 fl oz/acre/season. Do not make more than 2 consecutive applications before alternating to a fungicide with a different mode of action.</td>
</tr>
<tr>
<td>mancozeb + azoxystrobin (Dexter Max)</td>
<td>M3+11</td>
<td>1.6 lb/acre</td>
<td>5</td>
<td>1</td>
<td>Do not exceed 12 lb of product/acre/season. Do not make more than 1 application before alternating to a fungicide not in Group 11. On fresh market tomato, do not tank-mix with an adjuvant or an EC formulation. Tank mixture with dimethoate may cause crop injury.</td>
</tr>
<tr>
<td>mfenfriulconazole (Cevya)</td>
<td>3</td>
<td>3 to 5 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Maximum of 15 fl oz/acre/year.</td>
</tr>
<tr>
<td>myclobutanil (various)</td>
<td>3</td>
<td>See label</td>
<td>1</td>
<td>0</td>
<td>Spray weekly beginning at first sign of disease. Do not apply more than 1.25 lb/acre. Observe a 30-day plant back interval between last application and planting new crop.</td>
</tr>
<tr>
<td>penthiopyrad (Fontelis 1.67SC)</td>
<td>7</td>
<td>16 to 24 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Limit of 72 fl oz/acre/season. Do not make more than 2 consecutive applications before alternating to a fungicide with a different mode of action.</td>
</tr>
<tr>
<td>pyraclostrobin (Cabrio EG)</td>
<td>11</td>
<td>8 to 16 oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Limit of 96 fl oz/acre/season. Do not make more than 2 applications before alternating to a fungicide with a different mode of action.</td>
</tr>
<tr>
<td>pyriofenone (Prolivo 300SC)</td>
<td>50 (U08)</td>
<td>4 to 5 fl oz</td>
<td>0</td>
<td>4 hr</td>
<td>Do not exceed 16 fl oz/acre/year. Do not make more than 2 sequential applications of Prolivo or of another FRAC 50-containing fungicide before alternating to a fungicide with a different mode of action. Do not exceed 4 applications/year.</td>
</tr>
<tr>
<td>pydiflumetofen + fludioxonil (Miravis Prime)</td>
<td>7+12</td>
<td>9.2 to 11.4 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Do not make more than two applications of Miravis Prime or other Group 7 and 12 fungicides before alternating with a fungicide that is not in Group 7 or 12. Do not exceed 22.8 fl oz/acre/season. Apply by ground, air, or chemigation.</td>
</tr>
<tr>
<td>tetracnazoole (Mettle125 ME)</td>
<td>3</td>
<td>6 to 8 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Make no more than 2 sequential applications before switching to a fungicide with a different mode of action. Can be applied by ground, air, or chemigation. Do not apply more than 16 fl oz or exceed 5 applications of Mettle per acre per year. Do not apply more than 0.125 lb/acre/year of tetracnazoole containing products.</td>
</tr>
<tr>
<td>trifloxystrobin (Flint Extra, Gem 500SC)</td>
<td>11</td>
<td>3.0 to 3.8 fl oz/acre</td>
<td>3</td>
<td>0.5</td>
<td>DISEASE SUPPRESSION ONLY. Do not exceed 16 fl oz/acre/crop or 5 applications per acre per season. Do not exceed 1 application before switching to a fungicide with a different mode of action.</td>
</tr>
<tr>
<td>Tolufenpyrad (Torac)</td>
<td>39</td>
<td>21 fl oz/acre</td>
<td>1</td>
<td>0.5</td>
<td>DISEASE SUPPRESSION ONLY. Do not exceed 42 fl oz/acre/crop. Do not exceed 2 applications/crop cycle and do not exceed 4 applications/year. Provides SUPPRESSION of powdery mildew.</td>
</tr>
<tr>
<td>Sulfur (various)</td>
<td>M2</td>
<td>See label</td>
<td>See label</td>
<td>1</td>
<td>Follow labels. May cause leaf burn if used under high temperatures.</td>
</tr>
<tr>
<td>LATE BLIGHT (PHYTOPHTHORA INFESTANS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>azoxystrobin (various)</td>
<td>11</td>
<td>6.2 fl oz/acre</td>
<td>0</td>
<td>4 hr</td>
<td>Limit of 37 fl oz/acre/season. Do not make more than 1 application before alternating to a fungicide with a different mode of action. NOTE: Apply at 5- to 7-day intervals for effective late blight management.</td>
</tr>
<tr>
<td>chlorothalonil (various)</td>
<td>M5</td>
<td>See label</td>
<td>0</td>
<td>0.5</td>
<td>Refer to individual labels for rates and restrictions.</td>
</tr>
<tr>
<td>azoxystrobin + chlorothalonil (Quadris Opti)</td>
<td>11+M5</td>
<td>1.6 pts/acre</td>
<td>0</td>
<td>0.5</td>
<td>Must alternate with a non-FRAC code 11; use of an adjuvant may cause phytotoxicity. Do not make more than 5 applications of a Group 11 fungicide/acre/season.</td>
</tr>
</tbody>
</table>
TABLE 3-38. DISEASE CONTROL PRODUCTS FOR TOMATO (cont’d)

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material Formulation</th>
<th>Minimum Days Harv.</th>
<th>Reentry</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>LATE BLIGHT (PHYTOPHTHORA INFESTANS) (cont’d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>azoxystrobin + flutriafol (Topguard EQ)</td>
<td>11+3</td>
<td>2.5 pt/acre</td>
<td>1</td>
<td>0.5</td>
<td>Do not use adjuvants or EC formulated tank-mix partners on fresh market tomatoes. Do not exceed 4 applications/year. Limits on both a.i. and tank-mix partners.</td>
</tr>
<tr>
<td>cymoxanil + chlorothalonil (Ariston)</td>
<td>27+M5</td>
<td>1.9 to 3.0 pts/acre</td>
<td>3</td>
<td>0.5</td>
<td>Limit of 17.5 pts/acre/12-month period. Check copper labels for specific precautions and limitations for mixing with this product.</td>
</tr>
<tr>
<td>cyazofamid (Ramzan 400SC)</td>
<td>21</td>
<td>2.1 to 2.75 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Limit of 16.5 fl oz/acre/season. Do not make more than 1 application before alternating to a fungicide with a different mode of action.</td>
</tr>
<tr>
<td>cymoxanil (Curzate 60DF)</td>
<td>27</td>
<td>3.2 to 5 oz/acre</td>
<td>3</td>
<td>0.5</td>
<td>Limit of 30 oz/acre/12-month period. Use only in combination with a labeled rate of a protectant fungicide. If late blight is present, use 5 oz/acre on a 5-day schedule. NOT REGISTERED FOR USE IN LA.</td>
</tr>
<tr>
<td>dimethomorph (Forum 4.18F)</td>
<td>40</td>
<td>6 fl oz/acre</td>
<td>4</td>
<td>0.5</td>
<td>Limit of 30 fl oz and 5 applications/acre/season. Performance is improved if tank-mixed with another fungicide with a different mode of action.</td>
</tr>
<tr>
<td>dimethomorph + ametocotradin (Zampro)</td>
<td>40+45</td>
<td>14 fl oz/acre</td>
<td>4</td>
<td>0.5</td>
<td>Limit of 42 fl oz/acre/season. Do not make more than 2 consecutive applications before alternating to a fungicide with a different mode of action. The addition of a spreading or penetrating adjuvant is recommended to improve product performance.</td>
</tr>
<tr>
<td>fenamidone (Reason 500SC)</td>
<td>11</td>
<td>5.5 to 8.2 fl oz/acre</td>
<td>14</td>
<td>0.5</td>
<td>Limit of 24.6 fl oz/acre/season. Do not make more than 1 application before alternating to a fungicide with a different mode of action.</td>
</tr>
<tr>
<td>flucpicicilide (Presidio 4F)</td>
<td>43</td>
<td>3 to 4 fl oz/acre</td>
<td>2</td>
<td>0.5</td>
<td>Do not make more than 2 consecutive applications before alternating to a fungicide with a different mode of action. Use only in combination with a labeled rate of another fungicide product with a different mode of action.</td>
</tr>
<tr>
<td>fluzaxastrobin (Aftershock, Evito 480 SC)</td>
<td>11</td>
<td>5.7 fl oz/acre</td>
<td>3</td>
<td>0.5</td>
<td>DISEASE SUPPRESSION ONLY. Limit of 22.8 fl oz/acre/season. Do not make more than 1 application before alternating to a fungicide with a different mode of action.</td>
</tr>
<tr>
<td>fluxapyroxad + pyraclostrobin (Prixor 500 SC)</td>
<td>7+11</td>
<td>8 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
<td>DISEASE SUPPRESSION ONLY. Limit of 24 fl oz/acre/season. Do not make more than 2 consecutive applications before alternating to a fungicide with a different mode of action.</td>
</tr>
<tr>
<td>mancozeb (various)</td>
<td>M3</td>
<td>See label</td>
<td>5</td>
<td>1</td>
<td>For states East of the Mississippi and including Mississippi, do not exceed 12 lb of product/acre/season. States West of Mississippi use 0.8 to 1.1 lb/acre and do not exceed 9.14 lb of product/acre/season. Do not exceed 12 lb of product/acre/season. Do not make more than 1 application before alternating to a fungicide not in Group 11. On fresh market tomato, do not tank mix with an adjuvant or an EC formulation. Tank mixture with dimethoate may cause crop injury.</td>
</tr>
<tr>
<td>mancozeb + azoxystrobin (Dexter Max)</td>
<td>M3+11</td>
<td>0.8 to 1.6 lb/acre</td>
<td>5</td>
<td>1</td>
<td>For states East of the Mississippi and including Mississippi, do not exceed 12 lb of product/acre/season. States West of Mississippi use 0.8 to 1.1 lb/acre and do not exceed 9.14 lb of product/acre/season. Do not exceed 12 lb of product/acre/season. Do not make more than 1 application before alternating to a fungicide not in Group 11. On fresh market tomato, do not tank mix with an adjuvant or an EC formulation. Tank mixture with dimethoate may cause crop injury.</td>
</tr>
<tr>
<td>Mancozeb + copper hydroxide (ManKocide)</td>
<td>M3+M1</td>
<td>1 to 3 lb/acre</td>
<td>5</td>
<td>2</td>
<td>Apply at 7- to 10-day interval.</td>
</tr>
<tr>
<td>Mancozeb + xzamid (Gavel 75DF)</td>
<td>M3+22</td>
<td>1.5 to 2 lb/acre</td>
<td>5</td>
<td>2</td>
<td>For states East of the Mississippi River, do not exceed 15 lb/acre/year. States West of the Mississippi River, do not exceed 8 lb/acre/year.</td>
</tr>
<tr>
<td>Mandipropropamid + difenoconazole (Reus Top)</td>
<td>40+3</td>
<td>5.5 to 7 oz/acre</td>
<td>1</td>
<td>0.5</td>
<td>Limit of 28 ft oz/acre/season. Do not make more than 2 consecutive applications before alternating to a fungicide with a different mode of action.</td>
</tr>
<tr>
<td>Mefenoxam + chlorothalonil (Ridomil Gold Bravo)</td>
<td>4+M5</td>
<td>2.5 pt/acre</td>
<td>5</td>
<td>2</td>
<td>See label for application limits.</td>
</tr>
<tr>
<td>Mefenoxam + mancozeb (Ridomil Gold MZ WG)</td>
<td>4+M3</td>
<td>2.5 lb/acre</td>
<td>5</td>
<td>2</td>
<td>Do not make more than 3 applications or 7.5 lb/acre/season of Ridomil Gold MZ.</td>
</tr>
<tr>
<td>Oxathiapiprolin + chlorothalonil (Orondo Opt)</td>
<td>49+M</td>
<td>1.75 to 2.5 pints/acre</td>
<td>0</td>
<td>0.5</td>
<td>Do not make more than 2 sequential applications before alternating to a fungicide with a different mode of action and no more than 6 total applications on multiple crops in the same year. Do not mix soil applications and foliar applications. See label for application limits.</td>
</tr>
<tr>
<td>Oxathiapiprolin + mandipropropamid (Orondo Ultra)</td>
<td>49+40</td>
<td>5.5 to 8.0 fl oz/acre</td>
<td>1</td>
<td>4 hr</td>
<td>Do not make more than 2 sequential applications before alternating to a fungicide with a different mode of action and no more than 6 total applications on multiple crops per season. Limit applications apply—see label. Do not mix soil applications and foliar applications.</td>
</tr>
<tr>
<td>Pyraclostrobin (Cabrio EQ)</td>
<td>11</td>
<td>8 to 16 oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Do not make more than 2 consecutive applications before alternating to a fungicide with a different mode of action. Do not exceed 96 oz/acre/season.</td>
</tr>
<tr>
<td>Propamocarb (Previcur Flex)</td>
<td>28</td>
<td>0.7 to 1.5 pt/acre</td>
<td>5</td>
<td>0.5</td>
<td>Limit of 7.5 pt/acre/season. Do not make more than 1 application before alternating to a fungicide with a different mode of action.</td>
</tr>
<tr>
<td>Trifloxystrobin (Flint Extra, Gem 500SC) (Flint)</td>
<td>11</td>
<td>3.6 fl oz/acre</td>
<td>3</td>
<td>0.5</td>
<td>Season limits apply – see label. Must tank mix and alternate Flint Extra with a protectant for late blight control.</td>
</tr>
<tr>
<td>zoxamide + chlorothalonil (Zing!)</td>
<td>22+M5</td>
<td>36 fl oz/acre</td>
<td>5</td>
<td>0.5</td>
<td>Do not make more than 2 consecutive applications before alternating to a fungicide with a different mode of action. Do not tank-mix with another fungicide if the target pest is only late blight. Tank-mix only if a partner product is required to control other diseases.</td>
</tr>
</tbody>
</table>
TABLE 3-38. DISEASE CONTROL PRODUCTS FOR TOMATO (cont’d)

I. Meadows, Plant Pathologist, North Carolina State University; R. Singh, Plant Pathologist, Louisiana State University Agricultural Center

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material Formulation</th>
<th>Minimum Days Harv.</th>
<th>Reentry</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEAF MOLD (FULVIA FULVA = PASSALORA FULVA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>azoxystrobin + difenoconazolene (Quadris Top)</td>
<td>11+3</td>
<td>8 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Do not apply until 21 days after transplanting or 35 days after seeding. Limit of 47 fl oz/acre/season. Do not make more than 2 consecutive applications before alternating to a fungicide with a different mode of action.</td>
</tr>
<tr>
<td>chlorothalonil + cymoxanil (Ariston)</td>
<td>M5+27</td>
<td>1.9 pt/acre</td>
<td>3</td>
<td>0.5</td>
<td>Limit of 17.5 pt/acre/12-month period. If mixing with copper, check copper label for limitations.</td>
</tr>
<tr>
<td>difenoconazolene + benzoindifluypyr (Aprovia Top)</td>
<td>7+3</td>
<td>10.5 to 13.5 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Do not make more than 2 applications before alternating to a non- Group 7 fungicide. See label for application intervals and limits per season. Use of a spreading adjuvant is recommended.</td>
</tr>
<tr>
<td>difenoconazolene + cyprodimin (Inspire Super)</td>
<td>3+9</td>
<td>16 to 20 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Limit of 80 fl oz/acre/season. Do not make more than 2 consecutive applications before alternating to a fungicide with a different mode of action.</td>
</tr>
<tr>
<td>difenoconazolene + mandipropamid (Revus Top)</td>
<td>3+40</td>
<td>5.5 to 7 fl z/acre</td>
<td>1</td>
<td>0.5</td>
<td>Make no more than 2 consecutive applications before switching to another fungicide with a different mode of action. See label for application limits.</td>
</tr>
<tr>
<td>famoxadone + cymoxanil (Tanos)</td>
<td>11+27</td>
<td>8 oz/acre</td>
<td>3</td>
<td>0.5</td>
<td>Do not make more than 1 application before alternating to a fungicide with a different mode of action. NOTE: Must be tank-mixed with a contact fungicide that has a different mode of action. See label for application limits.</td>
</tr>
<tr>
<td>mancozeb (various)</td>
<td>M3</td>
<td>See label</td>
<td>5</td>
<td>1</td>
<td>For states East of the Mississippi and including Mississippi, do not exceed 12 lb of product/acre/season. States West of Mississippi use 0.8 to 1.1 lb/acre and do not exceed 9.14 lb of product/acre/season. Do not exceed 12 lb product/acre/season. Do not make more than 1 application before alternating to a fungicide not in Group 11. On fresh market tomato, do not tank mix with an adjuvant or an EC formulation. Tank mixture with dimethoate may cause crop injury.</td>
</tr>
<tr>
<td>mancozeb + azoxystrobin (Dexter Max)</td>
<td>M3+11</td>
<td>0.8 to 1.6 lb/acre</td>
<td>5</td>
<td>1</td>
<td>Apply at 7- to 10-day intervals.</td>
</tr>
<tr>
<td>mancozeb + copper hydroxide (ManKocide 61DF)</td>
<td>M3+M1</td>
<td>1 to 3 lb/acre</td>
<td>5</td>
<td>2</td>
<td>For states East of the Mississippi River. Do not exceed 16 lb/acre/year. States West of the Mississippi River, do not exceed 8 lb/acre/year.</td>
</tr>
<tr>
<td>mancozeb + zoxamide (Gavel 75DF)</td>
<td>M3+22</td>
<td>1.5 to 2 lb/acre</td>
<td>5</td>
<td>2</td>
<td>For states East of the Mississippi and including Mississippi, do not exceed 12 lb of product/acre/season. States West of Mississippi use 0.8 to 1.1 lb/acre and do not exceed 9.14 lb of product/acre/season. Do not exceed 12 lb product/acre/season. Do not make more than 1 application before alternating to a fungicide not in Group 11. On fresh market tomato, do not tank mix with an adjuvant or an EC formulation. Tank mixture with dimethoate may cause crop injury.</td>
</tr>
<tr>
<td>SOUR ROT (GEOTRICHUM CANDIDUM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fludioxonil + propiconazole (Chairman)</td>
<td>3+12</td>
<td>See label</td>
<td>0</td>
<td>0</td>
<td>Use as a post-harvest dip, drench, or high-volume spray to control certain post-harvest rots. See label for details.</td>
</tr>
<tr>
<td>propiconazole (various)</td>
<td>3</td>
<td>See label</td>
<td>0</td>
<td>0</td>
<td>Use Mentor as a post-harvest dip, drench, or high-volume spray to control certain post-harvest rots. See label for details.</td>
</tr>
<tr>
<td>fludioxonil (Scholar SC)</td>
<td>12</td>
<td>See label</td>
<td>0</td>
<td>0</td>
<td>Use as a post-harvest dip, drench, or high-volume spray to control certain post-harvest rots. See label for details.</td>
</tr>
<tr>
<td>SOUTHERN BLIGHT (SCLEROTIUM ROLFSII)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>difenoconazolene + benzoindifluypyr (Aprovia Top)</td>
<td>7+3</td>
<td>10.5 to 13.5 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>DISEASE SUPPRESSION ONLY. Do not apply until 21 days after transplanting or 35 days after seeding. Limit of 47 fl oz/acre/season. Do not make more than 2 consecutive applications before alternating to a fungicide with a different mode of action. See label for application intervals and limits per season.</td>
</tr>
<tr>
<td>fluoxastrobin (Aftershock, Evito 480SC)</td>
<td>11</td>
<td>2.0 to 5.7 fl oz/acre</td>
<td>3</td>
<td>0.5</td>
<td>DISEASE SUPPRESSION ONLY. Begin applications when conditions favor disease development, on 7- to 10-day intervals. Do not make more than 1 application before alternating to a fungicide with a different mode of action. Do not apply more than 22.8 fl oz/acre/season.</td>
</tr>
<tr>
<td>fluxapyroxad + pyraclostrobin (Prixor Xemium)</td>
<td>7+11</td>
<td>4 to 8 fl oz/100 gal</td>
<td>7</td>
<td>0.5</td>
<td>DISEASE SUPPRESSION ONLY. Limit of 24 fl oz/acre/ season. Do not make more than 2 consecutive applications before alternating to a fungicide with a different mode of action. Do not mix Priaor with any other products, adjuvants, additives, or nutrients for application to fresh market tomatoes at less than 20 gal/acre spray volume.</td>
</tr>
<tr>
<td>PCNB (Blocker 4F)</td>
<td>14</td>
<td>4.5 to 7.5 pt/100 gal; (apply 0.5 pt of solution per plant)</td>
<td>NA</td>
<td>0.5</td>
<td>Transplanting: Apply at the time of transplanting for southern blight suppression. In furrow: Apply in 8 to 10 gal of water per acre based on 36-inch row spacing. Limit of 7.5 lb a.i. per acre/season. MAY CAUSE STUNTING ON TOMATO PLANTS.</td>
</tr>
<tr>
<td>PCNB (Blocker 4F)</td>
<td>14</td>
<td>1.2 to 1.875 gal/acre</td>
<td>NA</td>
<td>0.5</td>
<td>DISEASE SUPPRESSION ONLY. Limit of 96 fl oz/acre/season. Do not make more than 2 applications before alternating to a fungicide with a different mode of action. Do not mix Priaor with any other products, adjuvants, additives, or nutrients for application to fresh market tomatoes at less than 20 gal/acre spray volume.</td>
</tr>
<tr>
<td>Penthiopyrad (Fontels 1.67SC)</td>
<td>7</td>
<td>1 to 1.6 fl oz/1000 row ft</td>
<td>0</td>
<td>0.5</td>
<td>Apply as a soil drench to seedling tray or at the time of transplant. See label for application limits.</td>
</tr>
<tr>
<td>pyraclostrobin (Cabrio EG)</td>
<td>11</td>
<td>12 to 16 oz/acre</td>
<td>0</td>
<td>4 hr</td>
<td>DISEASE SUPPRESSION ONLY. Limit of 96 fl oz/acre/season. Do not make more than 2 applications before alternating to a fungicide with a different mode of action. Do not mix Priaor with any other products, adjuvants, additives, or nutrients for application to fresh market tomatoes at less than 20 gal/acre spray volume.</td>
</tr>
</tbody>
</table>

TOMBER ROT, WHITE MOLD, OR SCLEROTINIA STEM ROT (SCLEROTINIA)

Coniothyrium minitans strain

| CON/M/91-08 (Conlans WG) | 1 to 4 lb/acre | 0 | 4 hr | Apply at crop emergence or crop transplant. Do not tank mix or apply other fungicides within 7 days before or after use. | 2022 Vegetable Crop Handbook for Southeastern United States | 286 |
TABLE 3-38. DISEASE CONTROL PRODUCTS FOR TOMATO (cont’d)

I. Meadows, Plant Pathologist, North Carolina State University; R. Singh, Plant Pathologist, Louisiana State University Agricultural Center

<table>
<thead>
<tr>
<th>Disease/Material</th>
<th>FRAC Code</th>
<th>Rate of Material Formulation</th>
<th>Minimum Days Harv.</th>
<th>Reentry</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIMBER ROT, WHITE MOLD, OR SCLEROTINIA STEM ROT (SCLEROTINIA) (CONT’D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fluxapyroxad + pyraclostrobin (Priaxor Xemium)</td>
<td>7+11</td>
<td>4 to 8 fl oz/100 gal</td>
<td>7</td>
<td>0.5</td>
<td>DISEASE SUPPRESSION ONLY. Limit of 24 fl oz/acre/season. Do not make more than 2 consecutive applications before alternating to a fungicide with a different mode of action. See label for application limits. Do not mix Priaxor with any other products, adjuvants, additives, or nutrients for application to fresh market tomatoes at less than 20 gal/acre spray volume.</td>
</tr>
<tr>
<td>pyraclostrobin (Cabrio EG)</td>
<td>11</td>
<td>12 to 16 oz/acre</td>
<td>0</td>
<td>4 hr</td>
<td>DISEASE SUPPRESSION ONLY. Limit of 96 fl oz/acre/season. Do not make more than 2 applications before alternating to a fungicide with a different mode of action.</td>
</tr>
</tbody>
</table>

TABLE 3-39. IMPORTANCE OF ALTERNATIVE MANAGEMENT PRACTICES FOR DISEASE CONTROL IN TOMATO

I. Meadows, Plant Pathologist, North Carolina State University; R. Singh, Plant Pathologist, Louisiana State University Agricultural Center

Scale: E, excellent; G, good; F, fair; P, poor; NC, no control; NA, not applicable; ND, no data.

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Bacterial canker</th>
<th>Bacterial speck</th>
<th>Bacterial spot</th>
<th>Bacterial wilt</th>
<th>Buckeye rot</th>
<th>Alternaria stem canker</th>
<th>Early blight</th>
<th>Fusarium wilt</th>
<th>Gray mold</th>
<th>Late blight</th>
<th>Leaf mold (greenhouse or open field)</th>
<th>Powdery mildew</th>
<th>Septoria leaf spot</th>
<th>Southern blight</th>
<th>Target spot (greenhouse or open field)</th>
<th>Tomato spotted wilt virus</th>
<th>Tomato yellow leaf curl virus</th>
<th>Verticillium wilt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of resistant cultivars</td>
<td>NA</td>
<td>P</td>
<td>P</td>
<td>NA</td>
<td>NA</td>
<td>F</td>
<td>G**</td>
<td>NA</td>
<td>G</td>
<td>P</td>
<td>F</td>
<td>NR</td>
<td>NA</td>
<td>P</td>
<td>G</td>
<td>G</td>
<td>G***</td>
<td></td>
</tr>
<tr>
<td>Use of disease-free seed or transplants</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>NA</td>
<td>NC</td>
<td>NC</td>
<td>NA</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>P</td>
<td>NA</td>
<td>F</td>
<td>NA</td>
<td>G</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Use of seed treatments</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>NA</td>
<td>NC</td>
<td>P</td>
<td>NA</td>
<td>NC</td>
<td>P</td>
<td>F</td>
<td>NA</td>
<td>P</td>
<td>NA</td>
<td>ND</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Use of sanitation practices at the transplant stage</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>NA</td>
<td>NC</td>
<td>G</td>
<td>NA</td>
<td>G</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>NA</td>
<td>F</td>
<td>NC</td>
<td>F</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Use of grafted rootstocks</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>G**</td>
<td>NC</td>
<td>NC</td>
<td>G**</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NA</td>
<td>NC</td>
</tr>
<tr>
<td>Crop rotation (3-4 years) or tomato-free period</td>
<td>F</td>
<td>P</td>
<td>P</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>P</td>
<td>F</td>
<td>P</td>
<td>NC</td>
<td>G</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Control of solanaceous weeds</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>F</td>
<td>NC</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>NC</td>
<td>F</td>
<td>F</td>
<td>NA</td>
<td>NC</td>
<td></td>
</tr>
<tr>
<td>Fertility</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>ND</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>ND</td>
<td>NA</td>
<td>NC</td>
<td>NC</td>
<td>NA</td>
<td>NC</td>
</tr>
<tr>
<td>Deep plow</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>ND</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>ND</td>
<td>NA</td>
<td>NC</td>
<td>NA</td>
<td>NC</td>
</tr>
<tr>
<td>Use of cover crops</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>P</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>ND</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>ND</td>
<td>NC</td>
<td>NA</td>
<td>NC</td>
<td>NA</td>
</tr>
<tr>
<td>Destroy crop residue</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>P</td>
<td>NC</td>
<td>P</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>ND</td>
<td>NA</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Rogues plants</td>
<td>F</td>
<td>NC</td>
<td>NA</td>
<td>NC</td>
</tr>
<tr>
<td>Promote air movement</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>NC</td>
<td>P</td>
<td>P</td>
<td>NC</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>P</td>
<td>F</td>
<td>NC</td>
<td>F</td>
<td>NA</td>
<td>NA</td>
<td>NC</td>
</tr>
<tr>
<td>Use of plastic or reflective mulches</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>G</td>
<td>G</td>
<td>NC</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Do not handle plants when wet</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>NC</td>
<td>P</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>P</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>NA</td>
<td>NC</td>
<td>NA</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>Use of drip irrigation (avoiding overhead irrigation)</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>NC</td>
<td>P</td>
<td>F</td>
<td>NC</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>F</td>
<td>NA</td>
<td>NC</td>
<td>NA</td>
</tr>
<tr>
<td>Use of biological control or biorational products</td>
<td>P</td>
<td>P</td>
<td>F</td>
<td>NC</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>NC</td>
<td>P</td>
<td>P</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>NA</td>
</tr>
<tr>
<td>Use of foliar fungicides/ bactericides</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>NC</td>
<td>G</td>
<td>G</td>
<td>NC</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>NC</td>
<td>F</td>
<td>NA</td>
<td>NA</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>Use of insecticides</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NA</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>G</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NA</td>
</tr>
<tr>
<td>Soil fumigation</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>P</td>
<td>G</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>G</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NA</td>
</tr>
</tbody>
</table>

* Bacterial canker (foliar or systemic) is rarely observed on open field grown tomatoes in deep Southern states.
** Tomato spotted wilt virus is transmitted by thrips.
*** Race specific.
<table>
<thead>
<tr>
<th>Active ingredient</th>
<th>Product</th>
<th>Fungicide Group</th>
<th>Preferred Interval (days)</th>
<th>Anthracnose</th>
<th>Bacterial canker (foliar)</th>
<th>Bacterial speck</th>
<th>Bacterial spot</th>
<th>Early blight</th>
<th>Gray mold (Botrytis)</th>
<th>Late blight</th>
<th>Leaf mold (Fulvia fulva)</th>
<th>Powdery mildew</th>
<th>Septoria leaf spot</th>
<th>Southern blight</th>
<th>Target spot</th>
</tr>
</thead>
<tbody>
<tr>
<td>azoxystrobin</td>
<td>Quadris</td>
<td>M</td>
<td>11</td>
<td>0</td>
<td>G</td>
<td>NC</td>
<td>NC</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>E</td>
<td>NC</td>
<td>NC</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>azoxystrobin + difenoconazole</td>
<td>Quadris Top</td>
<td>M</td>
<td>11</td>
<td>3</td>
<td>ND</td>
<td>NC</td>
<td>NC</td>
<td>ND</td>
<td>G</td>
<td>ND</td>
<td>F</td>
<td>NC</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>azoxystrobin + trifloxystrobin</td>
<td>Topguard EQ</td>
<td>R</td>
<td>11</td>
<td>3</td>
<td>ND</td>
<td>NC</td>
<td>NC</td>
<td>ND</td>
<td>G</td>
<td>ND</td>
<td>ND</td>
<td>P</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>acibenzolar-S-methyl</td>
<td>Actigard</td>
<td>S</td>
<td>21</td>
<td>14</td>
<td>P</td>
<td>ND</td>
<td>F</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>bacteriophage +</td>
<td>AgriPhage</td>
<td>S</td>
<td>0</td>
<td>0</td>
<td>NC</td>
<td>P</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>benzoindiflupyr + difenoconazole</td>
<td>Aprovia Top</td>
<td>S</td>
<td>7+3</td>
<td>0</td>
<td>ND</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>G</td>
<td>ND</td>
<td>ND</td>
<td>F</td>
<td>F</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>boscalid</td>
<td>Endura</td>
<td>G</td>
<td>7</td>
<td>0</td>
<td>ND</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>G</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>chlorothalonil</td>
<td>Bravo, Chloronil, ECHO, Equus, Initiate</td>
<td>M</td>
<td>0</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>P</td>
<td>F</td>
<td>F</td>
<td>G</td>
<td>F</td>
<td>F</td>
<td>P</td>
<td>F</td>
</tr>
<tr>
<td>chlorothalonil + cymoxanil</td>
<td>Ariston</td>
<td>M</td>
<td>27</td>
<td>3</td>
<td>ND</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>P</td>
<td>F</td>
<td>F</td>
<td>G</td>
<td>F</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>cyazofamid</td>
<td>Ranman</td>
<td>M</td>
<td>21</td>
<td>0</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>ND</td>
</tr>
<tr>
<td>cymoxanil</td>
<td>Curzate</td>
<td>M</td>
<td>27</td>
<td>3</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>P</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>cyprodinil + fludioxanil</td>
<td>Switch, Altenity</td>
<td>M</td>
<td>9+12</td>
<td>0</td>
<td>ND</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>ND</td>
</tr>
<tr>
<td>dimethomorph</td>
<td>Forum</td>
<td>G</td>
<td>40</td>
<td>0</td>
<td>ND</td>
<td>NC</td>
</tr>
<tr>
<td>difenoconazole + cyprodinil</td>
<td>Inspire Super</td>
<td>S</td>
<td>3+9</td>
<td>0</td>
<td>ND</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>G</td>
<td>G</td>
<td>NC</td>
<td>G</td>
<td>G</td>
<td>ND</td>
<td>F</td>
</tr>
<tr>
<td>dimethomorph + ametoctradin</td>
<td>Zampro</td>
<td>S</td>
<td>40+45</td>
<td>4</td>
<td>ND</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>G</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>famoxadone + cymoxanil</td>
<td>Tanos</td>
<td>S</td>
<td>11+27</td>
<td>3</td>
<td>ND</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>F</td>
<td>NC</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>fenamidine</td>
<td>Reason</td>
<td>S</td>
<td>11</td>
<td>14</td>
<td>ND</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>P</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>P</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>fixed copper 4</td>
<td>(various)</td>
<td>M</td>
<td>1</td>
<td>P</td>
<td>F</td>
<td>F</td>
<td>P</td>
<td>F</td>
<td>P</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>ND</td>
</tr>
<tr>
<td>fluopicolide</td>
<td>Presidio</td>
<td>G</td>
<td>43</td>
<td>2</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>P</td>
<td>NC</td>
<td>G</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>fluopyram + trifloxystrobin</td>
<td>Luna Sensation</td>
<td>G</td>
<td>7+11</td>
<td>3</td>
<td>ND</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>G</td>
<td>ND</td>
<td>ND</td>
<td>G</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>fluopyram + pyrimethanil</td>
<td>Luna Tranquility</td>
<td>G</td>
<td>7+9</td>
<td>1</td>
<td>ND</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>G</td>
<td>ND</td>
<td>ND</td>
<td>G</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>flutriafol</td>
<td>Rhyme</td>
<td>M</td>
<td>3</td>
<td>0</td>
<td>ND</td>
<td>NC</td>
<td>NC</td>
<td>ND</td>
<td>G</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>P</td>
</tr>
<tr>
<td>fluapyroxad + pyraclostrobin</td>
<td>Priaxor</td>
<td>M</td>
<td>7+11</td>
<td>0</td>
<td>ND</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>G</td>
<td>P</td>
<td>P</td>
<td>D</td>
<td>G</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>mancozeb</td>
<td>Dithane, Koverall, Manzate, Penncozeb</td>
<td>M</td>
<td>5</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>P</td>
<td>P</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>mancozeb + fixed copper</td>
<td>Mankoxide</td>
<td>M</td>
<td>5</td>
<td>5</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>P</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
</tr>
<tr>
<td>mancozeb + azoxystralin</td>
<td>Dexter Max</td>
<td>M</td>
<td>11</td>
<td>5</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>G</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>mancozeb + zoxamide</td>
<td>Gavel</td>
<td>M</td>
<td>22</td>
<td>3</td>
<td>ND</td>
<td>NC</td>
<td>P</td>
<td>P</td>
<td>F</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
</tr>
<tr>
<td>mandipropamid + difenoconazole</td>
<td>Revus Top</td>
<td>S</td>
<td>40+3</td>
<td>1</td>
<td>ND</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>G</td>
<td>F</td>
<td>F</td>
<td>NC</td>
<td>G</td>
</tr>
<tr>
<td>mephenoxam + chlorothalonil</td>
<td>Ridomil Gold Bravo</td>
<td>S</td>
<td>4+10</td>
<td>5</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>E</td>
<td>P</td>
<td>P</td>
<td>E</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>mephenoxam + copper</td>
<td>Ridomil Gold/Copper</td>
<td>S</td>
<td>4+10</td>
<td>14</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>E</td>
<td>NC</td>
<td>NC</td>
<td>E</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>mephenoxam + mancozeb</td>
<td>Ridomil Gold MZ</td>
<td>S</td>
<td>4+10</td>
<td>5</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>G</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>myclobutanil (various)</td>
<td></td>
<td>S</td>
<td>3</td>
<td>0</td>
<td>ND</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>G</td>
<td>NC</td>
<td>NC</td>
<td>ND</td>
</tr>
<tr>
<td>oxathiapiprolin + chlorothalonil</td>
<td>Orondis Opti</td>
<td>S</td>
<td>49+M05</td>
<td>0</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>E</td>
<td>P</td>
<td>NC</td>
<td>E</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>oxathiapiprolin + mafenoxam</td>
<td>Orondis Gold</td>
<td>S</td>
<td>49+4</td>
<td>7</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>E</td>
<td>NC</td>
<td>NA</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
</tbody>
</table>

1 Efficacy ratings do not necessarily indicate a labeled use for every disease.
2 Contact control only; not systemic.
3 Biological control products consisting of a virus that attacks pathogenic bacteria.
4 Fixed copper includes: Basicop, Champ, Champion, Citcop, Copper-COUNT-N, Kocide, Nu-Cop, Super Cu, Tenn-Cop, Top Cop with Sulfur, and Tri-basic copper sulfate.
5 Streptomycin may only be used on transplants; not registered for field use.
6 Sulfur may be phytotoxic; follow label carefully.
7 Curative activity; not systemic.
8 Curative activity; systemic.
9 Systemic activated resistance.
10 Do not use on cherry tomatoes.
11 Can cause stunting on tomatoes.
12 To prevent resistance in pathogens, alternate fungicides within a group with fungicides in another group. Fungicides in the “M” group are generally considered “low risk” with no signs of resistance developing to most fungicides. “NG” indicates that the product has not been classified into a group.
13 Resistance reported in the pathogen.
TABLE 3-40. EFFICACY OF PRODUCTS FOR DISEASE CONTROL IN TOMATO (cont’d)

I. Meadows, Plant Pathologist, North Carolina State University; R. Singh, Plant Pathologist, Louisiana State University Agricultural Center

Scale: E, excellent; G, good; F, fair; P, poor; NC, no control; ND, no data.

<table>
<thead>
<tr>
<th>Active ingredient</th>
<th>Product</th>
<th>Fungicide Group</th>
<th>Preharvest Interval (days)</th>
<th>Anthracnose</th>
<th>Bacterial canker (folar)</th>
<th>Bacterial speck</th>
<th>Bacterial spot</th>
<th>Buckeye Rot</th>
<th>Early blight</th>
<th>Gray mold (Botrytis)</th>
<th>Late blight</th>
<th>Leaf mold (Fulvia fulva)</th>
<th>Powdery mildew</th>
<th>Septoria leaf spot</th>
<th>Southern blight</th>
<th>Target spot</th>
</tr>
</thead>
<tbody>
<tr>
<td>oxathiapiprolin + mandipropamid</td>
<td>Orondis Ultra</td>
<td>Fungicide Group 4</td>
<td>49+40</td>
<td>1</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>E</td>
<td>NC</td>
<td>NC</td>
<td>E</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>penthiopyrad</td>
<td>Fontelis</td>
<td>7</td>
<td>0</td>
<td>ND</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>G</td>
<td>F</td>
<td>NC</td>
<td>ND</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>PCNB</td>
<td>Blocker</td>
<td>14</td>
<td>NA</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
</tr>
<tr>
<td>polyoxin D zinc salt</td>
<td>Ph-D: OSO 5% SC</td>
<td>19</td>
<td>0</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>F</td>
<td>F</td>
<td>ND</td>
<td>ND</td>
<td>F</td>
<td>ND</td>
<td>NC</td>
<td>F</td>
</tr>
<tr>
<td>propamocarb</td>
<td>Previcur Flex</td>
<td>28</td>
<td>5</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>P</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>pydiflumetofen + fludioxonil</td>
<td>Miravis Prime</td>
<td>7+12</td>
<td>0</td>
<td>ND</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>E</td>
<td>ND</td>
<td>NC</td>
<td>ND</td>
<td>E</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>pyraclostrobin</td>
<td>Cabrio</td>
<td>11</td>
<td>0</td>
<td>ND</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>E</td>
<td>E</td>
<td>P</td>
<td>F</td>
<td>NC</td>
<td>E</td>
<td>G</td>
<td>F</td>
</tr>
<tr>
<td>pyrimethanil</td>
<td>Scala</td>
<td>9</td>
<td>1</td>
<td>ND</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>F</td>
<td>NC</td>
<td>ND</td>
<td>ND</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
</tr>
<tr>
<td>streptomycin</td>
<td>Agri-Mycin 17, Ag-Streptomycin, Harbour</td>
<td>25</td>
<td>0</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>sulfur</td>
<td>(various)</td>
<td>M</td>
<td>0</td>
<td>ND</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>tetraconazole</td>
<td>Mettle</td>
<td>3</td>
<td>0.5</td>
<td>ND</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>G</td>
<td>ND</td>
<td>NC</td>
<td>ND</td>
<td>E</td>
<td>G</td>
<td>ND</td>
<td>G</td>
</tr>
<tr>
<td>zinc dimethyldithiocarbamate</td>
<td>Ziram</td>
<td>M</td>
<td>7</td>
<td>ND</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>F</td>
<td>NC</td>
<td>ND</td>
<td>NC</td>
<td>ND</td>
<td>F</td>
<td>NC</td>
<td>NC</td>
</tr>
</tbody>
</table>

1 Efficacy ratings do not necessarily indicate a labeled use for every disease.
2 Contact control only; not systemic.
3 Biological control products consisting of a virus that attacks pathogenic bacteria.
4 Fixed copper include: Basicop, Champ, Champion, Citcop, Copper-Count-N, Kocide, Nu-Cop, Super Cu, Tenn-Cop, Top Cop with Sulfur, and Tri-basic copper sulfate.
5 Streptomycin may only be used on transplants; not registered for field use.
6 Sulfur may be phytotoxic; follow label carefully.
7 Curative activity; not systemic.
8 Curative activity; systemic.
9 Systemic activated resistance.
10 Do not use on cherry tomatoes.
11 Can cause stunting on tomatoes.
12 To prevent resistance in pathogens, alternate fungicides within a group with fungicides in another group. Fungicides in the “M” group are generally considered “low risk” with no signs of resistance developing to most fungicides. “NG” indicates that the product has not been classified into a group.
13 Resistance reported in the pathogen.
TABLE 3-41. EXAMPLE SPRAY PROGRAM FOR FOLIAR DISEASE CONTROL IN FRESH-MARKET TOMATO PRODUCTION

I. Meadows, Plant Pathologist, North Carolina State University; R. Singh, Plant Pathologist, Louisiana State University Agricultural Center

<table>
<thead>
<tr>
<th>Week</th>
<th>Program 1</th>
<th>Program 2</th>
<th>Program 3</th>
<th>Program 4 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>mancozeb (M) + copper (M) + Actigard (21)</td>
</tr>
<tr>
<td>2</td>
<td>mancozeb (M) + copper (M) + Actigard (21)</td>
</tr>
<tr>
<td>3</td>
<td>mancozeb (M) + Inspire Super (3+9) + Actigard (21)</td>
<td>mancozeb (M) + Priaxor (7+11) + Actigard (21)</td>
<td>mancozeb (M) + Aprovia Top (7+3) OR Luna Tranquility (7+9) + Actigard (21)</td>
<td>mancozeb (M) + strobilurin ^ 1 (11) + Actigard (21)</td>
</tr>
<tr>
<td>4</td>
<td>mancozeb (M) + copper (M) + Actigard (21)</td>
</tr>
<tr>
<td>5</td>
<td>mancozeb (M) + Fonitelis (7) OR Endura (7) + Actigard (21)</td>
<td>mancozeb (M) + Switch (9+12) + Actigard (21)</td>
<td>mancozeb (M) + Aprovia Top (7+3) OR Luna Tranquility (7+9) + Actigard (21)</td>
<td>mancozeb (M) + Fonitelis (7) OR Endura (7) + Actigard (21)</td>
</tr>
<tr>
<td>6</td>
<td>mancozeb (M) + copper (M) + Actigard (21)</td>
</tr>
<tr>
<td>7</td>
<td>mancozeb (M) + Inspire Super (3+9) + Actigard (21)</td>
<td>mancozeb (M) + Priaxor (7+11) + Actigard (21)</td>
<td>mancozeb (M) + Aprovia Top (7+3) OR Luna Tranquility (7+9) + Actigard (21)</td>
<td>mancozeb (M) + strobilurin ^ 1 (11) + Actigard (21)</td>
</tr>
<tr>
<td>8</td>
<td>mancozeb (M) + copper (M) + Actigard (21)</td>
</tr>
</tbody>
</table>

BEFORE HARVEST (weeks 1 to 8)

FOR EARLY BLIGHT:
- Use strobilurins (e.g., Actigard, Endura) when early blight is a concern.
- For severe early blight pressure, consider using strobilurins + copper (mancozeb) or strobilurins + mancozeb.

FOR LATE BLIGHT:
- Use a rotation of fungicides to prevent the development of resistance.
- Consider using fungicides like fungusol and copper oxychloride (mancozeb).

FOR LATE SEASON PLANTINGS:
- If late blight is in the area, consider chlorothalonil for late blight control.

Program 1
- Use mancozeb + copper (M) + Chlorothalonil for disease control.

Program 2
- For late blight, use mancozeb (M) + copper (M) + Actigard (21).

Program 3
- Use a combination of Actigard, Endura, and Aprovia Top for disease control.

Program 4
- Use a combination of strobilurins and copper (mancozeb) for disease control.

DURING HARVEST (weeks 9 to 15)

- **For late blight:** Use a combination of mancozeb (M) + copper (M) + chlorothalonil (M).
- **For early blight:** Use mancozeb (M) + copper (M) + Actigard (21).

1. For late season plantings: If late blight is in the area, consider chlorothalonil for late blight control.
2. For late season plantings: If late blight is in the area, consider chlorothalonil for late blight control.
3. Continue early blight program or use Revus Top if early blight pressure is high for weeks 11-14.

TURNIP GReENS SEE GREENS AND LEAFY BRASSICAS

TURNIP ROOTS SEE ROOT VEGETABLES

WATERMELONS SEE CUCURBITS

TABLE 3-42. NEMATODE CONTROL IN VEGETABLE CROPS

J. Desaeger, Nematologist, University of Florida

Crop losses due to nematodes can be avoided or reduced by using the following management tactics.

1. Practice crop rotation using poor or non-host (cover) crops.
2. Plow out and expose roots immediately after the last harvest.
3. Plow or disk the field two to four times before planting.
4. Use nematode-free planting material.
5. Sample soil and have it assayed for nematodes, preferably at the end of each crop cycle. There is a fee for each sample. Ship sample via DHL, FedEx, or UPS to: State Agency.
6. Where warranted, fumigate, or use other nematicides according to guidelines listed on the label. There is a fee for each sample. Sample soil and have it assayed for nematodes, preferably at the end of each crop cycle. There is a fee for each sample. Ship sample via DHL, FedEx, or UPS to: State Agency.
7. For in-row application, insert chisels 6 to 8 inches deep and throw a high, wide bed up over it; do not rework rows after fumigating. In deep sand soils, deep shanking (up to 18 inches deep) may give better results.
8. For broadcast treatments, insert chisels 6 to 8 inches deep, and space chisels 12 inches apart for most fumigants; use 5-inch spacing for Vapam.

Spacing

<table>
<thead>
<tr>
<th>Your Row Spacing (inches)</th>
<th>Conversion Factor</th>
<th>Your Row Spacing (inches)</th>
<th>Conversion Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>1.67</td>
<td>42</td>
<td>0.952</td>
</tr>
<tr>
<td>26</td>
<td>1.54</td>
<td>44</td>
<td>0.909</td>
</tr>
<tr>
<td>28</td>
<td>1.43</td>
<td>46</td>
<td>0.870</td>
</tr>
<tr>
<td>30</td>
<td>1.33</td>
<td>48</td>
<td>0.833</td>
</tr>
<tr>
<td>32</td>
<td>1.25</td>
<td>5 f</td>
<td>0.667</td>
</tr>
<tr>
<td>34</td>
<td>1.18</td>
<td>6 f</td>
<td>0.566</td>
</tr>
<tr>
<td>36</td>
<td>1.11</td>
<td>7 f</td>
<td>0.476</td>
</tr>
<tr>
<td>38</td>
<td>1.05</td>
<td>8 f</td>
<td>0.417</td>
</tr>
<tr>
<td>40</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For example, if 10 gallons per acre are used on 40-inch rows, for 36-inch rows, it will take 11.1 gallons to treat an acre.

CAUTION: Read labels carefully. Some products have restrictive crop rotations.

This will be a guide to the amount of material to purchase for the acreage you want to treat.
FUMIGANTS

New labels require extensive risk mitigation measures including fumigant management plans (FMPs), buffer restrictions, Worker Protection Safety (WPS) standards and other measures. Details are on the labels and see http://www2.epa.gov/soil-fumigants. Some fumigants are registered on many vegetable crops but with crop- or soil-type-specific rates; others are registered for specific crops and/or in certain states only. Follow all labels carefully. The label is the law.

TABLE 3-43. EFFICACY OF FUMIGANTS OR FUMIGANT COMBINATIONS FOR MANAGING SOILBORNE NEMATODES, DISEASES, AND WEEDS

<table>
<thead>
<tr>
<th>Product</th>
<th>Rate per Treated Acre</th>
<th>Volume (gal)</th>
<th>Weight (lb)</th>
<th>Nematodes</th>
<th>Disease</th>
<th>Nutsedge</th>
<th>Weeds: Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telone II (1,3-D)</td>
<td>15 to 27</td>
<td>153 to 275</td>
<td>++++</td>
<td>+</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Telone EC</td>
<td>9 to 24 (4)</td>
<td>91 to 242 (4)</td>
<td>++++</td>
<td>+</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Telone C17 (1,3-D + chloropicrin)</td>
<td>32.4 to 42</td>
<td>343 to 445</td>
<td>++++</td>
<td>+++</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Telone C35 (1,3-D + chloropicrin)</td>
<td>39 to 50</td>
<td>437 to 560</td>
<td>++++</td>
<td>++++</td>
<td>+</td>
<td>++</td>
<td></td>
</tr>
<tr>
<td>InLine (1,3-D + chloropicrin)</td>
<td>29 to 57.6 (See Label)</td>
<td>325 to 645 (See Label)</td>
<td>++++</td>
<td>++++</td>
<td>+</td>
<td>+++</td>
<td></td>
</tr>
<tr>
<td>Pic-Clor 60 (chloropicrin + 1,3-D)</td>
<td>48.6</td>
<td>588</td>
<td>++++</td>
<td>+++</td>
<td>+</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Pic-Clor 80 (chloropicrin + 1,3-D)</td>
<td>32.4 to 42</td>
<td>343 to 445</td>
<td>+++</td>
<td>++++</td>
<td>+</td>
<td>+++</td>
<td></td>
</tr>
<tr>
<td>Pic-Clor 60 EC</td>
<td>42.6</td>
<td>503</td>
<td>+++</td>
<td>+++</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Metam potassium</td>
<td>30 to 62</td>
<td>318 to 657</td>
<td>+++</td>
<td>+++</td>
<td>+</td>
<td>+++</td>
<td></td>
</tr>
<tr>
<td>Metam sodium</td>
<td>37.5 to 75</td>
<td>379 to 758</td>
<td>+++</td>
<td>+++</td>
<td>+</td>
<td>+++</td>
<td></td>
</tr>
<tr>
<td>Chloropicrin + MS</td>
<td>19.5 to 31.5 + 37.5 to 75</td>
<td>275 to 444 + 379 to 758</td>
<td>+++</td>
<td>++++</td>
<td>++</td>
<td>+++</td>
<td></td>
</tr>
<tr>
<td>Chloropicrin</td>
<td>48.6</td>
<td>150 to 350</td>
<td>++</td>
<td>++++</td>
<td>+</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Tri-Pic 100</td>
<td>8 to 24</td>
<td>100 to 300</td>
<td>+</td>
<td>++++</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Dominus (allyl isothiocyanate)</td>
<td>25 to 40 (4)</td>
<td>212 to 340 (4)</td>
<td>++</td>
<td>+++</td>
<td>+</td>
<td>+++</td>
<td></td>
</tr>
</tbody>
</table>

1 Fumigants with lower efficacy against weeds may require a complementary herbicide or hand-weeding program, although use of virtually impermeable film (VIF) or impermeable film (TIF) may increase weed control, particularly with Telone C35 or Paladin. Refer to the Herbicide Recommendation section of this guide for directions pertaining to herbicide applications. To prevent phytotoxicity, soil should be undisturbed and unplanted for 7- to 14-days after Telone application. However, the planting interval depends upon soil temperature and moisture. Telone can persist more than 21 days under cool or wet soil conditions.

2 Rates can sometimes be reduced if products are applied with VIF or TIF.

3 Product is formulated for application through drip lines under a plastic mulch; efficacy is dependent on good distribution of the product in the bed profile.

4 Labelled rates are per broadcast-equivalent acre, NOT per treated acre.

5 Metam potassium can be Metam KLR, K-Pam, Sectagon K54 or other registered formulations, and should be used in soils with high sodium content. Metam sodium can be Vapam, Sectagon 42, Metam CLR or other registered formulations.

6 Dominus is registered but there is limited experience with the product through University or independent trials in our region; growers may want to consider this on an experimental basis. Planting intervals 10 days. The active ingredient allyl isothiocyanate is like the active ingredient in metam sodium products (methyl isothiocyanate) and is likely to behave in a similar manner with a similar pest control profile.
Nematodes are best managed through an integrated program (IPM). Key management options may include securing advisory/predictive soil samples, crop rotation, fallow periods, host resistance, soil amendments, flooding, soil solarization, suppressive cover crops, and other options.

<table>
<thead>
<tr>
<th>Material (Product)</th>
<th>Vegetable Crop</th>
<th>Application Method</th>
<th>Rate/Acre</th>
<th>Rate/1000 Ft Row</th>
<th>Schedule and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ethoprop (Mocap 1G)</td>
<td>Bean (snap & lima)</td>
<td>Band</td>
<td>13 to 20 lb</td>
<td>0.9 to 1.4 lb</td>
<td>Do not place in-furrow or allow granules to contact seed. Incorporate 2 to 4" deep in 12" to 15" band, at planting. Use higher rates for higher nematode populations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Broadcast</td>
<td>40 to 54 lb</td>
<td>N/A</td>
<td>Do not place in-furrow or allow granules to contact seed. Incorporate 2 to 4" deep no more than 3 days before planting. Use higher rates for higher nematode populations.</td>
</tr>
<tr>
<td>ethoprop (Mocap 1G)</td>
<td>Cabbage</td>
<td>Band</td>
<td>13 lb</td>
<td>0.9 lb</td>
<td>Do not place in-furrow or allow granules to contact seed. Incorporate 2 to 4" deep in 15" band at planting.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Broadcast</td>
<td>34 lb</td>
<td>N/A</td>
<td>Do not place in-furrow or allow granules to contact seed. Incorporate 2 to 4" deep no more than 1 week before planting.</td>
</tr>
<tr>
<td>ethoprop (Mocap 1G)</td>
<td>Corn (field and sweet)</td>
<td>Band</td>
<td>—</td>
<td>0.75 to 1.0 lb</td>
<td>Incorporate 2 to 4" deep in 12 to 15" band.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Broadcast</td>
<td>40 lb</td>
<td>N/A</td>
<td>Incorporate 2 to 4" deep no more than 3 days before, to at planting.</td>
</tr>
<tr>
<td>ethoprop (Mocap 1G)</td>
<td>Cucumber</td>
<td>Band</td>
<td>13 lb</td>
<td>2.1 lb</td>
<td>Do not place in-furrow or allow granules to contact seed. Incorporate 2 to 4" deep in 12 to 15" band (7 ft row spacing) at planting.</td>
</tr>
<tr>
<td>ethoprop (Mocap 1G)</td>
<td>Potatoes</td>
<td>Band</td>
<td>20 lb</td>
<td>1.4 lb</td>
<td>For suppression of stubby root nematode populations. Incorporate 2 to 4" deep; Band should be 12" to 15" wide (36" row spacing) at planting; do not apply once seedlings have begun to emerge.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Broadcast</td>
<td>40 to 60 lb</td>
<td>N/A</td>
<td>For suppression of moderate to heavy stubby root nematode populations; apply within 2 wk before planting; do not apply once seedlings have begun to emerge.</td>
</tr>
<tr>
<td>oxamyl (Vydate L)</td>
<td>Sweetpotato</td>
<td>Band only</td>
<td>20 to 26 lb</td>
<td>1.6 to 2.1 lb</td>
<td>Incorporate 2 to 4" deep in centered 12 to 15" band (at least 42" row spacing) 2 to 3 wk before planting. Use no more than one application per season.</td>
</tr>
<tr>
<td>oxamyl (Vydate C-LV)</td>
<td>Potatoes</td>
<td>Band</td>
<td>63.9 fl. oz</td>
<td>4.4 fl. oz</td>
<td>For suppression of stubby root nematode populations. Incorporate 2 to 4" deep; Band should be 12' wide (36" row spacing) at planting or before crop emergence.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Broadcast</td>
<td>1 to 1.5 gal</td>
<td>N/A</td>
<td>For suppression of moderate to heavy stubby root nematode populations; apply and immediately incorporate no more than 2 wk before planting or before crop emergence.</td>
</tr>
<tr>
<td>oxamyl (Vydate C-LV)</td>
<td>Sweetpotato</td>
<td>Band only</td>
<td>63.5 to 85.9 fl. oz</td>
<td>5.1 to 6.9 fl. oz.</td>
<td>Incorporate 2 to 4" deep in centered 12 to 15" band (at least 42" row spacing) 2 to 3 wk before planting. Use no more than one application per season.</td>
</tr>
<tr>
<td>fluopyram (Velum Prime)</td>
<td>Carrot, Cucumber, Canta-lope, Honeydew melon, Watermelon, Squash, Pumpkin, Eggplant, Pepper, (bell and non-bell), Sweet-potatoes, Tomatoes</td>
<td>Preplant Foliar, Drip/soil injection; Chemigation In-furrow</td>
<td>See label</td>
<td>—</td>
<td>Note: Vydate L is labeled for these crops to manage nematodes and certain insects. However, the label varies by crop, method of application and state. Therefore, follow the label carefully for the best method, rate, and timing.</td>
</tr>
<tr>
<td>fluopyram (Velum Prime)</td>
<td>Potatoes</td>
<td>Foliar ground; Chemigation Aerial; At-plant In-furrow</td>
<td>See label</td>
<td>—</td>
<td>Note: Vydate C-LV is labeled for potatoes to manage nematodes and certain insects. However, the label varies by crop, method of application, timing, crop rotation program, and state. Therefore, follow the label carefully for the best method, rate, and timing.</td>
</tr>
<tr>
<td>fluopyram (Velum Prime)</td>
<td>Brassica (Cole) Leafy Vegetables (group 5): Cucurbits (group 9): Fruiting vegetables (tomato subgroup)</td>
<td>Chemigation</td>
<td>6.5 to 6.84 fl oz</td>
<td>—</td>
<td>See label for specific labeled crops within the subgroups. Chemigation into root zone through low-pressure drip, trickle, micro-sprinkler, or equivalent equipment. Can be applied the day of harvest. Do not make more than 2 sequential applications with this product or any other product in FRAC group 7. Velum is also labeled for powdery mildew control. The first foliar fungicide application after Velum Prime should be a product from a different FRAC group.</td>
</tr>
<tr>
<td>fluopyram (Velum Prime)</td>
<td>Potato</td>
<td>Chemigation</td>
<td>6.5 to 6.84 fl oz</td>
<td>—</td>
<td>Apply specified dosage using overhead chemigation equipment. May offer suppression only if root-knot pressure is high and other methods of suppression should also be employed. Velum Prime is also registered to suppress early blight (Alternaria solani) and suppress white mold (Sclerotinia sclerotiorum).</td>
</tr>
<tr>
<td>fluopyram (Velum Prime)</td>
<td>Sweetpotato</td>
<td>Chemigation</td>
<td>6.0 to 6.84 fl oz</td>
<td>—</td>
<td>Apply as post-planting drench, or hill drench. May offer suppression only if root-knot pressure is high and other methods of suppression should also be employed. Velum Prime is also registered to sup-press white mold (Sclerotinia sclerotiorum).</td>
</tr>
</tbody>
</table>
DISEASE CONTROL

Schedule and Remarks
See label
Product
140°F, 4 to 8 hr for Vegetable Crop
— See soil fumigants table and check soil fumigation.
N/A
Solarization
Products registered for field use may be used on greenhouse crops (but not transplants) unless excluded on the label. Always check the label before applying a product.
—
Podosphaera xanthii
—
4.0 to 5.0 fl oz
Rate/1000 Ft Row
4.5 to 6 fl oz
Place granules in 4-5" band over the open seed furrow and incorporate
Close greenhouse during hottest and sunniest part of summer for Sweet corn
Rate/Acre
Remove all debris and heat-sensitive materials. Keep house and
NA
See label
—
Apply and incorporate 6 to 8" deep at least 7 days before transplanting.
—
—
—
Apply and incorporate 6 to 8" deep at least 7 days before transplanting. Irrigate with 0.5 to 1.0 in. of water 2 to 5 days after application.
Table 2 in label specifies rate based on row spacing. Incorporate 6 to 8" deep at least 7 days before transplanting. Irrigate with 0.5 to 1.0 in. water 2 to 5 days after application.
Table 3 in label specifies rate based on bed width. Uniformly wet entire bed width and root zone 6 to 8 in. deep at least 7 days before transplanting. Irrigate with 0.5 to 1.0" of water 2 to 5 days after application.
Caution: At the time this table was prepared, the entries were believed to be useful and accurate, however, labels change rapidly, and errors are possible, so the user must follow all directions on the pesticide container. See product labels for application limits per crop/season.
Information in the following table must be used in the context of a total disease control program. For example, many diseases are controlled using resistant varieties, crop rotation, sanitation, seed treatment, and cultural practices. Always use top-quality seed or plants obtained from reliable sources. Seeds are ordinarily treated by the seed producer for the control of seed decay and damping-off. Most foliar diseases can be reduced or controlled by maintaining relative humidity below 90%, by keeping the air circulating in the house with a large overhead polytube, and by avoiding water on the leaves.
Caution: The risk of pesticide exposure in the greenhouse is high. Use protective clothing laundered daily or after each exposure. Ventilate during application and use appropriate personal protective equipment (PPE).

GREENHOUSE VEGETABLE CROP DISEASE CONTROL

Note: Follow manufacturer’s directions on label in all cases.

Caution: At the time this table was prepared, the entries were believed to be useful and accurate, however, labels change rapidly, and errors are possible, so the user must follow all directions on the pesticide container. See product labels for application limits per crop/season.
Information in the following table must be used in the context of a total disease control program. For example, many diseases are controlled using resistant varieties, crop rotation, sanitation, seed treatment, and cultural practices. Always use top-quality seed or plants obtained from reliable sources. Seeds are ordinarily treated by the seed producer for the control of seed decay and damping-off. Most foliar diseases can be reduced or controlled by maintaining relative humidity below 90%, by keeping the air circulating in the house with a large overhead polytube, and by avoiding water on the leaves.
Caution: The risk of pesticide exposure in the greenhouse is high. Use protective clothing laundered daily or after each exposure. Ventilate during application and use appropriate personal protective equipment (PPE).

TABLE 3-44. MANAGEMENT OF SOILBORNE NEMATODES WITH NON-FUMIGANT NEMATICIDES (cont’d)

A. Hajihassani, Nematoologist, University of Georgia; J. Desaeger, Nematoologist, University of Florida; A. Gorny, Nematoologist, North Carolina State University

Nematodes are best managed through an integrated program (IPM). Key management options may include securing advisory/predictive soil samples, crop rotation, fallow periods, host resistance, soil amendments, flooding, soil solarization, suppressive cover crops, and other options.

<table>
<thead>
<tr>
<th>Material (Product)</th>
<th>Vegetable Crop</th>
<th>Application Method</th>
<th>Rate/Acre</th>
<th>Rate/1000 Ft Row</th>
<th>Schedule and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>flusulfone (Nimitz)</td>
<td>Cucurbits (group 9); Fructing Vegetables (groups 8-10); Brassica Leafy Vegetables (group 5)</td>
<td>Broadcast soil</td>
<td>3.5 to 7.0 pt</td>
<td>N/A</td>
<td>Apply and incorporate 6 to 8" deep at least 7 days before transplanting. Irrigate with 0.5 to 1.0 in. of water 2 to 5 days after application.</td>
</tr>
<tr>
<td>terbufos (Counter 20G)</td>
<td>Sweet corn</td>
<td>Band</td>
<td>—</td>
<td>4.5 to 6 fl oz</td>
<td>Place granules in 4-5" band over the open seed furrow and incorporate thoroughly into top 1" of the soil. Apply no more than 6.5 lb. per acre.</td>
</tr>
<tr>
<td>spirotetramat (Movento)</td>
<td>Brassica (Cole) Leafy Vegetables (groups 5)</td>
<td>Foliar Chemigation</td>
<td>—</td>
<td>4.0 to 5.0 fl oz</td>
<td>Note: Movento is labeled for these crops to suppress or control nematode and insect pests. Must be tank-mixed with a spray adjuvant/additive to maximize leaf uptake. Follow the label carefully for the application method, interval, and timing.</td>
</tr>
</tbody>
</table>

TABLE 3-45. GREENHOUSE DISEASE CONTROL FOR VARIOUS VEGETABLE CROPS

R. A. Melanson, Extension Plant Pathologist, Mississippi State University; A. Keinath, Plant Pathologist, Clemson University; A. Cato, Extension Horticulture IPM, University of Arkansas; I. Meadows, Extension Plant Pathologist, North Carolina State University

<table>
<thead>
<tr>
<th>Crop/Disease</th>
<th>Product 1</th>
<th>FRAC</th>
<th>Rate of Material</th>
<th>Minimum Days</th>
<th>Harv.</th>
<th>Reentry</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>GREENHOUSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sanitation</td>
<td>Solarization</td>
<td>NA</td>
<td>140°F, 4 to 8 hr for 7 days</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Close greenhouse during hottest and sunniest part of summer for at least one week. Greenhouse must reach at least 140°F each day. Remove debris, heat sensitive materials, and keep greenhouse and contents moist. Will not control pests 0.5 inches or deeper in soil. Not effective against tobacco mosaic virus (TMV).</td>
</tr>
<tr>
<td>Added heat</td>
<td>NA</td>
<td>180°F for 30 min</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Remove all debris and heat-sensitive materials. Keep house and contents warm.</td>
<td></td>
</tr>
</tbody>
</table>

SOIL

Soilborne diseases and weeds | — | See soil fumigants table and check soil fumigant label if registered for greenhouse use. | — | — | See soil fumigants table and check soil fumigant label if registered for greenhouse use. |

Preplant soil treatment.

1 Products registered for field use may be used on greenhouse crops (but not transplants) unless excluded on the label. Always check the label before applying a product. Additional products not prohibited for greenhouse use on basil, cucurbits, and lettuce not listed in this table are available.

2 Former names of diseases and pathogens listed in this table that may be still be listed on fungicide labels are as follows: Acidovorax citrulli (formerly Acidovorax avenae subsp. citrulli); Alternaria solani (formerly A. solani and A. tomato philia); Athelia rolfsii (formerly Sclerotium rolfsii); Golovinomyces spp. (formerly Erysiphe spp.) or Golovinomyces cichoracearum (formerly Erysiphe cichoracearum); Fulvia fulva (formerly Cladosporium fulvum and Passalora fulva); Botrytis cinerea (formerly Phoma exigua); Plectosphaerella cucumerina (formerly Plectosporium tabacinum); Podosphaera xanthii (formerly Sphaerotheca fuliginea); Stagonosporopsis spp. (formerly Didymella); Xanthomonas leaf spot (formerly bacterial leaf spot); and (Xanthomonas cucurbitae (formerly X. campestris pv. cucurbitae)).
TABLE 3-45. GREENHOUSE DISEASE CONTROL FOR VARIOUS VEGETABLE CROPS (cont’d)

<table>
<thead>
<tr>
<th>Crop/Disease</th>
<th>Product</th>
<th>FRAC</th>
<th>Rate of Material</th>
<th>Minimum Days</th>
<th>Harv.</th>
<th>Reentry</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anthracnose, Alternaria blight, bacterial blight, Botrytis, downy mildew, leaf spot, Rhizoctonia leaf blight</td>
<td>copper, fixed (various)</td>
<td>M01</td>
<td>See label</td>
<td>See label</td>
<td>See label</td>
<td>Some products are OMRI-listed. See product labels for complete application instructions, specific crop and disease labels, and greenhouse usage. Check state registration status prior to use.</td>
<td></td>
</tr>
<tr>
<td>Alternaria leaf spot (Alternaria spp.), Botrytis leaf blight (Botrytis spp.), Fusarium blight (Fusarium spp.)</td>
<td>cyprodinil + fludioxonil (Switch 62.5WG)</td>
<td>9+12</td>
<td>11 to 14 oz/acre</td>
<td>7</td>
<td>0.5</td>
<td>Not prohibited for greenhouse use. After two applications, alternate with another fungicide with a different mode of action for two applications. Do not exceed 56 oz of product per acre per year. See label for application limits of active ingredients.</td>
<td></td>
</tr>
<tr>
<td>Downy mildew (Peronospora belbahrii)</td>
<td>cyazofamid (Ranman 400SC, Segway O)</td>
<td>21</td>
<td>2.75 to 3.0 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Do not exceed 9 applications of product per crop. Alternate applications with fungicides that have a different mode of action. Do not make more than three consecutive applications before switching to products that have a different mode of action for three applications before returning to Ranman 400SC or Segway O. Do not exceed 27 fl oz of product per acre per year. See label for surfactant recommendations. Segway O is also labeled for use against Phytophthora root rot (Phytophthora sp.).</td>
<td></td>
</tr>
<tr>
<td>Alternaria leaf spot (Alternaria spp.), Botrytis leaf blight (Botrytis spp.), Fusarium blight (Fusarium spp.)</td>
<td>fludioxonil (Spirato GHN)</td>
<td>12</td>
<td>5.5 to 7 fl oz/acre</td>
<td>7</td>
<td>0.5</td>
<td>After two applications of product, alternate to a fungicide with a different mode of action for two applications. Do not exceed 28 fl oz of product per acre per year.</td>
<td></td>
</tr>
<tr>
<td>Gray mold (Botrytis cinerea), powdery mildew (Golovinomyces spp.)</td>
<td>fluopyram + trifloxystrobin (Luna Sensation)</td>
<td>7+11</td>
<td>5.0 to 7.6 fl oz/acre (powdery mildew)</td>
<td>7</td>
<td>0.5</td>
<td>Not prohibited for greenhouse use. Do not exceed 15.3 fl oz of product per acre per year. Do not apply more than 0.446 lb fluopyram or 0.25 lb trifloxystrobin per acre per year. Do not make more than two sequential applications of product or of any FRAC 7- or FRAC 11-containing fungicide before alternating with a fungicide from a different FRAC group.</td>
<td></td>
</tr>
<tr>
<td>Labels may include: Alternaricnose, Downy mildew, powdery mildew</td>
<td>hydrogen peroxide + peroxyacetic acid (OxiDate 2.0, OxiDate 5.0 ZeroTo 2.0)</td>
<td>NG</td>
<td>See label</td>
<td>0</td>
<td>See label</td>
<td>OMRI-listed. See labels for additional instructions and labeled diseases, and precautions, including those related to the use and application of metal-based chemicals. Do not store spray solution. OxiDate 2.0: Not prohibited for greenhouse use. OxiDate 5.0: Not prohibited for greenhouse use. Determine if product can be used safely on greenhouse crops prior to application.</td>
<td></td>
</tr>
<tr>
<td>Downy mildew (P. belbahrii)</td>
<td>mandipropamid (Micora)</td>
<td>40</td>
<td>8.0 fl oz/acre (0.9 fl oz/5,000 sq ft)</td>
<td>1</td>
<td>4 hr</td>
<td>For basil transplants grown in enclosed greenhouses with permanent flooring for resale to consumers. Do not make more than two applications per crop before switching to a fungicide with a different mode of action. Do not apply within 1 day of shipping. See label for additional restrictions and recommendations.</td>
<td></td>
</tr>
<tr>
<td>Labels may include: Downy mildew, root rots</td>
<td>phosphonates (monoo- and dibasic salts of phosphites, phosphorous acid, potassium phosphate) (various)</td>
<td>P07</td>
<td>See label</td>
<td>See label</td>
<td>See label</td>
<td>See product labels for complete application instructions, labeled diseases, restrictions, and crop and greenhouse usage. Check state registration status prior to use.</td>
<td></td>
</tr>
<tr>
<td>Labels may include: Botrytis, downy mildew, powdery mildew</td>
<td>potassium bicarbonate (Carb-O-Nator, MilStop)</td>
<td>NC</td>
<td>2.5 to 5.0 lb/100 gal (Carb-O-Nator)</td>
<td>0</td>
<td>4 hr (Carb-O-Nator)</td>
<td>OMRI-listed. Do not store unused spray solution. See labels for additional labeled diseases and instructions. Carb-O-Nator: Final spray solution should not be below pH 7.0. Some tank-mixes may be incompatible and may cause phytotoxicity. MilStop: Do not exceed 0.5 lb of product per 4,350 sq ft or 1.15 lb product per 10,000 sq ft per application. Do not adjust pH after mixing. Do not mix with other soluble pesticide or fertilizers.</td>
<td></td>
</tr>
<tr>
<td>Powdery mildew (Golovinomyces spp.)</td>
<td>trifloxystrobin (Flint Extra)</td>
<td>11</td>
<td>3.8 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Not prohibited for greenhouse use. Do not exceed 7.6 fl oz per acre per year. Do not apply more than 2 sequential applications of another FRAC 11-containing fungicide before rotating with fungicide from different FRAC group. Minimum interval between applications is 7 days.</td>
<td></td>
</tr>
</tbody>
</table>

1. Products registered for field use may be used on greenhouse crops (but not transplants) unless excluded on the label. Always check the label before applying a product. Additional products not prohibited for greenhouse use on basil, cucurbit, and lettuce not listed in this table are available.

2. Former names of diseases and pathogens listed in this table may be still be listed on fungicide labels are as follows: *Acidovorax atrovenet,* formerly *Acidovorax atrovirens* subsp. *citrius,* *Alternaria* *linaris,* formerly *A. solani* and *A. tomatophila,* *Athelia rolfsii* (formerly *Sclerotium rolfsii*); *Golovinomyces* spp. (formerly *Erysiphe* spp.) or *Golovinomyces cichoracearum* (formerly *Erysiphe cichoracearum*); *Fulvia fulva* (formerly *Cladosporium fulvum* and *Passalora fulva*); *Boeremia exigua* (formerly *Phoma exigua*); *Plectosphaera cucumerina* (formerly *Plectosporum tabacinum*); *Podosphaera xanthii* (formerly *Sphaerotheca fuliginea*); *Stagonosporopsis* spp. (formerly *Didymella*); *Xanthomonas* leaf spot (formerly *Xanthomonas campestris pv. cucurbitae*); *Xanthomonas* leaf spot (formerly *X. campestris pv. cucurbitae*).
TABLE 3-45. GREENHOUSE DISEASE CONTROL FOR VARIOUS VEGETABLE CROPS (cont’d)

<table>
<thead>
<tr>
<th>Crop Disease</th>
<th>Product 1</th>
<th>FRAC</th>
<th>Rate of Material</th>
<th>Minimum Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUCURBITS – TRANSPLANTS PRODUCTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternaria leaf blight (Alternaria cucumerina), Alternaria leaf spot (A. alternata), anthracnose (Colletotrichum orbiculare), Cercospora leaf spot (C. citrullina), downy mildew (Pseudoperonospora cubensis), gymmy stem blight (Stagonosporopsis spp.), yellow speck (Folletia australasiensis)</td>
<td>azoxystrbin + difenoconazole (Quadris Top)</td>
<td>11+7</td>
<td>0.6 to 1.0 lb/acre (1.5 to 2.0 lb/acre)</td>
<td>—</td>
</tr>
<tr>
<td>CUCURBITS – AFTER TRANSPLANTING IN A GREENHOUSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternaria leaf blight (A. cucumerina), Alternaria leaf spot (A. alternata), anthracnose (C. orbiculare), Cercospora leaf spot (C. citrullina), downy mildew (P. cubensis), gymmy stem blight (Stagonosporopsis spp.), yellow speck (Folletia australasiensis), Phoma blight (P. exigua), Phylosticta leaf spot (P. cucurbitacearum), Plectosporium blight (P. cucurbitacearum), powdery mildew (Golovinomyces cucumerina), scab (Cladosporium spp.), Septoria leaf blight (S. cucurbitacearum)</td>
<td>azoxystrbin + difenoconazole (Quadris Top)</td>
<td>11+3</td>
<td>12 to 14 fl oz/acre</td>
<td>1</td>
</tr>
</tbody>
</table>

1. Products registered for field use may be used on greenhouse crops (but not transplants) unless excluded on the label. Always check the label before applying a product. Additional products not prohibited for greenhouse use on basil, cucurbits, and lettuce not listed in this table are available.

2. Former names of diseases and pathogens listed in this table that may be still be listed on fungicide labels are as follows: Acidovorax citrulli (formerly Acidovorax avenae subsp. citrulli); Alternaria linariæ (formerly A. solani and A. tomatophila); Athelia rolfsii (formerly Sclerotium rolfsii); Golovinomyces spp. (formerly Erysiphe spp.); Golovinomyces cucumerinaceus (formerly Erysiphe cucumerinae); Fulvia fulva (formerly Cladosporium fulvum and Passalora fulva); Boeremia exigua (formerly Phoma exigua); Plectosphaerella cucumerina (formerly Plectosporium tabacinum); Podosphaera xanthii (formerly Sphaerotheca fuliginea); Stagonosporopsis spp. (formerly Didymella); Xanthomonas leaf spot (formerly bacterial leaf spot); and (Xanthomonas cucurbitae (formerly X. campestris pv. cucurbitae)).
TABLE 3-45. GREENHOUSE DISEASE CONTROL FOR VARIOUS VEGETABLE CROPS (cont’d)

<table>
<thead>
<tr>
<th>Crop/Disease</th>
<th>Product</th>
<th>FRAC</th>
<th>Rate of Material</th>
<th>Minimum Days</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUCURBITS – AFTER TRANSPLANTING IN A GREENHOUSE (CONT’D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Powdery mildew</td>
<td>cyflufenamid (Tornado)</td>
<td>U06</td>
<td>3.4 oz/acre</td>
<td>0</td>
<td>4 hr</td>
</tr>
<tr>
<td>Downy mildew (P. cubensis)</td>
<td>cymoxanil (Curzate 60DF)</td>
<td>27</td>
<td>3.2 to 5.0 oz/acre</td>
<td>3</td>
<td>0.5</td>
</tr>
<tr>
<td>Alternaria leaf blight and spot (A. cucumerina and A. alternata), gummy stem blight (Stagonosporopsis spp.), powdery mildew (P. xanthii, G. cichoracearum)</td>
<td>cyprodinil + fludioxonil (Switch 62.5WG)</td>
<td>9+12</td>
<td>11 to 14 oz/acre</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>Alternaria leaf blight and spot (A. cucumerina and A. alternata), anthracnose (C. orbiculare), Cercospora leaf spot (C. citrullina), gummy stem blight (Stagonosporopsis spp.), powdery mildew (P. xanthii, G. cichoracearum), Septoria leaf blights (S. cucubitacearum)</td>
<td>difenoconazole + cyprodinil (Inspire Super)</td>
<td>3+9</td>
<td>0.37 to 0.46 fl oz/1,000 sq ft</td>
<td>7</td>
<td>0.5</td>
</tr>
<tr>
<td>Alternaria leaf blight and spot (A. cucumerina and A. alternata), anthracnose (Colletotrichum spp.), downy mildew (P. cubensis)</td>
<td>famoxadone + cymoxanil (Tanos)</td>
<td>11+27</td>
<td>8 oz/acre</td>
<td>3</td>
<td>0.5</td>
</tr>
<tr>
<td>Alternaria leaf spot (A. cucumerina), downy mildew (P. cubensis)</td>
<td>fenamidine (Reason 500SC)</td>
<td>11</td>
<td>5.5 fl oz/acre</td>
<td>14</td>
<td>0.5</td>
</tr>
<tr>
<td>Gray mold (B. cinerea)</td>
<td>fenhexamid (Decree 50WDG)</td>
<td>17</td>
<td>1.5 lb/acre (stand-alone) 1.0 to 1.5 lb/acre (tank-mix)</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>Downy mildew (P. cubensis), gummy stem blight (Stagonosporopsis spp.), Phytophthora blight (P. capsici)</td>
<td>fluazinam (Lektivar 40SC, Omega 500F, Orbus 4F)</td>
<td>29</td>
<td>12 to 24 fl oz/acre</td>
<td>30</td>
<td>0.5</td>
</tr>
<tr>
<td>Alternaria leaf blight (A. cucumerina), Alternaria leaf spot (A. alternata), gummy stem blight (Stagonosporopsis spp.), powdery mildew (P. xanthii, G. cichoracearum)</td>
<td>fludioxonil (Spirato GHN)</td>
<td>12</td>
<td>5.5 to 7 fl oz/acre</td>
<td>1</td>
<td>0.5</td>
</tr>
</tbody>
</table>

1. Products registered for field use may be used on greenhouse crops (but not transplants) unless excluded on the label. Always check the label before applying a product. Additional products not prohibited for greenhouse use on basil, cucurbits, and lettuce not listed in this table are available.

2. Former names of diseases and pathogens listed in this table that may be still be listed on fungicide labels are as follows: Acidovorax citrulli (formerly Acidovorax avenue subsp. citrulli); Alternaria linariae (formerly A. solani and A. tomatophila); Atheta rolfsii (formerly Sclerotium rolfsii); Golovinomyces spp. (formerly Erysiphe spp.) or Golovinomyces cichoracearum (formerly Erysiphe cichoracearum); Fulvia fulva (formerly Cladosporium fulvum and Passalora fulva); Boeremia exigua (formerly Phoma exigua); Plectosphaerella cucumerina (formerly Plectosporium tabacinum); Podosphaera xanthii (formerly Sphaerotheca fuliginea); Stagonosporopsis spp. (formerly Didymella); Xanthomonas leaf spot (formerly bacterial leaf spot); and Xanthomonas cucurbitae (formerly X. campestris pv. cucurbitae).
TABLE 3-45. GREENHOUSE DISEASE CONTROL FOR VARIOUS VEGETABLE CROPS (cont’d)

<table>
<thead>
<tr>
<th>Crop/Disease</th>
<th>Product 1</th>
<th>FRAC</th>
<th>Rate of Material</th>
<th>Minimum Days</th>
<th>Harv.</th>
<th>Reentry</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUCURBITS – AFTER TRANSPLANTING IN A GREENHOUSE (CONT’D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternaria leaf spot (A. cucumerina), anthracnose (Colletotrichum spp.), Botrytis gray mold (B. cinerea), gummy stem blight (Stagonospora spp.1), powdery mildew (P. xanthii)</td>
<td>fluopyram + trifloxystrobin (Luna Sensation)</td>
<td>7+11</td>
<td>4.0 to 7.6 fl oz/acre (powdery mildew)</td>
<td>0</td>
<td>12</td>
<td>Not prohibited for greenhouse use. Do not exceed 27.1 fl oz of product per acre per year. Do not apply more than 0.446 lb fluopyram or 0.5 lb trifloxystrobin per acre per year. Do not make more than four applications per year. Do not make more than two sequential applications of product or of any FRAC 7- or FRAC 11-containing fungicide before alternating with a fungicide from a different FRAC group. See label for information regarding potential foliar discoloration after product application.</td>
<td></td>
</tr>
<tr>
<td>Downy mildew (P. cubensis) and Phytophthora root and fruit rots (Phytophthora spp.)</td>
<td>fosetyl-Al (Aliette WDG, Linebacker WDG)</td>
<td>P07</td>
<td>2.0 to 5.0 lb/acre</td>
<td>0.5</td>
<td>0.5 (Aliette) 1 (Linebacker)</td>
<td>Not prohibited for greenhouse use. For foliar application. Phytotoxicity may occur if products are tank-mixed with copper products, applied to plants with copper residues, or mixed with adjuvants. Do not tank-mix products with copper products. See labels for additional restrictions, season limits, and application instructions. Aliette WDG: Do not exceed seven applications per season. See label for county restrictions in some states. Linebacker WDG: Do not make more than seven applications per season. Check county registration status prior to use. See label for county restrictions in some states.</td>
<td></td>
</tr>
<tr>
<td>Labels may include: Alternaria, anthracnose, downy mildew, powdery mildew, root rots</td>
<td>hydrogen peroxide + peroxyacetic acid (OxiDate 2.0, OxiDate 5.0, ZeroTol 2.0)</td>
<td>NG</td>
<td>See label</td>
<td>0</td>
<td>See label</td>
<td>OMRI-listed. See labels for list of labeled cucurbits. See labels for additional instructions, labeled diseases, and precautions, including those related to the use and application of metal-based chemicals. Do not store spray solution. OxiDate 2.0: Not prohibited for greenhouse use. OxiDate 5.0: Not prohibited for greenhouse use. Determine if product can be used safely on greenhouse crops prior to application.</td>
<td></td>
</tr>
<tr>
<td>Labels may include: Alternaria leaf spot, anthracnose, Cercospora leaf spot, downy mildew, gummy stem blight, scab</td>
<td>mancozeb (various)</td>
<td>M03</td>
<td>See label</td>
<td>See label</td>
<td>See label</td>
<td>See product labels for complete application instructions, specific crop and disease labels, and greenhouse usage. Check state registration status prior to use.</td>
<td></td>
</tr>
<tr>
<td>Alternaria blight, Alternaria leaf spot, anthracnose, Cercospora leaf spot, gummy stem blight, scab, target leaf spot</td>
<td>mancozeb + azoxyostrobin (Dexter Max)</td>
<td>M03+11</td>
<td>2.1 to 3.2 lb/acre</td>
<td>5</td>
<td>1</td>
<td>See label for restrictions on greenhouse use. Do not apply more than one application of product of FRAC Group 11 fungicide before alternating to a fungicide with a different mode of action. Do not exceed 12.8 lb of product per acre per season. See label for application limits of active ingredients. Do not exceed four applications per year. See label for additional instructions and cautions regarding adjuvants and tank mixing.</td>
<td></td>
</tr>
<tr>
<td>Suppression: Plectosporium blight, powdery mildew</td>
<td>mancozeb + copper hydroxide (ManKocide)</td>
<td>M03+ M01</td>
<td>2 to 3 lb/acre</td>
<td>5</td>
<td>See label</td>
<td>Not prohibited for greenhouse use. Do not exceed 17.5 lb of product per acre per year. Do not apply more than 5 applications per year at the maximum application rate. Phytotoxicity may occur when spray solution has a pH of less than 6.5 or when certain environmental conditions occur.</td>
<td></td>
</tr>
<tr>
<td>Alternaria leaf spot, angular leaf spot, anthracnose, bacterial fruit blotch, Cercospora leaf spot, downy mildew, gummy stem blight, powdery mildew, scab</td>
<td>mancozeb + zoxamide (Gavel 75DF)</td>
<td>M03+ 22</td>
<td>1.5 to 2.0 lb/acre</td>
<td>5</td>
<td>2</td>
<td>Not prohibited for greenhouse use. Do not exceed 16 lb per acre per year. Do not make more than eight applications per acre per year.</td>
<td></td>
</tr>
<tr>
<td>Alternaria leaf spot, Cercospora leaf spot, downy mildew, Phytophthora root (P. capsici)</td>
<td>myclobutanil (AgriStar Sonoma 20 EW AG, AgriStar Sonoma 40WSP)</td>
<td>3</td>
<td>4.75 to 9.5 fl oz/acre (20 EW AG)</td>
<td>2.5 to 5 oz/acre (40WSP)</td>
<td>0</td>
<td>1</td>
<td>Not prohibited for greenhouse use. Do not exceed 0.6 lb myclobutanil per acre per crop. See product labels for additional instructions and restrictions. Sonoma 20EW AG: Do not exceed 46 fl oz of product per acre per crop. Sonoma 20EW AG is not registered for use in AL, AR, FL, KY, MS, OK, SC, TN, or TX. Sonoma 40WSP: Do not exceed 1.5 lb of product per acre per crop. Sonoma 40WSP is not registered for use in AL, AR, FL, GA, KY, LA, MS, OK, SC, TN, TX, or WV</td>
</tr>
</tbody>
</table>

1 Products registered for field use may be used on greenhouse crops (but not transplants) unless excluded on the label. Always check the label before applying a product. Additional products not prohibited for greenhouse use on basil, cucurbits, and lettuce not listed in this table are available.

2 Former names of diseases and pathogens listed in this table that may be still be listed on fungicide labels are as follows: Acidovorax citrulli (formerly Acidovorax avenuea subsp. citrulli) Alternaria liniariae (formerly A. solani and A. tomatophila); Athelia rolfsii (formerly Sclerotium rolfsii); Golovinomyces spp. (formerly Erysiphe spp.); or Golovinomyces cichoracearum (formerly Erysiphe cichoracearum); Fulvia fulva (formerly Cladosporium fulvum and Passalora fulva); Boeremia exigua (formerly Phoma exigua); Plectosphaerella cucumerina (formerly Plectosporium tabacinum); Podosphaera xanthii (formerly Sphaerotheca fuliginea); Stagonospora spp. (formerly Didymella); Xanthomonas leaf spot (formerly bacterial leaf spot); and (Xanthomonas cucurbitae (formerly X. campestris pv. cucurbitae).
TABLE 3-45. GREENHOUSE DISEASE CONTROL FOR VARIOUS VEGETABLE CROPS (cont’d)

<table>
<thead>
<tr>
<th>Crop/Disease</th>
<th>Product 1</th>
<th>FRAC</th>
<th>Rate of Material</th>
<th>Minimum Days</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUCURBITS – AFTER TRANSPLANTING IN A GREENHOUSE (cont’d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternaria leaf spot and blight (Alternaria spp.), gray mold (B. cinerea), gummy stem blight (Stagonosporopsis spp.), powdery mildew (P. xanthii, G. cichoracearum), Sclerotinia stem rot (S. scotorum)</td>
<td>penthiopyrad (Fonteplus)</td>
<td>7</td>
<td>0.375 to 0.5 fl oz/gal of spray per 1,360 sq ft</td>
<td>1</td>
<td>**Allowed for use in greenhouse production of edible-peel cucurbits (cucumbers, summer squash). Do not exceed 67 fl oz of product per acre per year. Make no more than two consecutive applications per season before alternating with fungicides that have a different mode of action. “Resistance in Stagonosporopsis” (gummy stem blight) is widespread.”</td>
</tr>
<tr>
<td>Labels may include: Downy mildew, root rots</td>
<td>phosphonates (monosodium and dibasic salts of phosphites, phosphorous acid, potassium phosphate) (various)</td>
<td>P07</td>
<td>See label</td>
<td>See label</td>
<td>See product labels for complete application instructions, labeled diseases, restrictions, and crop and greenhouse usage. Check state registration status prior to use.</td>
</tr>
<tr>
<td>Alternaria leaf spot, anthracnose, Botrytis, downy mildew, powdery mildew, Septoria leaf spot</td>
<td>polyoxin D zinc salt (OSO 5%SC)</td>
<td>19</td>
<td>6.5 to 13.0 fl oz/acre</td>
<td>0</td>
<td>4 hr</td>
</tr>
<tr>
<td>Labels may include: Alternaria leaf spot, anthracnose, Botrytis, downy mildew, powdery mildew, Septoria leaf spot</td>
<td>potassium bicarbonate (Carb-O-Nator, MilStop)</td>
<td>NC</td>
<td>2.5 to 5.0 lb/100 gal (Carb-O-Nator) 1.25 to 5.0 lb/100 gal (MilStop)</td>
<td>0</td>
<td>4 hr (Carb-O-Nator) 1 hr (MilStop)</td>
</tr>
<tr>
<td>Damping off and root rots (Phytophthora spp., Pythium spp.)</td>
<td>propamocarb hydrochloride (Previcur Flex)</td>
<td>26</td>
<td>See label</td>
<td>See label</td>
<td>0.5</td>
</tr>
<tr>
<td>Gray mold (B. cinerea)</td>
<td>pyrimethanil (Scala SC)</td>
<td>9</td>
<td>18 fl oz/acre</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>Powdery mildew</td>
<td>pyrifluconazole (Prolivo 300SC)</td>
<td>50 (U08)</td>
<td>4 to 5 fl oz</td>
<td>0</td>
<td>4 hr</td>
</tr>
<tr>
<td></td>
<td>sulfur (various)</td>
<td>M02</td>
<td>See label</td>
<td>See label</td>
<td>See label</td>
</tr>
</tbody>
</table>

1. Products registered for field use may be used on greenhouse crops (but not transplants) unless excluded on the label. Always check the label before applying a product. Additional products not prohibited for greenhouse use on basil, cucurbits, and lettuce not listed in this table are available.

2. Former names of diseases and pathogens listed in this table that may be still be listed on fungicide labels are as follows: Acidovorax citrulli (formerly Acidovorax avenae subsp. citrulli), Alternaria liniaeae (formerly A. solani and A. tomatophila), Athelia rolfsii (formerly Sclerotium rolfsii), Goliuronymyces spp. (formerly Erysiphe spp.) or Goliuronymyces cichoracearum (formerly Erysiphe cichoracearum); Fulvia fulva (formerly Cladosporium fulvum and Passalora fulva); Boeremia exigua (formerly Phoma exigua); Plectosphaera cucumerina (formerly Plectosporium tabacinum); Podosphaera xanthii (formerly Sphaerotheca fuliginea); Stagonosporopsis spp. (formerly Didymella); Xanthomonas leaf spot (formerly bacterial leaf spot); and (Xanthomonas cucurbiteae (formerly X. campestris pv. cucurbiteae).
TABLE 3-45. GREENHOUSE DISEASE CONTROL FOR VARIOUS VEGETABLE CROPS (cont’d)

R. A. Melanson, Extension Plant Pathologist, Mississippi State University; A. Keinath, Plant Pathologist, Clemson University; A. Cato, Extension Horticulture IPM, University of Arkansas; I. Meadows, Extension Plant Pathologist, North Carolina State University

<table>
<thead>
<tr>
<th>Crop/Disease</th>
<th>Product 1</th>
<th>FRAC</th>
<th>Rate of Material</th>
<th>Minimum Days</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Harv.</td>
<td>Reentry</td>
</tr>
</tbody>
</table>

CUCURBITS – AFTER TRANSPLANTING IN A GREENHOUSE (CONT’D)

Anthracnose (Colletotrichum spp.), gummy stem blight (Stagonosporopsis spp.), powdery mildew (Golovinomyces spp. and Podosphaera spp.), target spot (Corynespora), Powdery mildew	thiophanate-methyl (various)	1	See label	See label		**Not prohibited for greenhouse use.** See product labels for complete application instructions, specific crop and disease labels, and greenhouse usage. Check state registration status prior to use. **Resistance in Stagonosporopsis** (gummy stem blight) is widespread.**
Suppression: Downy mildew	tolnepyrad (Toric)	39	21.0 fl oz/acre	1	0.5	**Not prohibited for greenhouse use.** Do not exceed 42 fl oz or two applications of product per crop cycle. Do not exceed four applications of product per year. Allow at least 14 days between applications. IRAC 21A.
Plectosporium blight (P. tabacinum), powdery mildew (P. xanthii), G. cichoracearum	trifloxystrobin (Flint Extra)	11	3.8 fl oz/acre (downy mildew)	4 to 6 fl oz/acre (Procure)	0.5	**Not prohibited for greenhouse use.** Alternate every FRAC 11 fungicide application with at least one application of a fungicide from a different FRAC group to reduce the potential for resistance. Do not exceed four applications or 15.2 fl oz of product per acre per year. The minimum interval between applications is 7 days. **Resistance in P. cubensis (downy mildew) is widespread.**
Suppression: Downy mildew (P. cubensis)	triflumizole (Procure 480SC, Terraguard SC)	3	4 to 8 fl oz/acre (Procure)	0	0.5	
Powdery mildew			2 to 4 fl oz/100 gal (Terraguard)	1	Terra-guard	

EGGPLANT AND PEPPER - TRANSPLANT PRODUCTION

Anthracnose (Colletotrichum spp.), Cercospora leaf spot (C. capaci), gray leaf spot (Stemphylium solani), powdery mildew (Oidopsis sicalis), Rhizoctonia stem rot (R. solani)	Azoxystrobin + benzoavindiflupyr (Mural)	11+7	0.6 to 0.8 oz/5,000 sq ft	—	0.5	**Allowed for use on transplants grown for resale to consumers.** Do not exceed two applications of product per crop. See label for restrictions for product use when multiple crops are grown in the same area. Do not apply more than two consecutive applications of product before alternating to another fungicide from a different FRAC group.
Suppression: Southern blight (Athelia rolfsii)	fenhexamid (Decree 50 WDG)	17	1.5 lb/acre (stand-alone)	—	0.5	Do not make more than two consecutive applications. See label for additional tank-mixing instructions. Do not exceed 6.0 lb product per acre to transplants. Do not exceed six applications per acre per crop cycle at the lowest use rate or four applications per acre per crop cycle at the highest use rate.
Blue mold (Botrytis cinerea)	polyoxin D zinc salt (Affirm WDG)	19	6.2 oz/acre	—	4 hr	**Allowed for use in greenhouses ONLY in the production of seedlings and transplants; product is not for use in the production of edible commodities.** See product labels for maximum limits of active ingredient and applications per season. See product labels for additional application instructions and labeled diseases.

1 Products registered for field use may be used on greenhouse crops (but not transplants) unless excluded on the label. Always check the label before applying a product. Additional products not prohibited for greenhouse use on basil, cucurbits, and lettuce not listed in this table are available.

2 Former names of diseases and pathogens listed in this table may be still be listed on fungicide labels are as follows: Acidovorax citrulli (formerly Acidovorax avanae subsp. citrulli) Alternaria linariae (formerly A. solani and A. tomatophila); Athelia rolfsii (formerly Sclerotium rolfsii); Golovinomyces spp. (formerly Erysiphe spp.), or Golovinomyces cichoracearum (formerly Erysiphe cichoracearum); Fulvia fulva (formerly Cladosporium fulvum and Passalora fulva); Boeremia exigua (formerly Phoma exigua); Plectosphaerella cucumerina (formerly Plectosporium tabacinum); Podosphaera xanthii (formerly Sphaerotheca fuliginea); Stagonosporopsis spp. (formerly Didymella); Xanthomonas leaf spot (formerly bacterial leaf spot); and (Xanthomonas cucurbitae (formerly X. campestris pv. cucurbitae).
TABLE 3-45. GREENHOUSE DISEASE CONTROL FOR VARIOUS VEGETABLE CROPS (cont’d)

R. A. Melanson, Extension Plant Pathologist, Mississippi State University; A. Keinath, Plant Pathologist, Clemson University; A. Cato, Extension Horticulture IPM, University of Arkansas; I. Meadows, Extension Plant Pathologist, North Carolina State University

DISEASE CONTROL

<table>
<thead>
<tr>
<th>Crop/Disease</th>
<th>Product 1</th>
<th>FRAC</th>
<th>Rate of Material</th>
<th>Minimum Days</th>
<th>Reentry</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eggplant and Pepper - Transplant Production (cont’d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Botrytis rot (Botrytis spp.), early blight (A. linariae), powdery mildew (L. taurica, O. apule)</td>
<td>polyoxin D zinc salt (Affirm WDG)</td>
<td>19</td>
<td>6.2 oz/acre</td>
<td>—</td>
<td>4 hr</td>
<td>Allowed for use in greenhouses ONLY in the production of seedlings and transplants; product is not for use in the production of edible commodities. See product labels for maximum limits of active ingredient and applications per season. See product labels for additional application instructions and labeled diseases</td>
</tr>
<tr>
<td>Suppression: Anthracnose (C. coccodes)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lettuce</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Downy mildew (Bremia lactucae)</td>
<td>acibenzo-S-methyl (Actigard 50WG)</td>
<td>21</td>
<td>0.75 to 1 oz/acre</td>
<td>7</td>
<td>0.5</td>
<td>Not prohibited for greenhouse use. For use on head and leaf lettuce. Product should be applied to healthy, actively growing plants. Product should not be applied to stressed plants. Do not apply more than one application of product on head lettuce intended for bag purposes. Do not apply prior to thinning or within 5 days of transplanting. See label for other instructions, restrictions, and precautions.</td>
</tr>
<tr>
<td>Anthracnose, downy mildew, leaf spot, powdery mildew, Septoria leaf spot</td>
<td>copper, fixed (various)</td>
<td>M01</td>
<td>See label</td>
<td>See label</td>
<td>See label</td>
<td>Some products are OMRI-listed. See product labels for complete application instructions, specific crop and disease labels, and greenhouse usage. Check state registration status prior to use.</td>
</tr>
<tr>
<td>Downy mildew (Bremia lactucae), Pythium damping-off (Pythium spp.), white rust (Albugo occidentalis)</td>
<td>cyazofamid (Ranman 400SC)</td>
<td>21</td>
<td>2.75 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Not prohibited for greenhouse use. For use on head and leaf lettuce. Do not exceed 16.5 fl oz of product or 0.43 lb cyazofamid per acre per year. Do not apply more than six applications of product per crop. Alternate applications with a fungicide from a different FRAC group. See label for additional application instructions specific to each disease and regarding resistance management and tank-mixing.</td>
</tr>
<tr>
<td>Downy mildew (Bremia lactucae)</td>
<td>cymoxanil (Curzate 60 DF)</td>
<td>27</td>
<td>3.2 to 5.0 oz/acre (head) 5.0 oz/acre (leaf)</td>
<td>3 (head) 1 (leaf)</td>
<td>0.5</td>
<td>Not prohibited for greenhouse use. For use on head and leaf lettuce. Use only with the labeled rate of a protectant fungicide. Do not exceed 30 oz of product per 12-month period. Curzate not registered for use in LA.</td>
</tr>
<tr>
<td>Alternaria leaf spot (Alternaria spp.), gray mold (B. cinerea), Sclerotinia rot (Sclerotinia spp.), basal rot (B. exigua), Septoria leaf spot (Septoria lactucae)</td>
<td>cyprodinil + fludioxonil (Switch 62.5WG)</td>
<td>9+12</td>
<td>11 to 14 oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Not prohibited for greenhouse use. For use on head and leaf lettuce. After two applications, alternate with another fungicide with a different mode of action for two applications. Do not exceed 56 oz of product per acre per year. See label for application limits of active ingredients.</td>
</tr>
<tr>
<td>Suppression: Powdery mildew (Golovinomyces cichoracearum) 2</td>
<td>dicloran (Botran 5F)</td>
<td>14</td>
<td>See label</td>
<td>14</td>
<td>0.5</td>
<td>For use on head and leaf lettuce. Product has different application rates for at planting, pre-thinning, and post-thinning and established transplants. See label for detailed application instructions. Do not exceed 3.2 qt of product per acre per year. Not registered for use in VA or WV.</td>
</tr>
<tr>
<td>Botrytis gray mold rot (B. cinerea), drop rot, Sclerotinia minor, water soft rot (Sclerotinia sclerotiorum)</td>
<td>famoxadone + cymoxanil (Tanos)</td>
<td>11+27</td>
<td>8 to 10 oz/acre</td>
<td>1</td>
<td>0.5</td>
<td>Not prohibited for greenhouse use. For use on head and leaf lettuce. Product must be tank-mixed with a contact fungicide with a different mode of action. Do not exceed 48 oz of product per acre per crop season. Do not make more than one application of product before alternating with a fungicide that has a different mode of action. See label for tank mixing instructions. No more than 50% of total applications in cropping season should contain Tanos or other FRAC Group 11 fungicides.</td>
</tr>
<tr>
<td>Downy mildew (B. lactucae), white rust (A. occidentalis)</td>
<td>fenhexamid (Decree 50 WDG)</td>
<td>17</td>
<td>1.5 lb/acre (stand-alone) 1.0 to 1.5 lb/acre (tank-mix)</td>
<td>3</td>
<td>0.5</td>
<td>For use in transplant production and greenhouse production. Do not make more than two consecutive applications. See label for additional tank-mixing instructions. Do not exceed 3.0 lb product per acre (transplants) or per acre per crop (greenhouse production).</td>
</tr>
</tbody>
</table>

1 Products registered for field use may be used on greenhouse crops (but not transplants) unless excluded on the label. Always check the label before applying a product. Additional products not prohibited for greenhouse use on basil, cucurbits, and lettuce not listed in this table are available.

2 Former names of diseases and pathogens listed in this table that may be still be listed on fungicide labels are as follows: Acidovorax citrulli (formerly Acidovorax avenue subsp. citrulli) Alternaria linariae (formerly A. solani and A. tomatothila); Aethalia rolfaei (formerly Sclerotium rolfaei); Golovinomyces spp. (formerly Erysiphe spp.) or Golovinomyces cichoracearum (formerly Erysiphe cichoracearum); Fulvia fulva (formerly Cladosporium fulvum and Passalora fulva); Boeremia exigua (formerly Phoma exigua); Plectosphaera cucumerina (formerly Plectosporium tabacinum); Podosphaera xanthii (formerly Sphaerotheca fuliginea); Stagonosporopsis spp. (formerly Didymella); Xanthomonas leaf spot (formerly bacterial leaf spot); and (Xanthomonas cucurbitae (formerly X. campestris pv. cucurbitae).
TABLE 3-45. GREENHOUSE DISEASE CONTROL FOR VARIOUS VEGETABLE CROPS (cont’d)

<table>
<thead>
<tr>
<th>Crop/Disease</th>
<th>Product 1</th>
<th>FRAC</th>
<th>Rate of Material</th>
<th>Minimum Days</th>
<th>Harv.</th>
<th>Reentry</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>LETTUCE (CONT’D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternaria leaf spot (Alternaria spp.), basal rot (B. exigua), gray mold (B. cinerea), Sclerotinia rot (Sclerotinia spp.), Septoria leaf spot (S. lactucae)</td>
<td>fluoxidxonil (Spirato GHN, Cannonball WG, Cannonball WP)</td>
<td>12</td>
<td>5.5 to 7 fl oz/acre (Spirato GHN) 7.0 oz/acre (Cannonball)</td>
<td>0</td>
<td>0.5</td>
<td>For use on head and leaf lettuce. Spirato GHN: After two applications of product, alternate to a fungicide with a different mode of action for two applications. Do not exceed 28 fl oz of product per acre per year. Cannonball WG and Cannonball WP: Not prohibited for greenhouse use. Products are labeled for use against basal rot, gray mold, and Sclerotinia rot. Do not exceed 28 oz of product per acre per year. After two applications of product, alternate to a fungicide with a different mode of action for two applications. See product labels for additional instructions and restrictions. Cannonball WP is not registered for use in AL, AR, FL, KY, GA, LA, MO, MS, NC, SC, TN, VA, or WV.</td>
<td></td>
</tr>
<tr>
<td>Suppression: Powdery mildew (G. cichoracearum)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gray mold (Botrytis spp.), lettuce drop (S. minor; S. sclerotiorum), powdery mildew (G. cichoracearum)</td>
<td>fluopyram + trifloxystrobin (Luna Sensation)</td>
<td>7+11</td>
<td>7.6 fl oz/acre</td>
<td>See label</td>
<td>0.5</td>
<td>Not prohibited for greenhouse use. Do not exceed 15.3 fl oz of product per acre per year. Do not apply more than 0.446 lb fluopyram or 0.375 lb trifloxystrobin per acre per year. Do not make more than two sequential applications of product or of any FRAC 7- or FRAC 11-containing fungicide before alternating with a fungicide from a different FRAC group.</td>
<td></td>
</tr>
<tr>
<td>Downy mildew (B. lactucae)</td>
<td>fosetyl-Al (Aliette WDG, Linebacker WDG)</td>
<td>P07</td>
<td>2.5 to 5.0 lb/acre</td>
<td>3</td>
<td>0.5</td>
<td>Not prohibited for greenhouse use. For foliar application on head and leaf lettuce. Phytotoxicity may occur if products are tank-mixed with copper products, applied to plants with copper residues, or mixed with adjuvants. Do not tank-mix products with copper products. See labels for additional restrictions, season limits, and application instructions not included below. Aliette WDG: Do not exceed seven applications per season. Speckling can occur when applied to lettuce. Linebacker WDG: Do not exceed 35 lb of product per acre per year. Do not make more than seven applications per season. Check state registration status prior to use.</td>
<td></td>
</tr>
<tr>
<td>Labels may include: Botrytis gray mold, downy mildew, powdery mildew</td>
<td>hydrogen peroxide + peroxyacetic acid (OxiDate 2.0, OxiDate 5.0, ZeroTol 2.0)</td>
<td>NG</td>
<td></td>
<td>See label</td>
<td>See label</td>
<td>OMRI-listed. See labels for additional instructions, labeled diseases, and precautions, including those related to the use and application of metal-based chemicals. Do not store spray solution. OxiDate 2.0: Not prohibited for greenhouse use. OxiDate 5.0: Not prohibited for greenhouse use. Determine if product can be used safely on greenhouse crops prior to application.</td>
<td></td>
</tr>
<tr>
<td>Bottom rot (Rhizoctonia solani), gray mold (Botrytis cinerea), lettuce drop (Sclerotinia spp.)</td>
<td>iprodione (Meteor, Nevada 4F, Rovral 4F)</td>
<td>2</td>
<td>1.5 to 2.0 pt/acre</td>
<td>14</td>
<td>1</td>
<td>Not prohibited for greenhouse use. Do not make more than three applications of product per crop. See product labels for application instructions and additional restrictions.</td>
<td></td>
</tr>
<tr>
<td>Sclerotinia drop (S. minor and S. sclerotiorum)</td>
<td>isofetamid (Kenja 400SC)</td>
<td>7</td>
<td>12.3 fl oz</td>
<td>14</td>
<td>0.5</td>
<td>For use on head and leaf lettuce. Not prohibited for greenhouse use. Do not exceed two applications of product per acre per year. Do not make more than two applications of Kenja or of another FRAC 7-containing fungicide in a row before rotating to a fungicide from a different FRAC group.</td>
<td></td>
</tr>
<tr>
<td>Labels may include: Alternaria leaf spot, anthracnose, downy mildew</td>
<td>mancozeb (Various)</td>
<td>M03</td>
<td>See label</td>
<td>See label</td>
<td>See label</td>
<td>See product labels for complete application instructions, specific crop and disease labels, and greenhouse usage. Check state registration status prior to use.</td>
<td></td>
</tr>
<tr>
<td>Alternaria leaf spot, anthracnose, downy mildew, Septoria</td>
<td>mancozeb + azoxystrobin (Dexter Max)</td>
<td>M03+11</td>
<td>1.7 to 2.25 lb/acre</td>
<td>10</td>
<td>1</td>
<td>See label for restrictions on greenhouse use. For use on head and leaf lettuce. Do not apply more than one application of product or FRAC Group 11 fungicide before alternating to a fungicide with a different mode of action. Do not exceed 13.7 lb of product per acre per season. See label for application limits of active ingredients. See label for additional instructions and cautions regarding residues, adjuvants, and tank mixing.</td>
<td></td>
</tr>
</tbody>
</table>

1 Products registered for field use may be used on greenhouse crops (but not transplants) unless excluded on the label. Always check the label before applying a product. Additional products not prohibited for greenhouse use on basil, cucurbits, and lettuce not listed in this table are available.

2 Former names of diseases and pathogens listed in this table that may be still be listed on fungicide labels are as follows: Acidovorax citrulli (formerly Acidovorax avenae subsp. citrulli) Alternaria linariae (formerly A. solani and A. tomatophila); Athelia rolfsii (formerly Sclerotium rolfsii); Golovinomyces spp. (formerly Erysiphe spp.); Golovinomyces cichoracearum (formerly Erysiphe cichoracearum); Fulvia fulva (formerly Cladosporium fulvum and Passalora fulva); Boeremia exigua (formerly Phoma exigua); Plectosphaera cucumerina (formerly Plectosporium tabacinum); Podosphaera xanthii (formerly Sphaerotheca fimbriata); Stagonosporopsis spp. (formerly Didymella); Xanthomonas leaf spot (formerly bacterial leaf spot); and Xanthomonas cucurbitae (formerly X. campestris pv. cucurbitae).
TABLE 3-45. GREENHOUSE DISEASE CONTROL FOR VARIOUS VEGETABLE CROPS (cont'd)

<table>
<thead>
<tr>
<th>Crop/Disease</th>
<th>Product ¹</th>
<th>FRAC</th>
<th>Rate of Material</th>
<th>Minimum Days</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>LETTUCE (CONT'D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anthracnose, downy mildew</td>
<td>mancozeb + copper hydroxide (ManKocide)</td>
<td>M03+ M01</td>
<td>1 to 2 lb/acre</td>
<td>10</td>
<td>See label Not prohibited for greenhouse use. Do not exceed 26 lb of product per acre per year. Plant injury may occur in some varieties. Determine crop sensitivity prior to use. Phytotoxicity may occur when spray solution has a pH of less than 6.5 or when certain environmental conditions occur.</td>
</tr>
<tr>
<td>Downy mildew (B. lactucae)</td>
<td>mandipropanid (Micora)</td>
<td>40</td>
<td>5.5 to 8.0 fl oz/acre (0.65 to 0.9 fl oz per 5,000 sq ft)</td>
<td>—</td>
<td>4 hr For use on head and leaf lettuce. For lettuce transplants grown in enclosed greenhouses with permanent flooring for resale to consumers. Do not apply more than two applications of product per crop. Do not apply consecutive applications. Apply in a tank-mix with another downy mildew fungicide with a different mode of action. The addition of a spreading/penetrating type adjuvant is recommended.</td>
</tr>
<tr>
<td>Powdery mildew (G. cichoracearum ²)</td>
<td>myclobutanil (AgriStar Sonoma 20 EW AG, AgriStar Sonoma 40WSP)</td>
<td>3</td>
<td>9.5 fl oz/acre (20 EWAG) 5 oz/acre (40WSP)</td>
<td>3</td>
<td>1 Not prohibited for greenhouse use. For use on head and leaf lettuce. Do not exceed 0.5 lb myclobutanil per acre per season. See product labels for additional instructions and restrictions. Do not make more than four applications of product per season. The minimum retreatment interval is 14 days. Sonoma 20EW AG: Do not exceed 9.5 fl oz of product per acre per application or 38.0 fl oz of product per acre per season. Sonoma 40EW AG is not registered for use in AL, AR, FL, KY, MS, OK, SC, TN, or TX. Sonoma 40WSP: Do not exceed 5 oz of product per acre for application or 20 oz of product per acre per season. Sonoma 40WSP is not registered for use in AL, AR, FL, GA, KY, LA, MS, OK, SC, TN, TX, and WV.</td>
</tr>
<tr>
<td>Labels may include: Downy mildew</td>
<td>phosphonates (mono- and dibasic salts of phosphites, phosphorous acid, potassium phosphate) (various)</td>
<td>P07</td>
<td>See label</td>
<td>See label</td>
<td>See label See product labels for complete application instructions, labeled diseases, restrictions, and crop and greenhouse usage. Check state registration status prior to use.</td>
</tr>
<tr>
<td>Alternaria leaf spot (Alternaria spp.); Botrytis damping off, leaf blight, and rot (Botrytis spp.); bottom rot (R. solani), lettuce drop (Sclerotinia spp.); powdery mildew (G. cichoracearum)</td>
<td>polyoxin D zinc salt (OSO 5%SC)</td>
<td>19</td>
<td>6.5 to 13.0 fl oz/acre</td>
<td>0</td>
<td>4 hr Not prohibited for greenhouse use. For use on head, leaf, iceberg, and romaine lettuce. Check product labels for maximum limits of active ingredient per acre per season. See product label for additional application instructions. OSO 5%SC is not registered for use in AR, KY, MS, or OK.</td>
</tr>
<tr>
<td>Labels may include: Alternaria leaf spot, Botrytis, downy mildew, powdery mildew</td>
<td>potassium bicarbonate (Carb-O-Nator, MilStop)</td>
<td>NC</td>
<td>2.5 to 5.0 lb/100 gal (Carb-O-Nator) 1.25 to 5.0 lb/100 gal (MilStop)</td>
<td>0</td>
<td>4 hr (Carb-O-Nator) 1 hr (MilStop) OMRI-listed. Do not store unused spray solution. See labels for additional labeled diseases and instructions. Carb-O-Nator: Final spray solution should not be below pH 7.0. Some tank-mixes may be incompatible and may cause phytotoxicity. MilStop: Do not exceed 0.5 lb of product per 4,350 sq ft or 1.15 lb product per 10,000 sq ft per application. Do not adjust pH after mixing. Do not mix with other soluble pesticide or fertilizers.</td>
</tr>
<tr>
<td>Damping off and root rots (Phytophthora spp., Pythium spp.)</td>
<td>propamocarb hydrochloride (Previcur Flex)</td>
<td>28</td>
<td>See label</td>
<td>2</td>
<td>0.5 For use on leaf lettuce only. Product can be applied as a foliar treatment in leaf lettuce. Do not apply more than six total applications (preseeding and/or seedling treatment, after transplanting, and foliar applications). Do not apply more than two preseeding and/or seedling applications, four total applications after transplanting, or two foliar applications of product per crop cycle. Do not mix with other products. Phytotoxicity may occur if applied to dry growing media. See label for other application instructions and maximum use rates.</td>
</tr>
</tbody>
</table>

¹ Products registered for field use may be used on greenhouse crops (but not transplants) unless excluded on the label. Always check the label before applying a product. Additional products not prohibited for greenhouse use on basil, cucurbits, and lettuce not listed in this table are available.

² Former names of diseases and pathogens listed in this table that may be still be listed on fungicide labels are as follows: Acidovorax citrulli (formerly Acidovorax avenue subsp. citrulli) Alternaria linariae (formerly A. solani and A. tomatoiii); Athelia rolfsii (formerly Sclerotium rolfsii; Golovinomyces spp. (formerly Erysiphe spp.) or Golovi-nomyces cichoracearum (formerly Erysiphe cichoracearum); Fulvia fulva (formerly Cladosporium fulvum and Passalora fulva); Boeremia exigua (formerly Phoma exigua); Plectosphaera cucumerina (formerly Plectosporium tabacinum); Podosphaera xanthii (formerly Sphaerotheca fulginea); Stagonosporopsis spp. (formerly Didymella); Xanthomonas leaf spot (formerly bacterial leaf spot); and (Xanthomonas cucurbitae (formerly X. campestris pv. cucurbitae)).
<table>
<thead>
<tr>
<th>Crop/Disease (Cont’d)</th>
<th>Product</th>
<th>FRAC</th>
<th>Rate of Material</th>
<th>Minimum Days</th>
<th>Harv.</th>
<th>Reentry</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Powdery mildew</td>
<td>sulfur (various)</td>
<td>M02</td>
<td>See label</td>
<td>See label</td>
<td>See label</td>
<td>Some products are OMRI-listed. See product labels for complete application instructions, specific crop and disease labels, and greenhouse usage. Check state registration status prior to use.</td>
<td></td>
</tr>
<tr>
<td>Powdery mildew</td>
<td>tolymyprad (Torac)</td>
<td>39</td>
<td>21.0 fl oz/acre</td>
<td>1</td>
<td>0.5</td>
<td>Not prohibited for greenhouse use. Do not apply until at least 14 days after emergence or transplanting. Do not exceed 42 fl oz or two applications of product or 0.42 lb of tolymyprad per acre per crop cycle. Do not exceed four applications of product per year. Allow at least 14 days between applications. IRAC 21A.</td>
<td></td>
</tr>
<tr>
<td>Alternaria leaf spot (Alternaria spp., anthracnose (Colletotrichum spp.), powdery mildew (G. cichoracearum?)</td>
<td>trifloxystrobin (Flint Extra)</td>
<td>11</td>
<td>3.0 to 3.8 fl oz/acre</td>
<td>See label</td>
<td>0.5</td>
<td>Not prohibited for greenhouse use. For use on head and leaf lettuce. Do not exceed 7.6 fl oz of product per acre per year. Do not apply more than two sequential applications of product or another FRAC 11-containing fungicide before rotating with a fungicide from a different FRAC group. The minimum interval between applications is 5 days.</td>
<td></td>
</tr>
<tr>
<td>Alternaria leaf spot/black spot (Alternaria spp., powdery mildew (Golovinomyces spp.?))</td>
<td>triflumizole (Procure 480SC)</td>
<td>3</td>
<td>6 to 8 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>See label for greenhouse usage instructions. For use on head and leaf lettuce. See label for additional uses on lettuce. Do not exceed two applications of product per crop per year. Do not exceed 16 fl oz of product per crop per year.</td>
<td></td>
</tr>
</tbody>
</table>

TOMATO — TRANSPLANT PRODUCTION

<table>
<thead>
<tr>
<th>Disease</th>
<th>Crop</th>
<th>Product</th>
<th>FRAC</th>
<th>Rate of Material</th>
<th>Minimum Days</th>
<th>Harv.</th>
<th>Reentry</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthracnose (Colletotrichum spp., black mold (Alternaria alternata), early blight (Alternaria lineariae?), gray leaf spot (Stemphylium spp.), leaf mold (Fulvia fulva?), powdery mildew (Leveillula taurica), Septoria leaf spot (Septoria lycopersici), target spot (Corynespora cassiicola))</td>
<td>azoxystrobin + benzoindiflupyr (Mural)</td>
<td>11+7</td>
<td>0.6 oz/5,000 sq ft</td>
<td>-</td>
<td>0.5</td>
<td>Allowed for use on transplants grown for resale to consumers. Do not apply to tomatoes grown in a greenhouse for the purpose of producing and harvesting fruit. Do not exceed two applications of product per crop for plants grown indoors for resale to consumers. Do not apply until 21 days after transplanting or 35 days after seeding. See label for restrictions for product use when multiple crops are grown in the same area. See label for instructions and cautions regarding the use of adjuvants and tank mixing. Do not apply more than two consecutive applications of product before alternating to another fungicide from a different FRAC group.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Damping-off (Pythium spp.)</td>
<td>cyazofamid (Ranman 400SC, Segway O)</td>
<td>21</td>
<td>3 fl oz/100 gal</td>
<td>—</td>
<td>0.5</td>
<td>Use as a soil drench. Do not use a surfactant. One fungicide application can be made to the seedling tray at planting or any time afterwards until one week before transplanting. See label for additional instructions.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gray mold (Botrytis cinerea)</td>
<td>fenhexamid (Decree 50 WDG)</td>
<td>17</td>
<td>1.5 lb/acre (stand-alone)</td>
<td>—</td>
<td>0.5</td>
<td>Do not make more than two consecutive applications. See label for additional tank-mixing instructions. Do not exceed 6.0 lb product per acre per crop cycle to transplants. Do not exceed six applications per acre per crop cycle at the lowest rate or four applications per acre per crop cycle at the highest use rate.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Late blight (Phytophthora infestans)</td>
<td>mandipropamid (Micora)</td>
<td>40</td>
<td>5.5 to 8.0 fl oz/acre (0.65 to 0.9 fl oz/5,000 sq ft)</td>
<td>—</td>
<td>4 hr</td>
<td>For tomato transplants grown in enclosed greenhouses with permanent flooring for resale to consumers. Do not make more than two applications of product per crop. Do not make more than two consecutive applications before switching to a fungicide with a different mode of action. The addition of a spreading/penetrating type adjuvant is recommended.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Botrytis rot (Botrytis spp., early blight (A. lineariae?), powdery mildew (L. taurica, O. sippula))</td>
<td>polyoxin D zinc salt (Affirm WDG)</td>
<td>19</td>
<td>6.2 oz/acre</td>
<td>—</td>
<td>4 hr</td>
<td>Allowed for use in greenhouses ONLY in the production of seedlings and transplants; product is not for use in the production of edible commodities. See product labels for maximum limits of active ingredient and applications per season. See product labels for additional application instructions.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Damping off and root rot (Phytophthora spp., Pythium spp.)</td>
<td>promecarb hydrochloride (Previcur Flex)</td>
<td>28</td>
<td>See label</td>
<td>—</td>
<td>0.5</td>
<td>For pre-seeding and/or seedling treatment (before transplanting). Do not apply more than two pre-seeding and/or seedling applications per cropping cycle. Do not mix with other products. See label for specific use directions and maximum use rates. Phytotoxicity may occur if applied to dry growing media.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Products registered for field use may be used on greenhouse crops (but not transplants) unless excluded on the label. Always check the label before applying a product. Additional products not prohibited for greenhouse use on basil, cucurbits, and lettuce not listed in this table are available.

2. Former names of diseases and pathogens listed in this table that may be still be listed on fungicide labels are as follows: Acidovorax citrulli (formerly Acidovorax avanae subsp. citrulli) Alternaria lineariae (formerly A. solani and A. tomatophila); Ateliaia rolfsii (formerly Sclerotium rolfsii); Golovinomyces spp. (formerly Erysiphe spp.) or Golovinomyces cichoracearum (formerly Erysiphe cichoracearum); Fulvia fulva (formerly Cladosporium fulvum and Passalora fulva); Boeremia exigua (formerly Phoma exigua); Plecosphaerella cucumerina (formerly Plecosporum tabacinum); Podosphaera xanthii (formerly Sphaerotheca fuliginea); Stagonosporopsis spp. (formerly Didymella); Xanthomonas leaf spot (formerly bacterial leaf spot); and (Xanthomonas cucurbitae (formerly X. campestris pv. cucurbitae).
TABLE 3-45. GREENHOUSE DISEASE CONTROL FOR VARIOUS VEGETABLE CROPS (cont’d)

R. A. Melanson, Extension Plant Pathologist, Mississippi State University; A. Keinath, Plant Pathologist, Clemson University; A. Cato, Extension Horticulture IPM, University of Arkansas; I. Meadows, Extension Plant Pathologist, North Carolina State University

<table>
<thead>
<tr>
<th>Crop/Disease</th>
<th>Product 1</th>
<th>FRAC</th>
<th>Rate of Material</th>
<th>Minimum Days</th>
<th>Harv.</th>
<th>Reentry</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOMATO — TRANSPLANT PRODUCTION (cont’d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crown and basal rot</td>
<td>pyraclostrobin + boscalid (Pageant Intrinsic)</td>
<td>11+7</td>
<td>See label</td>
<td>—</td>
<td>0.5</td>
<td></td>
<td>For transplant production for the home consumer market; not for use on transplants intended for agricultural production fields. Do not tank-mix with adjuvants or other agricultural products. Do not apply more than two consecutive applications in any crop production cycle or more than three applications to any crop during a growing cycle. Do not apply to consecutive transplant crops within the same production structure. Do not exceed 118 oz product per year to the same production crop. Product application rates vary depending on target disease. See label for application rates and additional restrictions and instructions.</td>
</tr>
<tr>
<td>(Fusarium spp., Rhizoctonia solani, Sclerotinia spp.), damping-off (Pythium spp., Rhizoctonia spp.), spots and blights</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Alternaria spp., Cercospora spp., Phoma spp., Septoria spp.), Phytophthora blight (Phytophthora spp.), powdery mildew (Leveillula spp. and Oidiospora spp.),rots and blights (Botrytis spp.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labels may include:</td>
<td>Streptomyacin sulfate (Agri-Mycin 50, Firewall 17 WP, Firewall 50 WP, Harbour)</td>
<td>25</td>
<td>See labels</td>
<td>—</td>
<td>0.5</td>
<td></td>
<td>See labels for restrictions, cautions, application instructions, and labeled diseases for each product. Not all products are registered for use in all states. Check state registration status prior to use.</td>
</tr>
<tr>
<td>Bacterial canker, speck, and/or spot</td>
<td>Triflumizole (Terraguard SC)</td>
<td>3</td>
<td>2 to 4 fl oz/100 gal</td>
<td>—</td>
<td>0.5</td>
<td></td>
<td>Commercial greenhouse production only. Use only as a foliar spray. Can be used on greenhouse transplants. Do not exceed 16 fl oz of product per acre per cropping system. Do not exceed 4 applications per crop.</td>
</tr>
<tr>
<td>TOMATO — AFTER TRANSPLANTING IN A GREENHOUSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacterial speck (Pseudomonas syringae pv. tomato), bacterial spot (Xanthomonas spp.)</td>
<td>acibenzolar-S-methyl (Actigard 50 WG)</td>
<td>P01</td>
<td>0.33 to 0.75 oz/acre</td>
<td>14</td>
<td>0.5</td>
<td></td>
<td>Not prohibited for greenhouse use. Product should be applied to healthy, actively growing plants. Product should not be applied to stressed plants. Do not apply on intervals less than 7 days. Do not exceed 6 oz of product per acre per year. See label for other instructions, restrictions, and precautions.</td>
</tr>
<tr>
<td>Anthracnose (Colletotrichum spp.), black mold (A. alternata), early blight (A. liniariae), gray leaf spot (Stemphyillum spp.), leaf mold (F. fulva), powdery mildew (L. taurica), Septoria leaf spot (S. lycopersici), target spot (C. cassinica)</td>
<td>azoxystrobin + difenoconazole (Quadra Top)</td>
<td>11+3</td>
<td>8 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
<td></td>
<td>Not prohibited for greenhouse use. Do not use for transplant production. Do not make more than two consecutive applications before switching to a fungicide with a different mode of action. Do not exceed 47 fl oz of product per acre per year. See label for application limits of active ingredients. Do not apply until 21 days after transplanting or 35 days after seeding. Do not use with adjuvants or tank mix with any EC product on fresh market tomatoes. Plant injury may occur with the use of adjuvants or when product is tank-mixed with dimethoate.</td>
</tr>
<tr>
<td>Gray mold (Botrytis cinerea), powdery mildew (L. taurica)</td>
<td>Banda de Lupinus albus doce (BLAD) (ProB-LAD Verde)</td>
<td>BM01</td>
<td>18.1 to 45.7 fl oz/acre</td>
<td>1</td>
<td>4 hr</td>
<td></td>
<td>Not prohibited for greenhouse use. Do not make more than two sequential applications before alternating to a fungicide with a different mode of action. Do not make more than five foliar applications of product per crop season. Check state registration status prior to use.</td>
</tr>
<tr>
<td>Labels may include: Alternaria blight, anthracnose, bacterial speck and spot, Cercospora leaf spot, early blight, gray mold, late blight, leaf mold, Phomopsis, Septoria leaf spot</td>
<td>copper, fixed (various)</td>
<td>M01</td>
<td>See label</td>
<td>See label</td>
<td>See label</td>
<td>Some products are OMRI-listed. See product labels for complete application instructions, specific crop and disease labels, and greenhouse usage. Check state registration status prior to use.</td>
<td></td>
</tr>
<tr>
<td>Powdery mildew</td>
<td>cyflufenamid (Torino)</td>
<td>U06</td>
<td>3.4 oz/acre</td>
<td>0</td>
<td>4 hr</td>
<td>Not prohibited for greenhouse use. Do not make more than three applications per year. Do not exceed 10.2 oz product per acre per calendar year. See label for other application instructions and restrictions.</td>
<td></td>
</tr>
<tr>
<td>Late blight (P. infestans), Phytophthora blight (P. capsici)</td>
<td>cyazofamid (Ranman 400SC)</td>
<td>21</td>
<td>2.1 to 2.75 fl oz/acre (late blight)</td>
<td>0</td>
<td>0.5</td>
<td></td>
<td>Do not exceed 16.5 fl oz per acre per year. Do not exceed six applications of product per crop. See label for surfactant recommendations. Alternate applications with fungicides that have a different mode of action. Do not make more than three consecutive applications before switching to products that have a different mode of action for three applications before returning to Ranman 400SC. See label for application instructions.</td>
</tr>
</tbody>
</table>

1. Products registered for field use may be used on greenhouse crops (but not transplants) unless excluded on the label. Always check the label before applying a product. Additional products not prohibited for greenhouse use on basil, cucurbits, and lettuce not listed in this table are available.

2. Former names of diseases and pathogens listed in this table that may be still be listed on fungicide labels are as follows: Acidovorax citrulli (formerly Acidovorax avianae subsp. citrulli) Alternaria liniariae (formerly A. solani and A. tomatophila); Atelia rolfsii (formerly Sclerotium rolfsii); Colovinomycoses spp. (formerly Erysiphe spp.) or Golovinomyces cichoracearum (formerly Erysiphe cichoracearum); Fulvia fulva (formerly Cladosporium fulvum and Passalora fulva); Boeremia exigua (formerly Phoma exigua); Plectosphaerella cucumerina (formerly Plectosporum tabacinum); Podosphaera xanthii (formerly Sphaerotheca fulginea); Stagonosporopsis spp. (formerly Didymella); Xanthomonas leaf spot (formerly bacterial leaf spot); and Xanthomonas cucurbitae (formerly X. campestris pv. cucurbitae).
TABLE 3-45. GREENHOUSE DISEASE CONTROL FOR VARIOUS VEGETABLE CROPS (cont’d)

<table>
<thead>
<tr>
<th>Crop/Disease</th>
<th>Product</th>
<th>FRAC</th>
<th>Rate of Material</th>
<th>Minimum Days</th>
<th>Reentry</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOMATO—AFTER TRANSPLANTING IN A GREENHOUSE (CONT’D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Late blight</td>
<td>cymoxanil (Curzate 60DP)</td>
<td>27</td>
<td>3.2 to 5.0 oz/acre</td>
<td>3</td>
<td>0.5</td>
<td>Not prohibited for greenhouse use. Do not exceed 30 oz of product or six applications per year. Curzate not registered in LA.</td>
</tr>
<tr>
<td>Early blight</td>
<td>cyprodinil + fludioxonil (Switch 62.5WG)</td>
<td>9+12</td>
<td>11 to 14 oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Not prohibited for greenhouse use. After two applications, alternate with another fungicide with a different mode of action for two applications. Do not exceed 56 oz of product per acre per year. See label for application limits of active ingredients. Do not exceed four applications per year.</td>
</tr>
<tr>
<td>Anthracnose</td>
<td>difenoconazole + cyprodinil (Inspire Super)</td>
<td>3+9</td>
<td>16 to 20 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Not prohibited for greenhouse use. Do not exceed 80 fl oz of product per acre per year. See label for application limits of active ingredients. Make no more than two consecutive applications per season before alternating with fungicides that have a different mode of action.</td>
</tr>
<tr>
<td>Anthracnose</td>
<td>famoxadone + cymoxanil (Tanos)</td>
<td>11+27</td>
<td>6 to 8 oz/acre (early blight)</td>
<td>3</td>
<td>0.5</td>
<td>Not prohibited for greenhouse use. Product must be tank-mixed with a contact fungicide with a different mode of action. Do not exceed more than 72 oz per acre per crop cycle or 12-month period. Do not make more than one application of product before alternating with a fungicide that has a different mode of action. See label for tank-mixing instructions. No more than 50% of total applications in a cropping season should contain Tanos or other FRAC Group 11 fungicides.</td>
</tr>
<tr>
<td>Botrytis gray mold</td>
<td>fenhexamid (Decree 50 WDG)</td>
<td>17</td>
<td>1.5 lb/acre (stand-alone)</td>
<td>0</td>
<td>0.5</td>
<td>Do not make more than two consecutive applications. See label for additional tank-mixing instructions. Do not exceed 6.0 lb product per acre per season for greenhouse production. Do not exceed six applications per acre per crop cycle at the lowest use rate or four applications per acre per crop cycle at highest use rate.</td>
</tr>
<tr>
<td>Early blight</td>
<td>fludioxonil (Spirato GHN)</td>
<td>12</td>
<td>5.5 to 7 fl oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>After two applications of product, alternate to a fungicide with a different mode of action for two applications. Do not exceed 28 fl oz of product per acre per year. Do not exceed four applications per year.</td>
</tr>
<tr>
<td>Black mold</td>
<td>fluzoxyfop + trifloxystrobin (Luna Sensation)</td>
<td>7+11</td>
<td>5.0 to 7.6 fl oz/acre (early blight, powdery mildew, Septoria leaf spot)</td>
<td>3</td>
<td>0.5</td>
<td>Not prohibited for greenhouse use. Do not exceed 27.1 fl oz of product per acre per year. Do not apply more than 0.446 lb fluzoxyfop or 0.5 lb trifloxystrobin per acre per year. Do not make more than five applications per year. Do not make more than two sequential applications of product or of any FRAC 7- or FRAC 9-containing fungicide before alternating with a fungicide from a different FRAC group.</td>
</tr>
<tr>
<td>Suppression: Anthracnose</td>
<td>fluopyram + pyrimethanil (Luna Tranquility)</td>
<td>7+9</td>
<td>11.2 fl oz/acre</td>
<td>1</td>
<td>0.5</td>
<td>Do not exceed 54.7 fl oz of product per acre per year. Do not apply more than 0.446 lb fluopyram or 1.4 lbs pyrimethanil per acre per year. Do not make more than five applications per year.</td>
</tr>
</tbody>
</table>

Additional Notes
1. Products registered for field use may be used on greenhouse crops (but not transplants) unless excluded on the label. Always check the label before applying a product. Additional products not prohibited for greenhouse use on basil, cucurbits, and lettuce not listed in this table are available.
2. Former names of diseases and pathogens listed in this table may be still be listed on fungicide labels are as follows: Acidovorax citrulli (formerly Acidovorax avenae subsp. citrulli); Alteraria liniariae (formerly A. solani and A. tomatophila); Athelia rolfsii (formerly Sclerotium rolfsii); Golovinomyces spp. (formerly Erysiphe spp.) or Golovinomyces cichoracearum (formerly Erysiphe cichoracearum); Fulvia fulva (formerly Cladosporium fulvum and Passalora fulva); Boeremia exigua (formerly Phoma exigua); Plectosphaerella cucumerina (formerly Plectosporium tabacinum); Podosphaera xanthii (formerly Sphaerotheca fuliginea); Stagonosporopsis sp. (formerly Didymella); Xanthomonas leaf spot (formerly bacterial leaf spot); and (Xanthomonas cucurbitae (formerly X. campestris pv. cucurbitae)).

2022 Vegetable Crop Handbook for Southeastern United States 305
TABLE 3-45. GREENHOUSE DISEASE CONTROL FOR VARIOUS VEGETABLE CROPS (cont’d)

<table>
<thead>
<tr>
<th>Crop/Disease</th>
<th>Product 1</th>
<th>FRAC</th>
<th>Rate of Material</th>
<th>Minimum Days</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOMATO — AFTER TRANSPLANTING IN A GREENHOUSE (cont’d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labels may include: Anthracnose, Alternaria, bacterial speck and spot, Botrytis gray mold, leaf mold, early blight, Fusarium, late blight, powdery mildew, Pythium, Rhizoctonia</td>
<td>fosetyl-Al (Aliette WDG, Linebacker WDG)</td>
<td>P07</td>
<td>2.5 to 5.0 lb/acre</td>
<td>14</td>
<td>0.5 (Aliette) 1 (Linebacker) Not prohibited for greenhouse use. For foliar application. Phytoxicity may occur if products are tank-mixed with copper products, applied to plants with copper residues, or mixed with adjuvants. Do not tank-mix products with copper products. See labels for additional restrictions and application instructions not included below. Aliette WDG: Do not exceed 20 lb of product per acre per season. Aliette is not labeled for use on tomato in certain counties in AL, KY, LA, NC, and TN. Aliette has a 2(ee) Recommendation for suppression of bacterial spot in FL; see label for application instructions and restrictions. Linebacker WDG: Do not exceed 20 lb of product per acre per year. Do not exceed four applications of product per acre per year. Check state registration status prior to use. Linebacker is not labeled for use on tomato in certain counties in AL, KY, LA, NC, and TN.</td>
</tr>
<tr>
<td>Labels may include: Anthracnose, Aspergillus, blue mold, Septoria leaf spot, gray leaf spot, late blight, early blight, leaf mold</td>
<td>hydrogen peroxide + peroxycetic acid (OxiDate 2.0, OxiDate 5.0, ZeroTol 2.0)</td>
<td>NG</td>
<td>See label</td>
<td>0</td>
<td>See label OMRI-listed. See labels for additional instructions, labeled diseases, and precautions, including those related to the use and application of metal-based chemicals. Do not store spray solution. OxiDate 2.0: Not prohibited for greenhouse use. Determine if product can be used safely on greenhouse crops prior to application. OxiDate 5.0: Not prohibited for greenhouse use. Determine if product can be used safely on greenhouse crops prior to application. ZeroTol 2.0: Determine if product can be used safely on greenhouse crops prior to application.</td>
</tr>
<tr>
<td>Labels may include: Anthracnose, Aspergillus, blue mold, Septoria leaf spot, gray leaf spot, late blight, early blight, leaf mold, Sclerotinia spp.</td>
<td>mancozeb (various)</td>
<td>M03</td>
<td>See label</td>
<td>See label</td>
<td>See label See product labels for complete application instructions, specific crop and disease labels, and greenhouse usage. Check state registration status prior to use.</td>
</tr>
<tr>
<td>Anthracnose, bacterial speck and spot, early blight, gray leaf spot, late blight, leaf mold, Septoria leaf spot</td>
<td>mancozeb + azoxystrobin (Dexter Max)</td>
<td>M03+ 11</td>
<td>See label</td>
<td>5</td>
<td>1 See label for restrictions on greenhouse use. See product label for complete application instructions, including season product limits and restrictions and/or cautions for mixing with other products, additives, or adjuvants. Product rates vary depending on location and disease.</td>
</tr>
<tr>
<td>East of the Mississippi: black mold, buckeye rot, powdery mildew, target spot</td>
<td>mancozeb + copper (ManKocide)</td>
<td>M03+ M01</td>
<td>1.7 lb/acre (processing) 1 to 3 lb/acre (fresh market)</td>
<td>5</td>
<td>See label Not prohibited for greenhouse use. Do not exceed 26.7 lb of product per year (fresh market). See label for restrictions on season limits for processing tomatoes. Phytoxicity may occur when spray solution has a pH of less than 6.5 or when certain environmental conditions occur.</td>
</tr>
<tr>
<td>Anthracnose, bacterial speck and spot, early blight, gray leaf spot, late blight, leaf mold, Septoria leaf spot</td>
<td>mancozeb + zoxamide (Gavel 75DF)</td>
<td>M03+ 22</td>
<td>1.5 to 2.0 lb/acre (all others) 2.0 lb/acre (bacterial speck and spot)</td>
<td>5</td>
<td>2 Not prohibited for greenhouse use. Do not exceed 8 lb per acre per year (west of the Mississippi River) or 16 lb per acre per year (east of the Mississippi River). Do not make more than four applications per acre per year (west of the Mississippi River) or eight applications per acre per year (east of the Mississippi River). For bacterial speck and spot, apply the full rate of product in a tank mix with a full rate of a fixed copper. See label for other application limits. Product has a 2(ee) recommendation for anthracnose management in AL, AR, FL, GA, KY, LA, MS, NC, OK, SC, TN, VA, and WV.</td>
</tr>
<tr>
<td>Bacterial speck and spot, buckeye rot, early blight, gray leaf spot, late blight, leaf mold, Septoria leaf spot</td>
<td>mandipropamid (Revus)</td>
<td>40</td>
<td>8.0 fl oz/acre</td>
<td>1</td>
<td>4 hr Do not make more than two consecutive applications per season before alternating with a fungicide that has a different mode of action. Do not use for transplant production. Do not exceed 32 fl oz of product per acre per season. See label for application limits when multiple croppings are produced.</td>
</tr>
</tbody>
</table>

1 Products registered for field use may be used on greenhouse crops (but not transplants) unless excluded on the label. Always check the label before applying a product. Additional products not prohibited for greenhouse use on basil, cucurbits, and lettuce not listed in this table are available.

2 Former names of diseases and pathogens listed in this table that may be still be listed on fungicide labels are as follows: Acidovorax citrulli (formerly Acidovorax avenae subsp. citrulli) Alternaria liniariae (formerly A. solani and A. tomatophila); Athelia rolfsii (formerly Sclerotium rolfsii); Golovinomyces spp. (formerly Erysiphe spp.) or Golovinomyces cichoracearum (formerly Erysiphe cichoracearum); Fulvia fulva (formerly Cladosporium fulvum and Pseudoperonospora fulva); Boerelia exigua (formerly Phoma exigua); Plectosphaerella cucumerina (formerly Plectosporium tabacinum); Podosphaera xanthii (formerly Sphaerotheca fuliginea); Stagonosporopsis spp. (formerly Didymella); Xanthomonas leaf spot (formerly bacterial leaf spot); and (Xanthomonas cucurbitae (formerly X. campestris pv. cucurbitae).
TABLE 3-45. GREENHOUSE DISEASE CONTROL FOR VARIOUS VEGETABLE CROPS (cont’d)

<table>
<thead>
<tr>
<th>Crop/Disease</th>
<th>Product 1</th>
<th>FRAC</th>
<th>Rate of Material</th>
<th>Minimum Days</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOMATO—AFTER TRANSPLANTING IN A GREENHOUSE (CONT’D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anthracnose (Colletotrichum spp.), black mold (A. alternata), early blight (A. linariae2), gray leaf spot (S. botryosum), late blight (P. infestans), leaf mold (F. fulva2), powdery mildew (L. taurica), Septoria leaf spot (S. lycopersici), target spot (C. cassinica)</td>
<td>mandipropamid + difenoconazole (Revus Top)</td>
<td>40+3</td>
<td>5.5 to 7.0 fl oz/acre</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>Late blight (P. infestans)</td>
<td>mfenoxam + mancozeb (Ridomil Gold M2 WG)</td>
<td>4+M03</td>
<td>2.5 lb/acre</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Powdery mildew (Leveillula spp.)</td>
<td>myclobutanil (AgriStar Sonoma 20 EW AG)</td>
<td>3</td>
<td>4.75 to 7.6 fl oz/acre</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Buckeye rot, late blight, Phytophthora blight (foliar)</td>
<td>oxathiapiprin + mandipropamid (Orondis Ultra)</td>
<td>49+40</td>
<td>See comments</td>
<td>1</td>
<td>4 hr</td>
</tr>
<tr>
<td>Alternaria blights and leaf spots (Alternaria spp.), basal stem rot (Athelia rolfsii2), black mold (A. alternata), early blight (A. linariae2), gray mold (B. cinerea), powdery mildew (L. taurica), Septoria leaf spot (Septoria spp.), target spot (C. cassinica)</td>
<td>pentaipyrad (Fontelis)</td>
<td>7</td>
<td>0.5 to 0.75 fl oz/gal spray per 1,360 sq ft</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>Labels may include: Late blight, root rots</td>
<td>phosphonates (mono- and dibasic salts of phosphites, phosphorous acid, potassium phosphate)</td>
<td>P07</td>
<td>See label</td>
<td>See label</td>
<td>See label</td>
</tr>
<tr>
<td>Botrytis gray mold (Botrytis spp.), early blight (A. linariae2), leaf mold (F. fulva2), powdery mildew (Leveillula, Oldiopsis)</td>
<td>polyoxin D zinc salt (OSO 5% SC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suppression: Anthracnose (Colletotrichum spp.), late blight (P. infestans), target spot (C. cassinica)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labels may include: Alternaria diseases, anthracnose, Botrytis, powdery mildew, Septoria leaf spot</td>
<td>potassium bicarbonate (Carb-O-Nator, MilStop SP)</td>
<td>NC</td>
<td>2.5 to 5.0 lb/100 gal (Carb-O-Nator) 1.25 to 5.0 lb/100 gal (MilStop SP)</td>
<td>0</td>
<td>4 hr (Carb-O-Nator) 1 hr (MilStop SP)</td>
</tr>
</tbody>
</table>

1 Products registered for field use may be used on greenhouse crops (but not transplants) unless excluded on the label. Always check the label before applying a product. Additional products not prohibited for greenhouse use on basil, cucurbits, and lettuce not listed in this table are available.

2 Former names of diseases and pathogens listed in this table that may be still be listed on fungicide labels are as follows: Acidovorax citrulli (formerly Acidovorax avanae subsp. citrulli) Alternaria linariae (formerly A. solani and A. tomatophila); Athelia rolfsii (formerly Sclerotium rolfsii); Golovinomyces spp. (formerly Erysiphe spp.); or Golovinomyces cichoracearum (formerly Erysiphe cichoracearum); Fulvia fulva (formerly Cladosporium fulvum and Passalora fulva); Boeremia exigua (formerly Phoma exigua); Plectosphaerella cucumerina (formerly Plectosporium tabacinum); Podosphaera xanthii (formerly Sphaerotheca fulginea); Stagonosporosporis spp. (formerly Didymella); Xanthomonas leaf spot (formerly bacterial leaf spot); and (Xanthomonas cucurbitae (formerly X. campestris pv. cucurbitae)).
TABLE 3-45. GREENHOUSE DISEASE CONTROL FOR VARIOUS VEGETABLE CROPS (cont’d)

R. A. Melanson, Extension Plant Pathologist, Mississippi State University; A. Keinath, Plant Pathologist, Clemson University; A. Cato, Extension Horticulture IPM, University of Arkansas; I. Meadows, Extension Plant Pathologist, North Carolina State University

<table>
<thead>
<tr>
<th>Crop/Disease</th>
<th>Product 1</th>
<th>FRAC</th>
<th>Rate of Material</th>
<th>Minimum Days</th>
<th>Harv.</th>
<th>Reentry</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOMATO —AFTER TRANSPLANTING IN A GREENHOUSE (CONT’D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Damping off and rootrots (Phytophthora spp., Pythium spp.)</td>
<td>propamocarb hydrochloride (Previcur Flex)</td>
<td>28</td>
<td>See label</td>
<td>23 oz/acre</td>
<td>0</td>
<td>0.5</td>
<td>Product applied through a drip system or as a soil drench. Do not apply more than four applications of product after transplanting per crop cycle. Do not mix with other products. Phytoxicity may occur if applied to dry growing media. See label for other application instructions and maximum use rates.</td>
</tr>
<tr>
<td>Botrytis gray mold</td>
<td>pyraclostrobin + boscalid (Pageant Intrisic)</td>
<td>11+7</td>
<td>See label</td>
<td>0</td>
<td>0.5</td>
<td>Do not make more than one application of product before switching to a fungicide with a different mode of action. Do not exceed 69 oz of product per acre per crop cycle. Do not make more than three applications of product or of other FRAC Group 7 or 11 fungicides per crop cycle. Do not tank mix with adjuvants or other agricultural products.</td>
<td></td>
</tr>
<tr>
<td>Gray mold (B. cinerea), early blight (A. linariae ²)</td>
<td>pyrimethanil (Scala SC)</td>
<td>9</td>
<td>See label</td>
<td>7 fl oz/acre</td>
<td>1</td>
<td>0.5</td>
<td>Use only in well-ventilated plastic tunnel or glass houses; ventilate for at least 2 hours after application of product. Use only in a tank mix with another fungicide for early blight. Do not exceed 35 fl oz per acre per crop. See label for cautions.</td>
</tr>
<tr>
<td>Powdery mildew (Leveillula and Oidium spp.)</td>
<td>pyriflufenone (Prolivo 300 SC)</td>
<td>50</td>
<td>4 to 5 fl oz/acre</td>
<td>0</td>
<td>4 hr</td>
<td>Not prohibited for greenhouse use. Do not make more than two sequential application of Prolivo or another Group 50-containing fungicide before rotating to a fungicide with a different mode of action. Do not apply more than 16 fl oz of product or 0.32 lb of pyrifenzone per acre per year. Do not apply more than four applications per year.</td>
<td></td>
</tr>
<tr>
<td>Powdery mildew</td>
<td>sulfur (various)</td>
<td>M02</td>
<td>See label</td>
<td>See label</td>
<td>See label</td>
<td>Some products are OMRI-listed. See product labels for complete application instructions, specific crop and disease labels, and greenhouse usage. Check state registration status prior to use.</td>
<td></td>
</tr>
<tr>
<td>Suppression: Powdery mildew</td>
<td>tolfenpyrad (Torac)</td>
<td>39</td>
<td>21.0 fl oz/acre</td>
<td>1</td>
<td>0.5</td>
<td>Not prohibited for greenhouse use. Do not exceed 42 fl oz or two applications of product or 0.42 lb of tolfenpyrad per acre per crop cycle. Do not exceed four applications of product per year. Allow at least 14 days between applications. IRAC 21A.</td>
<td></td>
</tr>
<tr>
<td>Early blight (A. linariae ²), gray leaf spot (Stemphylium spp.), late blight (P. infestans)</td>
<td>trifloxystrobin (Flint Extra)</td>
<td>11</td>
<td>See label</td>
<td>3.0 to 3.8 fl oz/acre (only for suppressed diseases)</td>
<td>3</td>
<td>0.5</td>
<td>Not prohibited for greenhouse use. See label for application rates specific for early blight, gray leaf spot, and late blight. Alternate every FRAC 11 fungicide application with at least one application of a fungicide from a different FRAC group. Product must be tank-mixed and alternated with a protectant fungicide for control of late blight. Do not exceed five applications or 16 fl oz of product per acre per year. The minimum interval between applications is 7 days.</td>
</tr>
<tr>
<td>Powdery mildew</td>
<td>triflumizole (Terraguard SC)</td>
<td>3</td>
<td>2 to 4 fl oz/100 gal</td>
<td>1</td>
<td>0.5</td>
<td>Commercial greenhouse production only. For use only as a foliar spray. Do not exceed 16 fl oz of product per acre per cropping system. Do not exceed four applications per crop.</td>
<td></td>
</tr>
<tr>
<td>Anthracnose, early blight, Septoria leaf spot</td>
<td>zinc dimethyl-dithiocarbamate (Ziram 76 DF)</td>
<td>M03</td>
<td>3 to 4 lb/acre</td>
<td>7</td>
<td>2</td>
<td>Not prohibited for greenhouse use. Do not use on cherry tomatoes. Do not exceed 23.7 lb of product per acre per crop cycle. Product can be mixed with copper fungicides to enhance bacterial disease control.</td>
<td></td>
</tr>
</tbody>
</table>

¹ Products registered for field use may be used on greenhouse crops (but not transplants) unless excluded on the label. Always check the label before applying a product. Additional products not prohibited for greenhouse use on basil, cucurbits, and lettuce not listed in this table are available.
² Former names of diseases and pathogens listed in this table that may be still be listed on fungicide labels are as follows: Acidovorax citrulli (formerly Acidovorax avenue subsp. citrulli); Alternaria linianae (formerly A. solani and A. tmaxaphila); Athelia rolfsii (formerly Seleretum rolfsii); Golovinomyces spp. (formerly Erysiphe spp.) or Golovinomyces cichoracearum; Fulvia fulva (formerly Cladosporium fulvum and Passalora fulva); Boeremia exigua (formerly Phoma exigua); Plectosphaerella cucumerina (formerly Plectosporium tabacum); Podosphaera xanthii (formerly Sphaerotheca fuliginea); Stagonosporopsis spp. (formerly Didymella); Xanthomonas leaf spot (formerly bacterial leaf spot); and (Xanthomonas cucurbitae (formerly X. campestris pv. cucurbitae).
TABLE 3-46. EFFICACY OF PRODUCTS FOR GREENHOUSE TOMATO DISEASE CONTROL

I. Meadows, Extension Plant Pathologist, North Carolina State University

Scale: E, excellent; G, good; F, fair; P, poor; NC, no control; ND, no data.

Active Ingredient	Product(s)	Fungicide (FRAC) Group	Preharvest interval (Days)	Anthracnose (Colletotrichum coccodes)	Bacterial Soft Rot (Erwinia spp.)	Bacterial Canker (Clavibacter michiganensis subsp. michiganensis)	Botrytis Gray mold (Botrytis cinerea)	Bucheye Rot (Phytophthora inaequalis)	Early Blight (Alternaria solani, A. tomatophila)	Late blight (Phytophthora infestans)	Powdery Mildew (Leveillula taurica)	Pythium Root Rot (Pythium spp.)	Rhizoctonia Root Rot (Rhizoctonia solani)	Septoria Leaf Spot (Septoria lycopersici)	Target Spot (Corynespora cassiicola)	Truffle Rot (Tubercaria stoloniferum)			
acibenzolar-S-methyl	Actigard	P01	14	NC	F	F	NC												
azoxystrobin + difenoconazole	Quadris Top	11+3	0	ND	NC														
bacteriofage	AgriPhage-CMM	NC	0	NC	P	F	NC												
Bacillus subtilis	various	BM02	0	ND	NC	NC	P	NC	P	NC									
BLAD	Fracture	BM01	1	ND	NC	F	NC	ND	NC	ND	F	NC	ND	NC	ND	ND			
cyprodinil + flucoxenol	Switch 62.5WG	9+12	0	G	NC	NC	E	NC	F	NC	ND	G	NC	F	F	ND			
cyzofamid	Ramman	21	0	NC	NC	NC	NC	NC	G	NC	NC	F	NC	NC	NC	NC			
cymoxanil	Curzate	27	0	NC	F	NC	NC	NC	NC										
difenoconazole + cyprodinil	Inspire Super	3+9	0	G	NC	NC	E	NC	G	NC	ND	G	NC	NC	ND	G	F		
famoxadone + cymoxanil	Tanos	11+27	3	F	ND	P	ND	NC	F	NC	F	P	NC	NC	F	F	ND		
fenamidone	Reason	11	14	ND	NC	NC	NC	ND	NC	G	F	ND	G	NC	ND	G	G	ND	
fenhexamid	Decree 50 WG	17	1	NC	F	NC	NC	NC	NC	NC	NC								
fixed copper	various	M01	0	P	F	F	P	NC	F	NC	P	P	NC	P	P	P	NC		
mancozeb	various	M03	5	G	NC	NC	F	NC	G	NC	F	ND	NC	F	F	ND	ND		
mancozeb + azoxystrobin	Dexter Max	M03+11	5	G	NC	NC	NC	NC	G	G	G	G	NC	G	G	NC	G	G	ND
mandipropamid	Revus	40	1	NC	NC	NC	NC	NC	G	NC	NC	F	NC	NC	NC	NC	NC		
mandipropamid + difenoconazole	Revus Top	40+3	1	G	NC	NC	NC	G	G	NC	G	F	NC	G	G	ND	ND		
neem oil	Triact 7	NC	0	ND															
oxathiapipril + mandipropamid	Orondis Ultra	49+40	1	NC	NC	NC	NC	NC	G	NC	NC	F	NC	NC	NC	NC	NC		
penthiopyrad	Fontelis	7	0	P	NC	NC	F	NC	G	NC	G	G	NC	F	G	G	ND		
polyoxin D zinc salt	Affirm WDG, OSO 5%SC	19	0	F	NC	NC	F	ND	F	NC	ND	F	ND	ND	ND	F	ND		
propamocarb	Previcur Flex	28	5	NC	NC	NC	NC	F	NC	G	NC	NC	F	NC	NC	NC	NC		
pyrimethanil	Scala	9	1	NC	NC	NC	NC	F	NC										
Streptomyces sp, strain K61	Mycostop	NC	0	NC															
streptomycin sulfate	Agri-Mycin 50, Firewall 50 WP, Harbour	25	0	NC	F	F	NC												
sulfur	various	M02	0	P	NC	NC	NC	NC	NC	NC	F	NC	NC	NC	NC	NC	NC		

1. Efficacy ratings do not necessarily indicate a labeled use for every disease.
2. For use on transplants only.
3. Former names of pathogens listed in this table that may be still be listed on fungicide labels are as follows: *Alternaria lini* (formerly *A. solani* and *A. tomatophila*) and *Passalora fulva* (formerly *Cladosporium fulvum* and *Fulvia fulva*).
4. Sulfur can be phytotoxic; follow label carefully.
5. To prevent resistance, alternate fungicides within a group with fungicides in another group. Fungicides in the “M” groups are generally considered “low risk” with no signs of resistance developing to most fungicides. “NC” indicates that the product has not been classified into a fungicide group.
6. Resistance reported on the pathogen.
SEED TREATMENTS

Seed sanitation to eradicate bacterial or viral plant pathogens: When treating vegetable seeds, it is critical to follow the directions exactly, because germination can be reduced by the treatment and/or the pathogen may not be eliminated. The effect of a treatment on germination should be determined on a small lot of seeds prior to treating large amounts of seed. Treatments should not be applied to pelleted seed, (2) previously treated seed, or (3) old or poor-quality seed.

1. Apotective fungicide treatment (see below) can be applied to the seed following treatment for bacterial pathogens.

2. Seed treatments to prevent damping off diseases: Most commercially available vegetable seeds come treated with at least one fungicide and/or insecticide. Vegetable producers who would like to apply their own seed treatment should purchase non-treat ed seed. While many fungicides are labeled for use on vegetable seed, most fungicides are restricted to commercial treatment only and should not be applied by producers. Labeled fungicides can be applied to seeds following treatment for bacterial pathogens. Do not use fungicide treated seed for food or feed.

HOT WATER TREATMENT

By soaking seed in hot water, seed-borne fungi and bacteria can be reduced, if not eradicated, from the seed coat. Hot water soaking will not kill pathogens associated with the embryo nor will it remove seed-borne plant viruses from the seed surface.

1. Place seed loosely in a weighted cheesecloth or nylon bag.
2. Warm the seed by soaking it for 10 minutes in 100°F (37°C) water.
3. Transfer the warmed seed into a water bath already heated to the temperature recommended for the vegetable seed being treated (Table 3-47). The seeds should be completely submersed in the water for the recommended amount of time (Table 3-47). Agitation of the water during the treatment process will help to maintain a uniform temperature in the water bath.
4. Transfer the hot water treated seed into a cold-water bath for five minutes to stop the heating action.
5. Remove seed from the cheesecloth or nylon bag and spread them evenly on clean paper towel or a sanitized drying screen to dry. Do not dry seed in areas where fungicides, pesticides or other chemicals are located.
6. Seed can be treated with a labeled fungicide to protect against damping off pathogens.

CHLORINE BLEACH TREATMENT

Treating seeds with a solution of chlorine bleach can effectively remove bacterial pathogens and some viruses (i.e., Tobacco Mosaic Virus) that are borne on the surface of seeds.

1. Add 1 quart (946 ml) of Clorox® bleach to 5 quarts (4.7 L) of potable water.
2. Add a drop or two of liquid dish detergent or a commercial surfactant such as Activator 90 or Silvet to the disinfectant solution. Add seed to the disinfectant solution (1 pound of seed per 4 quarts of disinfectant solution) and agitate for 1 minute.
3. Prepare fresh disinfectant solution for each batch of seeds to be treated.
4. Rinse the seed in a cold-water bath for 5 minutes to remove residual disinfectant.
5. Spread seeds evenly on clean paper towel or a sanitized drying screen to dry. Do not dry seed in areas where fungicides, pesticides, or other chemicals are located.
6. Seed can be treated with a labeled fungicide to protect against damping off pathogens.

HYDROCHLORIC ACID TREATMENT

Tomato seed can be treated with a dilute solution of hydrochloric acid (HCl) solution to eliminate seed-borne bacterial pathogens such as Xanthomonas spp. (Bacterial leaf spot), Pseudomonas syringae pv. tomato (Bacterial speck) and Clavibacter michiganensis subs. michiganensis (Bacterial canker). Hydrochloric acid can also be used to remove TMV from the surface of tomato seed. Do not use HCl-treated seed for food or animal feed.

1. Prepare a 5% solution of HCl by adding one part acid to 19 parts potable water. Prepare the acid solution in a well-ventilated area and avoid direct skin contact with the acid.
2. Soak seeds for 6 hours with gentle agitation.
3. Carefully drain the acid off the seed and rinse seed under running potable water for 30 minutes. Alternatively, rinse the seeds 10 to 12 times with potable water to remove residual acid.
4. Spread seeds evenly on clean paper towel or a sanitized drying screen to dry. Do not dry seed in area where fungicides, pesticides, or other chemicals are located.
5. Seed can be treated with a labeled fungicide to protect against damping off pathogens.

TRISODIUM PHOSPHATE TREATMENT

Tomato seed can be treated with trisodium phosphate (TSP) to eradicate seed transmitted TMV. Do not use TSP-treated seed for food or animal feed.

1. Prepare a 10% solution of TSP (1 part TSP in 9 parts potable water). Trisodium phosphate is available at most home supply or paint stores. Avoid direct skin contact with the TSP solution.
2. Soak seed for 15 minutes in the disinfectant solution.
3. Rinse the seed in a cold-water bath for 5 minutes to remove residual disinfectant.
4. Spread seeds evenly on clean paper towel or a sanitized drying screen to dry. Do not dry seed in area where fungicides, pesticides, or other chemicals are located.
5. Seed can be treated with a labeled fungicide to protect against damping off pathogens.

TESTING SEED GERMINATION AFTER SEED TREATMENTS

Randomly select 100 seeds from each seed lot.

1. Treat 50 seeds using one of the sanitizers described above.
2. After the treated seed has dried and before application of a protectant fungicide, plant the treated and non-treated seed separately in flats containing planting mix according to standard practice. Label each group as treated or non-treated.
3. Allow the seeds to germinate and grow until the first true leaf appears (to allow for differences in germination rates to be observed).
4. Count seedlings in each group separately.
5. Determine the percent germination for each group: # seedlings emerged ÷ # seeds planted x 100.
6. Compare percent germination between the treated and non-treated groups. Percent germination should be within 5% of each other.

TABLE 3-47. RECOMMENDED TEMPERATURES & TREATMENT TIMES FOR HOT WATER DISINFESTATION OF VEGETABLE SEED

<table>
<thead>
<tr>
<th>Vegetable Crop</th>
<th>Water Temperature (°F°C)</th>
<th>Soaking Time (Minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broccoli</td>
<td>122/50</td>
<td>20 to 25</td>
</tr>
<tr>
<td>Brussels sprout</td>
<td>122/50</td>
<td>25</td>
</tr>
<tr>
<td>Cabbage</td>
<td>122/50</td>
<td>25</td>
</tr>
<tr>
<td>Carrot</td>
<td>122/50</td>
<td>15 to 20</td>
</tr>
<tr>
<td>Cauliflower</td>
<td>122/50</td>
<td>20</td>
</tr>
<tr>
<td>Celery</td>
<td>122/50</td>
<td>25</td>
</tr>
<tr>
<td>Chinese cabbage</td>
<td>122/50</td>
<td>20</td>
</tr>
<tr>
<td>Collard</td>
<td>122/50</td>
<td>20</td>
</tr>
<tr>
<td>Cucumber</td>
<td>122/50</td>
<td>20</td>
</tr>
<tr>
<td>Eggplant</td>
<td>122/50</td>
<td>25</td>
</tr>
<tr>
<td>Garlic</td>
<td>120/49</td>
<td>20</td>
</tr>
<tr>
<td>Kale, Kohrabi</td>
<td>122/50</td>
<td>20</td>
</tr>
<tr>
<td>Lettuce</td>
<td>118/48</td>
<td>30</td>
</tr>
<tr>
<td>Mint</td>
<td>112/44</td>
<td>10</td>
</tr>
<tr>
<td>Mustard, Cress, Radish</td>
<td>122/50</td>
<td>15</td>
</tr>
<tr>
<td>Onion</td>
<td>115/46</td>
<td>60</td>
</tr>
<tr>
<td>Pepper</td>
<td>125/51</td>
<td>30</td>
</tr>
<tr>
<td>Rapse, Rutabaga</td>
<td>122/50</td>
<td>20</td>
</tr>
<tr>
<td>Shallot</td>
<td>115/46</td>
<td>60</td>
</tr>
<tr>
<td>Spinach</td>
<td>122/50</td>
<td>25</td>
</tr>
<tr>
<td>Tomato</td>
<td>122/50</td>
<td>25</td>
</tr>
<tr>
<td>Turnip</td>
<td>122/50</td>
<td>20</td>
</tr>
</tbody>
</table>

1. Cucurbits other than cucumbers can be severely damaged by hot water treatment and should be disinfested using chlorine bleach.
TABLE 3-48. PRODUCTS FOR SEED TREATMENT

(Last updated in 2015—see specific crop tables for seed treatments)

<table>
<thead>
<tr>
<th>Fungicide Group ¹</th>
<th>M3</th>
<th>4</th>
<th>4</th>
<th>4</th>
<th>4</th>
<th>14</th>
<th>M3</th>
<th>4+12</th>
<th>12</th>
<th>12</th>
<th>3+4</th>
<th>11</th>
<th>3</th>
<th>12</th>
<th>12+M3</th>
<th>4</th>
<th>7+ M3</th>
<th>4</th>
<th>M3</th>
<th>7+M3</th>
<th>1+M3</th>
<th>11+ 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beans, Snap</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Beans, Lima</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Beets</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Broccoli</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Carrots</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Celery</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Chinese Cabbage</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Cole Crops</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Cucumbers</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Eggplants</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Garlic</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Greens, Mustard</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Greens, Turnip</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Horseradish</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Leeks</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Lettuce</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Muskmelons</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Okra</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Onions, Dry</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Onions, Green</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Parsley</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Parsnips</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Peas</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Peppers</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Pumpkins</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Radish</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Spinach</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Squash, Summer</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Squash, Winter</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Sweet Corn</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Sweetpotatoes</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Tomatoes</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Watermelon</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>White Potatoes (Irish)</td>
<td>X</td>
<td>X²</td>
<td>X</td>
<td>X³</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X X</td>
<td></td>
</tr>
</tbody>
</table>

¹ To prevent resistance in pathogens, alternate fungicides within a group with fungicides in another group. Fungicides in the “M” group are generally considered “low risk” with no signs of resistance developing to most fungicides.

² Registered for use in Florida and North Carolina only.

³ Registered for use in North Carolina only.

⁴ Registered for use in Alabama, Florida, Georgia, Mississippi, North Carolina, and South Carolina only.
TABLE 3-49. BIOCONTROL AGENTS AND DISINFESTANTS REGISTERED FOR SEED TREATMENT
(Last updated in 2015)

<table>
<thead>
<tr>
<th>CROP</th>
<th>Biocontrol Agents</th>
<th>Disinfectants</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Actinovate STP</td>
<td>Clorox</td>
</tr>
<tr>
<td></td>
<td>(Streptomyces</td>
<td>Hot water</td>
</tr>
<tr>
<td></td>
<td>lydicus WTEC 108)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kodiak HB</td>
<td>Hydrochloric acid (HCl)</td>
</tr>
<tr>
<td></td>
<td>(Bacillus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>subtilis GB03)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mycostop</td>
<td>Oxidate 2.0 (hydrogen dioxide +</td>
</tr>
<tr>
<td></td>
<td>(Streptomyces</td>
<td>peracetic acid)</td>
</tr>
<tr>
<td></td>
<td>griseoviridis K61)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T-22 Planter Box</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Trichoderma</td>
<td></td>
</tr>
<tr>
<td></td>
<td>harzianum)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yield Shield</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Bacillus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pumilus GB34)</td>
<td></td>
</tr>
<tr>
<td>Beans, Snap</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Beans, Lima</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Beets</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Broccoli</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Carrots</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Celery</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Chinese Cabbage</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Cole Crops</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Cucumbers</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Eggplants</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Garlic</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Greens, Mustard</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Greens, Turnip</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Horseradish</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Leeks</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Lettuce</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Muskemelons</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Okra</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Onions, Dry</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Onions, Green</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Parsley</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Parsnips</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Peas</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Peppers</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Pumpkins/Winter squash</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Radish</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Spinach</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Squash, Summer</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Sweet Corn</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Sweetpotatoes</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Tomatoes</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Watermelon</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>White Potatoes (Irish)</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Sanitation is a broad term used in the food industry. For produce growers, this term is often defined by requirements within the PSR or standards within GAPs. Sanitation includes the basic sanitary conditions and practices within the food industry for growing and handling of food safely. Measures required to prevent equipment, tools, facilities (i.e., packinghouses), and sanitation practices from becoming a route of contamination for produce and food contact surfaces include:

- Pre and postharvest water sanitation
- Cleaning of tools and equipment
- Appropriate storage and maintenance of tools and equipment
- Appropriate use of toilet and handwashing facilities
- Control of pests
- Maintenance of adequate plumbing
- Proper disposal of sewage and waste

PREHARVEST WATER SANITATION

There are many things to consider when choosing a water treatment system, and it is unique to each water source/situation. Selecting the appropriate water system treatment is probably the most difficult part of treating your water. The questions below highlight the basic steps you should consider prior to choosing a water treatment method. If you decide to choose a water treatment method, you should contact your local resources to help you decide the best method for your operation.

CONSIDERATIONS FOR CHOOSING A WATER TREATMENT METHOD FOR YOUR FARM OPERATION

- Is it EPA approved? Chemicals must be EPA registered for their use based upon the EPA label for the product. If the product doesn’t have this information, you can’t use it.
- What is the cost of set-up, continued use and maintenance? Some treatment methods require a larger investment than others at set-up, and all costs (including recurring costs such as chemical costs) should be assessed at the start to ensure successful implementation of the treatment.
- What are the management and monitoring requirements? All of these treatments require proper management and monitoring in order to effectively and consistently treat the water. Be sure you have the time and resources to invest in order to successfully accomplish these goals on your farm.
- What infrastructure do you already have on your farm? The infrastructure you already have in place on the farm may more easily lend itself to one treatment versus another (i.e., electricity, injection point, etc.).
- What is the source of your water? Not all sources of water are equal, keep in mind the population of indicator microorganisms like E. coli and other factors like turbidity and alkalinity. This can drive increased chemical demand to achieve your goals. In the case of UV treatment, more turbid water might require additional filtration or longer contact time with the UV light.
- What is the application method? How you size and implement a water treatment method depends on your irrigation system and flow rate.
- What is the sensitivity of your crops to the treatment? As some crops may be more sensitive to particular treatments, it’s important to consider your crop tolerance.
- Are there WPS and other restricted entry considerations? This is another important consideration for resources that may be needed for your employees to implement the treatment.
- Are there other EPA or local environmental considerations? Depending on where you are located, environmental considerations for treated water may vary before water is discharged back to the environment.

POSTHARVEST WATER SANITATION

Produce may be washed after harvest to remove dirt and debris. According to FSMA, water used for harvest and postharvest activities must have no detectable generic E. coli in a 100 mL water sample. Generic E. coli is an indicator organism, with the idea if there is generic E. coli in the water, there is a higher likelihood that there could be other pathogenic organisms.

Growers may use dump tanks or bins for washing produce, which oftentimes relies on recirculated and batch water. Single-pass systems (i.e., spray bars) may also be used. For recirculated and batch water systems, it is particularly important to maintain sanitary quality of the water throughout its use. Potential contamination from produce in a batch water system, like a dump tank, can contaminate the water, thus spreading the microorganisms to, or cross-contaminating, other produce in the dump tank. The use of sanitizers in wash water systems can significantly reduce this risk of cross-contamination. Table 3-51 A provides a list of sanitizers that are EPA-approved for use in wash-water systems.

CLEANING AND SANITIZING FOOD CONTACT SURFACES

A critical component within a sanitation program includes procedures for cleaning and sanitizing, particularly for surfaces on which food comes into contact. The Produce Safety Rule states that growers must “inspect, maintain, and clean and, when necessary and appropriate, sanitize all food contact surfaces of equipment and tools used in covered activities as frequently as reasonably necessary to protect against contamination of covered produce.”

Identify Food Contact Surfaces

First identify all food contact surfaces, that is, those surfaces that will directly touch the produce. Examples of food contact surfaces include knives, harvest bins, transportation equipment, tables, conveyor belts, and packing materials. And don’t forget about employee hands—they can be a food contact surface, too—emphasizing the need for proper handwashing.

Cleaning and Sanitizing Procedures

Once the priorities for cleaning and sanitizing have been identified, implement proper cleaning and sanitizing procedures. Proper cleaning and sanitizing procedures follow four basic steps, as described in Table 3-51. Keep in mind that the PSR defines criteria for water used during harvest and postharvest activities that includes no detectable generic E. coli in a 100 mL water sample.

The use of appropriate detergents is important to consider as they help reduce the surface tension of water and surround and lift soil from the surface. Upon rinsing the detergent, the surface may appear visually clean; however, microorganisms can still be present even after the cleaning step. Food contact surfaces must include a sanitization step to reduce the number of microorganisms to a safe level. According to EPA definition, food contact sanitizers reduce the bacterial count on a surface by 5 logs or by 99.999%. For instance, if there are 1,000,000 bacteria on a surface before the sanitizer is applied, this number should be reduced to 10 bacterial cells after the sanitizer is applied and dried. A list of commonly used sanitizers can be found in Table 3-51. For food-contact surfaces, sanitizers are often formulated as a final step after cleaning and rinsing.

Table 3-50. SweetPotato Storage House Sanitation

<table>
<thead>
<tr>
<th>Material</th>
<th>Rate per 1,000 Cubic Feet of Space</th>
<th>Methods and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat</td>
<td>140°F 4 to 8 hr/day for 7 days or 180°F for 30 min</td>
<td>See remarks under water, produce, and equipment sanitation. The storage house, ventilation system, and equipment must be very clean and moist during the procedure. Caution: rot-causing organisms inside a drain will probably not be exposed to lethal temperature.</td>
</tr>
</tbody>
</table>
TABLE 3-51. BASIC CLEANING AND SANITIZING PROCEDURES FOR FOOD CONTACT SURFACES

<table>
<thead>
<tr>
<th>Step</th>
<th>Purpose</th>
<th>Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remove dirt and debris</td>
<td>Remove all loose soil and food residue.</td>
<td>This could include either the use of clean water or physical removal of soil using brush or broom; avoid the use of high-pressure sprayers to prevent spreading dirt and microorganisms through the air onto additional surfaces.</td>
</tr>
<tr>
<td>Clean</td>
<td>Further removal of soil and food residue to assure effective sanitizer use and prevent the formation of biofilms.</td>
<td>Use an appropriate detergent for the type of soil that needs to be removed.</td>
</tr>
<tr>
<td>Rinse</td>
<td>Remove detergent and soil/food residue.</td>
<td>Use clean water.</td>
</tr>
<tr>
<td>Sanitize</td>
<td>Reduction of microbial levels.</td>
<td>Apply a sanitizer approved for use on food contact surfaces following the instructions on the label.</td>
</tr>
</tbody>
</table>

Note that sanitizers and disinfectants are not the same. Disinfectants will eliminate all the organisms listed on the product label, which often includes not only bacteria, but viruses and fungi, as well. Disinfectants are not generally used for food-contact surfaces because they can leave harmful chemical residues and corrode equipment over time. Sanitizers are formulated to be used on food and food contact surfaces. Both sanitizers and disinfectants are considered antimicrobial pesticides and, therefore, regulated by the U.S. Environmental Protection Agency (EPA). Following the label is required by law. The label will typically provide information on how the chemical should be handled and whether the chemical and the concentration is meant to be used on food-contact surfaces. This information can also be found on the EPA Pesticide Product Labeling System (PPLS) website: https://www.epa.gov/pesticide-labels/pesticide-product-label-system-ppls-more-information by searching the chemical product with the EPA registration number found on the label.

Verifying and maintaining the correct concentration of a sanitizer is key to effectively reducing microbial levels on surfaces and in wash water. For more information on using chlorine and peroxyacetic acid for fruit and vegetable washing and packing, visit:

How to Use and Monitor Chlorine (Sodium/Calcium Hypochlorite) in Fruit and Vegetable Wash water and on Equipment and Food Contact Surfaces

Using Peroxyacetic Acid (PAA) in Fruit and Vegetable Washing and Packing
https://extension.tennessee.edu/publications/Documents/SP798-B.pdf

TABLE 3-51. A. WATER, PRODUCE, AND EQUIPMENT SANITATION

The trade names listed are intended to aid in identification of products and are intended neither to promote use of specific trade names nor to discourage use of generic products. Target rate and formulation are based on current EPA Pesticide Product Label. Make sure to read the product label before preparing any sanitizer solution for the designated use.

<table>
<thead>
<tr>
<th>Medium/Sanitizer</th>
<th>Contact time (seconds)</th>
<th>Rate of Material to Use</th>
<th>Formulation</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>calcium hypochlorite (Aquafit, ECR aquachlor, PPG Calcium Hypochlorite tablets)</td>
<td>120</td>
<td>25 to 400 chlorine</td>
<td>Varies between commodities</td>
<td>Sanitizing solution: 1 oz/200 gal to make a solution of 25 ppm available chlorine. A second wash is required.</td>
</tr>
<tr>
<td>chlorine dioxide (ProOxine, Anthium Dioxide, Afox 750)</td>
<td>10 to 20</td>
<td>3 to 5 chlorine</td>
<td>Varies between products; see product labels.</td>
<td>Maintain water pH between 6.0 and 10. Restricted to large operations. Requires automated and controlled injection systems. Wear PPE during preparation and handling. After treatment of fruits and vegetables follow with a clean water rinse. NOTE: Chlorine dioxide is explosive.</td>
</tr>
<tr>
<td>chlorine gas (99.9%)</td>
<td>—</td>
<td>Contact supplier for rates.</td>
<td>Restricted to very large operations. Requires automated and controlled injection systems. Regulated by both the EPA (water) and FDA (food contact surfaces).</td>
<td></td>
</tr>
<tr>
<td>hydrogen peroxide + peroxyacetic acid (BioSide HS)</td>
<td>Contact times vary depending on the governing sanitary code. Post-sanitization rinse is not necessary.</td>
<td>Contact supplier for rates.</td>
<td>Restricted to very large operations. Requires automated and controlled injection systems. Regulated by both the EPA (water) and FDA (food contact surfaces).</td>
<td></td>
</tr>
<tr>
<td>(PAA Sanitizer FP)</td>
<td>45</td>
<td>88 to 100 peroxyacetic acid</td>
<td>3 to 3.5 fl/16 gal</td>
<td></td>
</tr>
<tr>
<td>(Perasan A)</td>
<td>60</td>
<td>30 to 300 peroxyacetic acid</td>
<td>0.6 to 6 fl. oz/10 gal</td>
<td></td>
</tr>
<tr>
<td>(SaniDate 5.0)</td>
<td>45</td>
<td>27 to 96 peroxyacetic acid</td>
<td>59.1 to 209.5 fl. oz/1,000 gal</td>
<td></td>
</tr>
<tr>
<td>(StorOx 2.0)</td>
<td>30 to 180</td>
<td>26 to 93 peroxyacetic acid</td>
<td>1.5 to 5.4 fl. oz/10 gal</td>
<td></td>
</tr>
<tr>
<td>(Tsunami 100)</td>
<td>90</td>
<td>80 peroxyacetic acid</td>
<td>6.7 fl. oz/100 gal</td>
<td></td>
</tr>
<tr>
<td>(Victory)</td>
<td>90</td>
<td>30 to 80 peroxyacetic acid (foodborne pathogens)</td>
<td>1 fl. oz/16.4 gal</td>
<td></td>
</tr>
<tr>
<td>(VigorOx 15 F&V)</td>
<td>—</td>
<td>45 peroxyacetic acid (foodborne pathogens)</td>
<td>0.54 fl. oz/16 gal</td>
<td></td>
</tr>
<tr>
<td>(Maguard 5626)</td>
<td>30</td>
<td>28 to 90 peroxyacetic acid</td>
<td>60 to 195 fl. oz/1,000 gal</td>
<td></td>
</tr>
</tbody>
</table>

* Recommendations for active/available forms.
** Recommendations are for clean water only. Always wash off organic debris and soil with water prior to sanitizing. Rates and contact time are dependent on surface type.
The trade names listed are intended to aid in identification of products and are intended neither to promote use of specific trade names nor to discourage use of generic products. Target rate and formulation are based on current EPA Pesticide Product Label. Make sure to read the product label before preparing any sanitizer solution for the designated use.

TABLE 3-51 A. WATER, PRODUCE, AND EQUIPMENT SANITATION (cont’d)

<table>
<thead>
<tr>
<th>Medium/Sanitizer</th>
<th>Contact time (seconds)</th>
<th>Rate of Material to Use</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>**WASH WATER, DUMP TANK WATER, OR VEGETABLE WASH WATER ** (CONTD)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sodium hypochlorite (5.25%)</td>
<td>120</td>
<td>25 chlorine</td>
<td>1 fl. oz/15 gal</td>
</tr>
<tr>
<td>(Clorox Regular Bleach)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sodium hypochlorite (9.2%)</td>
<td>120</td>
<td>25 chlorine</td>
<td>1 fl. oz/20 gal</td>
</tr>
<tr>
<td>(Dibac)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sodium hypochlorite (12.5%)</td>
<td>120</td>
<td>25 chlorine</td>
<td>1 fl. oz/20 gal</td>
</tr>
<tr>
<td>(Agclor 310)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Dynachlor)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Extract-2)</td>
<td>120</td>
<td>25 chlorine</td>
<td>5 fl. oz/200gal</td>
</tr>
<tr>
<td>(JP Optimum CRS)</td>
<td>—</td>
<td>25 chlorine</td>
<td>0.75 fl. oz/10 gal</td>
</tr>
<tr>
<td>(Zep FS Formula 4665)</td>
<td>120</td>
<td>25 chlorine</td>
<td>5 fl. oz/200gal</td>
</tr>
<tr>
<td>EQUIPMENT ** ** (CONVEYORS, SCRUBBERS, PLASTIC HARVEST CONTAINERS, PEELERS, FIELD EQUIPMENT, ETC.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>calcium hypochlorite (Aquafit, ECR aquachlor, PPG Calcium Hypochlorite Tablets)</td>
<td>120</td>
<td>200 (non-porous surfaces), 600 (porous surfaces)</td>
<td>3 oz/20 gal</td>
</tr>
<tr>
<td>chlorine dioxide (ProOxine, Sanogene, Anthium Dioxide, Adox 750)</td>
<td>60 to 10 min</td>
<td>10 to 20 (porous or non-porous surfaces) 500 (ceilings, floors, and walls)</td>
<td>Varies between products; see product labels.</td>
</tr>
<tr>
<td>hydrogen peroxide + peroxyacetic acid</td>
<td>60 or more</td>
<td>93 to 500 peroxyacetic acid 0.7 to 3.8 fl. oz/10 gal</td>
<td>Consult labels as some products require a post-application rinse with potable water.</td>
</tr>
<tr>
<td>(BioSide HS)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Oxidate 2.0)</td>
<td>See label</td>
<td>100 to 300 peroxyacetic acid 1.25 to 1.5 fl. oz/gal</td>
<td></td>
</tr>
<tr>
<td>(PAA Sanitizer FP)</td>
<td>60 or more</td>
<td>88 to 130 peroxyacetic acid (non-porous surfaces) 1 to 1.5 fl. oz/5 gal</td>
<td></td>
</tr>
<tr>
<td>(Perasan A)</td>
<td>60 or more</td>
<td>82 to 500 peroxyacetic acid 1 to 6.1 oz/5 gal</td>
<td></td>
</tr>
<tr>
<td>(SaniDate 5.0)</td>
<td>60</td>
<td>147 to 500 peroxyacetic acid 1.6 to 5.4 fl. oz/5 gal</td>
<td></td>
</tr>
<tr>
<td>(StorOx 2.0)</td>
<td>60</td>
<td>86 peroxyacetic acid 0.5 fl. oz/1 gal</td>
<td></td>
</tr>
<tr>
<td>(VigorOx SP-15 F&V)</td>
<td>60</td>
<td>85 to 123 peroxyacetic acid and 57 to 82 hydrogen peroxide 0.31 to 0.45 fl. oz/5 gal</td>
<td></td>
</tr>
<tr>
<td>(Maguard 5626)</td>
<td>60</td>
<td>154 peroxyacetic acid 1 fl. oz/6 gal</td>
<td></td>
</tr>
</tbody>
</table>

* Recommendations for active/available forms.
** Recommendations are for clean water only. Always wash off organic debris and soil with water prior to sanitizing. Rates and contact time are dependent on surface type.
TABLE 3-51 A. WATER, PRODUCE, AND EQUIPMENT SANITATION (cont’d)

The trade names listed are intended to aid in identification of products and are intended neither to promote use of specific trade names nor to discourage use of generic products. Target rate and formulation are based on current EPA Pesticide Product Label. Make sure to read the product label before preparing any sanitizer solution for the designated use.

<table>
<thead>
<tr>
<th>Medium/Sanitizer</th>
<th>Contact time (seconds)</th>
<th>Rate of Material to Use</th>
<th>Method, Schedule, and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>sodium hypochlorite (5.25%) (Clorox Regular Bleach)</td>
<td>120</td>
<td>100 to 200 chlorine (non-porous surfaces)</td>
<td>1 to 1.5 fl. oz/3 gal</td>
</tr>
<tr>
<td>sodium hypochlorite (9.2%) (Dibac)</td>
<td>120</td>
<td>600 chlorine (porous surfaces)</td>
<td>12 fl. Oz/10 gal</td>
</tr>
<tr>
<td>sodium hypochlorite (12.5%) (Agdor 310) (Dynachlor)</td>
<td>120</td>
<td>100 to 200 chlorine (non-porous surfaces)</td>
<td>1 to 2 fl. oz/10 gal</td>
</tr>
<tr>
<td>sodium hypochlorite (12.5%) (Extract-2) (Zep FS Formula 4665)</td>
<td>120</td>
<td>600 chlorine (porous surfaces)</td>
<td>6 fl. oz/10 gal</td>
</tr>
<tr>
<td>quaternary ammonia (KleenGrow)</td>
<td>10 min</td>
<td>--</td>
<td>1 fl oz/gal</td>
</tr>
</tbody>
</table>

* Recommendations for active/available forms.
** Recommendations are for clean water only. Always wash off organic debris and soil with water prior to sanitizing. Rates and contact time are dependent on surface type.

VARIOUS AND ALTERNATIVE FUNGICIDES

TABLE 3-52. VARIOUS FUNGICIDES FOR USE ON VEGETABLE CROPS

R. A. Melanson, Extension Plant Pathologist, Mississippi State University; R. Singh, Plant Pathologist, LSU AgCenter (Last updated in 2020)

Not all trade names are registered in all states; check the registration status of each product prior to use. Check product labels to confirm that a product is labeled for your intended use.

<table>
<thead>
<tr>
<th>Common Name (FRAC)</th>
<th>Trade Name(s)</th>
<th>See fosetyl-Al.</th>
</tr>
</thead>
<tbody>
<tr>
<td>aluminum tris (O-ethyl phosphate) (FRAC P07)</td>
<td>A-Zox 2SS (Sharda USA) Acadia 25C (Atticus) Aframe (Syngenta) Arkus 250 (Sipcam Agro USA) Azoxy 25C Prime (Prime Source) AzoxyStar (Albaugh) Azoxyzone (LG Life Sciences) AZteroid FC (Vive Crop Protection) AZteroid FC 3.3 (Vive Crop Protection) Gold Rush (Altitude Crop Innovations) Heritage (Syngenta) Mazolin (AgBiome Innovations) Quadris (Syngenta) Satori Fungicide (Loveland Products) Tetrab (Winfield United) Tigris Azox 2SC (Tigris) Trevo (Innvec Crop Care) Willowood Azox 2SC (Willowood USA)</td>
<td></td>
</tr>
<tr>
<td>azoxystreobin (FRAC 11)</td>
<td>Bravo Ultrex (Adama) Bravo Weather Stik (Adama) Bravo Zn (Adama) Chloronil 720 (Syngenta) Chlorothalonil 720 (Drevel) Echo 720 Agricultural Fungicide (Sipcam Agro USA) Echo 90 DF Agricultural Fungicide (Sipcam Agro USA) Equus 720SST (AMVAC) Initiate 720 (Loveland Products) Praiz (Winfield United) Rialto 720F (Atticus)</td>
<td></td>
</tr>
<tr>
<td>chlorothalonil (FRAC M05)</td>
<td>Copper-Count-N (Mineral Research & Dev. Corp)</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 3-52. VARIOUS FUNGICIDES FOR USE ON VEGETABLE CROPS (cont’d)

R. A. Melanson, Extension Plant Pathologist, Mississippi State University; R. Singh, Plant Pathologist, LSU AgCenter (Last updated in 2020)

Not all trade names are registered in all states; check the registration status of each product prior to use. Check product labels to confirm that a product is labeled for your intended use.

<table>
<thead>
<tr>
<th>Common Name (FRAC)</th>
<th>Trade Name(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>copper hydroxide (FRAC M01)</td>
<td>Americop 40DF (Makhteshim Agan of North), Champ Dry Prill (Nufarm), Champ Formula 2F (Nufarm), Champ WG (Nufarm), Champ/ION++ (Nufarm), Kalmor (OHPI), Kocide 2000 (Certs USA), Kocide 3000 (Certs USA), Kocide HCU (Certs USA), KOP-Hydroxide (OAS), KOP Hydroxide 50W (OAS), Nu-Cop 3L (Albaugh), Nu-Cop 3HB (Albaugh), Nu-Cop 5DF (Albaugh), Nu-Cop 50WP (Albaugh)</td>
</tr>
<tr>
<td>copper octanoate (FRAC M01)</td>
<td>Camelot-O (SePRO), Cueva Fungicide Concentrate (Certs USA)</td>
</tr>
<tr>
<td>copper oxychloride (FRAC M01) + copper hydroxide (FRAC M01)</td>
<td>Badge SC (Gowan), Badge X2 (Gowan)</td>
</tr>
<tr>
<td>copper (cuprous) oxide (FRAC M01)</td>
<td>Nodox (NORDOX Industrier AS), Nodox 75WG (NORDOX Industrier AS)</td>
</tr>
<tr>
<td>copper sulfate (basic) (FRAC M01)</td>
<td>Basic Copper 53 (Albaugh), Cuprofix Ultra 40 Dispers (UPL), Cuproxat Flowable (Nufarm)</td>
</tr>
<tr>
<td>copper sulfate pentahydrate (FRAC M01)</td>
<td>KOP-5 (Drexel Chemical Company), Instill (S.T. Biologicals), Magna-Bon CS 2005 (Magna-Bon Agricultural Control Solutions), Mastercop (ADAMA), Phytom 35 (Phytom Corporation)</td>
</tr>
<tr>
<td>fludioxonil (FRAC 12)</td>
<td>Cannonball WG (Syngenta), Cannonball WP (Syngenta), Spirotan GHN (Nufarm)</td>
</tr>
<tr>
<td>fosetyl-Al (Aluminum tris (O-ethyl phosphate) (FRAC P07)</td>
<td>Alette WDG Fungicide (Bayer Crop Science), Linebacker WDG (NovaSource)</td>
</tr>
<tr>
<td>iprodione (FRAC 2)</td>
<td>Meteor (UPL), Nevada 4F (Adama), Rovral 4 Flowable Fungicide (FMC Corporation)</td>
</tr>
<tr>
<td>mancozeb (FRAC M03)</td>
<td>Dithane F-45 Rainshield (Corteva Agriscience), Dithane M45 (Corteva Agriscience), Fortuna 75WDG (Agrio Canada), Koverall (FMC Corporation), Manzate Max (UPL), Manzate Pro-Slick (UPL), Pennozeb 80WP (UPL), Roper DF Rainshield (Loveland Products)</td>
</tr>
<tr>
<td>mefenoxam (FRAC 4)</td>
<td>Apron XL (Syngenta), Ridomil Gold SL (Syngenta), Ridomil Gold GR (Syngenta), Ultra Flourish (Nufarm)</td>
</tr>
<tr>
<td>myclobutanil (FRAC 3)</td>
<td>Rally 40WSP (Corteva Agriscience), Sonoma 25EW AG (Albaugh), Sonoma 40WSP (Albaugh)</td>
</tr>
<tr>
<td>phosphate, potassium (FRAC P07)</td>
<td>Helena Prophylt (Helena), Revelle (Helena)</td>
</tr>
<tr>
<td>phosphate (mono- and dibasic salts) (FRAC P07)</td>
<td>Helena Prophylt (Helena), Phostrol (Nufarm), Phostrol 500 (Nufarm)</td>
</tr>
<tr>
<td>propiconazole (FRAC 3)</td>
<td>AmTide Propiconazole 41.8% EC (AmTide), Bumper 41.8 EC (Adama), Bumper 55 (Adama), Fitness (Loveland Products), Mentor (Syngenta), Propi-Star EC (Albaugh), PropiMax EC (Tide International), Propicure 3.6F (United Supplements, Inc.), Propicure 6.1F (United Supplements, Inc.), Propi-Star EC (Albaugh), ProMax EC (Tide International), Propi-Star PPZ (Shards USA), Sherr-Shard PPZ (Shards USA), Tilt (Syngenta), Topaz (Winfield Solutions), Vigil (Innovidg Crop Care)</td>
</tr>
<tr>
<td>sulfur (FRAC M02)</td>
<td>Cosavet-DF (Sulphur Mills Limited), CSC 80% Thiosperse (Martin Resources), CSC Dusting Sulfur (Martin Resources), CSC Thiofen 90 (Martin Resources), CSC Wetttable Sulfur (Martin Resources), Dusting Sulfur (Loveland Products; Wilbur-Ellis), First Choice Dusting Sulfur (Loveland Products), IAP Dusting Sulfur (Independent Agribusiness Professionals), InteGro Magic Sulfar Dust (InteGro Inc.), Kumulus DF (Microsio and Wilbur-Ellis), Liquid Sulfar Six (Helena), Micro Sulf (Nufarm), Microfine Sulfar (Loveland Products), Microthiol Dispers (United Phosphorus), Special Electric Sulfar (Wilbur-Ellis), Spray Sulfar (Wilbur-Ellis), Sulfar 6L (Arysta and Micro Flo), Sulfar 90W (Drexel), Sulfar DF (Wilbur-Ellis), THAT Flowable Sulfar (Stoller Enterprises), Thiolux (Loveland Products), Yellow Jacket Wettable Sulfar II (Georgia Gulf Sulfar)</td>
</tr>
<tr>
<td>tebuconazole (FRAC 3)</td>
<td>Monsoon (Loveland Products), Onset 3.6L (Winfield Solutions), Orus 3.6F (Adama), Tebu-Crop 3.6F (Shards USA), Tebuconazole 3.6F (Repar Corp.), Tebuconazole 3.6F (Solen Source Dynamics), TebuStar 3.6L (Albaugh), Tebuzeol 3.6F (United Phosphorus), Toledo 3.6F (Rotam)</td>
</tr>
<tr>
<td>thiophanate-methyl (FRAC 1)</td>
<td>Cercobin (Cheminova), Incognito 4.5F (Makhteshim Agan of North), Incognito 85WDG (MANA), Thiophanate Methyl 85WDG (Makhteshim Agan of North), T-Methyl 4.5 Ag (Helena), T-Methyl 4.5F (Nufarm), T-Methyl 70WSB (Nufarm), Topin 4.5FL (UP), Topin M WSB (UPL)</td>
</tr>
</tbody>
</table>
LEADING WITH YOU

As the leading provider of biopesticides for conventional and organic producers, our mission is to drive the most effective solutions and product innovations for the industry.

MARKET SHAPERS
Partnering with industry leaders and growers to successfully commercialize biopesticides in several markets while innovating the industry with new technologies including the very first biological plant activator, LifeGard®.

RELIABILITY
Trusted to protect crops time and time again with the broadest line of biological products tested in 6,000+ field trials for over three decades.

BROAD PORTFOLIO
Committed to providing a strong product portfolio to combat resistance, fight agronomic crop disease and pest challenges today and for the future.

MANUFACTURING EXPERTISE
Certis owns and operates three state-of-the-art production facilities, two of which are based in the United States for fermentation and a facility in India for plant extraction of neem-based products.

Our portfolio features sustainable alternatives for organic and conventional use including the broadest offering of over 30 OMRI-Listed Products, most of which are Residue Exempt and have short re-entry and pre-harvest intervals.

Celebrating 20 years of Certis Biologicals!
While our experience with biologicals spans decades more, this year we are celebrating 20 years as Certis Biologicals!

Discover the biopesticide solutions you need, learn from our thought leadership & industry expertise, connect with our world-class field support team and access labels & certifications.

www.CertisBio.com 1-800-250-5024
<table>
<thead>
<tr>
<th>Active Ingredient</th>
<th>Product</th>
<th>Target Diseases/Pests</th>
<th>PHI (days)</th>
<th>REI</th>
<th>Greenhouse Use</th>
<th>OMRI-Listed</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>allyl isothiocyanate</td>
<td>Dominus (/isagro)</td>
<td>Certain soil-borne fungi and nematodes</td>
<td>—</td>
<td>5 days</td>
<td>Yes</td>
<td>No</td>
<td>Preplant soil biofumigant. See label for other restrictions and application instructions. Check state registration status prior to use.</td>
</tr>
<tr>
<td>azadirachtin</td>
<td>AzaGuard (BioSafe Systems), AzaPro (Carrn-Care), Eccoizin Plus 1.2% ME (Amvac), Molt-X (BioWorks, Inc)</td>
<td>Plant parasitic nematodes</td>
<td>0*</td>
<td>4 hr</td>
<td>See label (AzaPro)</td>
<td>Yes (AzaPro)</td>
<td>*See label for use rates that may restrict the PHI. See labels for other restrictions and application instructions. Check state registration status of AzaPro prior to use.</td>
</tr>
<tr>
<td>Bacillus amyloliquefaciens strain D747</td>
<td>Double Nickel 55, Double Nickel LC (Certis), Triathlon BA (OHP)</td>
<td>Various diseases (see label for crop-specific diseases)</td>
<td>0</td>
<td>4 hr</td>
<td>Not prohibited (Double Nickel)</td>
<td>Yes (Triathlon)</td>
<td>Do not highly acidic or alkaline water to mix sprays. See labels for additional application instructions and restrictions. Double Nickel 55 and Double Nickel LC are not registered for use in OK. FRAC BM02.</td>
</tr>
<tr>
<td>Bacillus amyloliquefaciens strain F727 cells and spent fermentation media</td>
<td>Amplitude, Stargus (Marrone Bio Innovations)</td>
<td>Various diseases (see label for crop-specific diseases)</td>
<td>0</td>
<td>4 hr</td>
<td>Yes</td>
<td>Yes</td>
<td>See label for application instructions, restrictions, and vegetable crops on which products may be used. FRAC BM02.</td>
</tr>
<tr>
<td>Bacillus amyloliquefaciens strain MBI 600</td>
<td>Serfel (BASF)</td>
<td>Various foliar and soilborne diseases (suppression, see label for crop-specific diseases)</td>
<td>0</td>
<td>4 hr</td>
<td>Not prohibited</td>
<td>Yes</td>
<td>See label for application instructions, restrictions, and vegetable crops on which products may be used. FRAC BM02.</td>
</tr>
<tr>
<td>Bacillus mycoides isolate J</td>
<td>LifeGard WG (Certis)</td>
<td>Bacterial spot and speck, downy mildew, early blight, late blight, powdery mildew, white mold and others (see label for crop-specific diseases)</td>
<td>0</td>
<td>4 hr</td>
<td>Yes</td>
<td>Yes</td>
<td>See product label for restrictions and specific application instructions. FRAC P06.</td>
</tr>
<tr>
<td>Bacillus pumilus strain QST2808</td>
<td>Sonata (Bayer)</td>
<td>Early blight, late blight, downy mildew, powdery mildew, leaf blights, rust (see label for crop-specific diseases)</td>
<td>0</td>
<td>4 hr</td>
<td>Yes*</td>
<td>No</td>
<td>Products are not OMRI-listed, but labels state that they can be used for organic production. *See labels for specifics of greenhouse use.</td>
</tr>
<tr>
<td>Bacillus amyloliquefaciens strain ENV503</td>
<td>Companion WP, Companion Maxx (Douglas Plant Health)</td>
<td>Root and foliar diseases (see label for crop-specific diseases)</td>
<td>0</td>
<td>4 hr</td>
<td>Yes (WP)</td>
<td>No (Maxxx)</td>
<td>See product labels for instructions on various application uses, particularly those in greenhouse production. Check state registration status of products prior to use. FRAC BM02.</td>
</tr>
<tr>
<td>Bacillus subtilis strain IAB/BS03</td>
<td>AVIV (Seipasa)</td>
<td>Various diseases (see label for crop-specific diseases)</td>
<td>See label</td>
<td>4 hr</td>
<td>Yes</td>
<td>Yes</td>
<td>See product label for restrictions and specific application instructions. Check state registration status prior to use.</td>
</tr>
<tr>
<td>Bacillus subtilis strain QST 713</td>
<td>Cease (BioWorks Inc), Serenade ASO, Serenade Opti (Bayer)</td>
<td>Various diseases (see label for crop-specific diseases)</td>
<td>0</td>
<td>4 hr</td>
<td>Yes (Cease, Serenade ASO)</td>
<td>No (Serenade Opti)</td>
<td>See label for product-specific instructions regarding product application. See product labels for specific greenhouse crops to which Cease may be applied. FRAC BM02.</td>
</tr>
<tr>
<td>Bacillus subtilis var. amylovorans strains FZB24</td>
<td>Taegro 2 (isagro/Novozymes)</td>
<td>Various seedling diseases caused by Fusarium, Rhizoctonia, Phytophthora, and Pythium and suppression of various soil-borne and foliar diseases (see label for crop-specific diseases)</td>
<td>See label</td>
<td>4 hr</td>
<td>See label</td>
<td>Yes</td>
<td>See product label for restrictions, cautions, and specific application instructions. FRAC BM02.</td>
</tr>
</tbody>
</table>

1 Data on efficacy is limited or not available for many products listed in this table. Therefore, products listed in this table are not recommendations based on efficacy. Other active ingredients or products may also be available.
2 Consult product labels to determine vegetables for which a particular product is labeled.
3 Former names of diseases and pathogens listed in this table that may be still be listed on fungicide labels are as follows: Athelia rolfsii (formerly Sclerotium rolfsii); Fulvia fulva (formerly Cladosporium fulvum and Passalora fulva); Xanthomonas vesicatoria (formerly Xanthomonas campestris pv. vesicatoria).
TABLE 3-53. BIOPESTICIDES, FUNGICIDE, AND NEMATICIDE ALTERNATIVES FOR VEGETABLES (cont’d)

R. A. Melanson, Extension Plant Pathologist, Mississippi State University

<table>
<thead>
<tr>
<th>Active Ingredient ¹</th>
<th>Product ¹</th>
<th>Target Diseases/Pests</th>
<th>PHI (day(s))</th>
<th>REI</th>
<th>Greenhouse Use</th>
<th>OMRI-Listed</th>
<th>Comments ²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacillus thuringiensis subsp. kurstaki strain ABTS-351 fermentation solids, spores, and insecticidal toxins + methyl salicylate</td>
<td>Leap ES (Valent)</td>
<td>Pseudomonas spp. and Xanthomonas spp. (suppression)</td>
<td>See label</td>
<td>12 hr</td>
<td>Yes</td>
<td>No</td>
<td>For use on tomato and pepper. See product label for restrictions and application and mixing instructions. Leap has supplemental labels for Xanthomonas spp. in cabbage in AL, AR, FL, GA, KY, LA, MS, NC, TN, TX, VA, and WV and for Clavibacter michiganensis subsp. nebraskensis in maize (sweet corn) though April 24, 2023.</td>
</tr>
<tr>
<td>bacteriophage</td>
<td>AgriPhage (OmniLytics/Certis)</td>
<td>Bacterial spot and speck</td>
<td>–</td>
<td>4 hr</td>
<td>Yes (seedlings)</td>
<td>No</td>
<td>Product is not OMRI-listed, but label states that it can be used for organic production. Product is strain specific (active against Xanthomonas vesicatoria and Pseudomonas syringae pv. tomato) and is labeled for use on tomatoes and peppers. Do not tank-mix product with denaturing agents or copper salts. See label for application instructions. Check state registration status prior to use.</td>
</tr>
<tr>
<td>bacteriophage</td>
<td>AgriPhage-CMM (OmniLytics/Certis)</td>
<td>Bacterial canker</td>
<td>0</td>
<td>4 hr</td>
<td>Yes</td>
<td>No</td>
<td>Product is not OMRI-listed, but label states that it can be used for organic production. Product is specific for Clavibacter michiganensis pv. michiganensis that causes bacterial canker in tomato and is labeled only for use on tomatoes. See label for application and tank-mixing instructions. Check state registration status prior to use.</td>
</tr>
<tr>
<td>Burkholderia spp. strain A396 cells (heat-killed) and spent fermentation media</td>
<td>Contans WG (Sipcam Agro/Bayer)</td>
<td>Botrytis gray mold and powdery mildew</td>
<td>1</td>
<td>4 hr</td>
<td>Not prohibited</td>
<td>Yes</td>
<td>For use on some cucurbits and fruiting vegetables. Check state registration status prior to use.</td>
</tr>
<tr>
<td>Cinnamomum camphora leaves</td>
<td>Cinerate (Seipasa)</td>
<td>Diseases such as powdery mildew and rusts and sporulated forms of fungi as Botrytis cinerea and Fulvia fulva³</td>
<td>0</td>
<td>See label</td>
<td>Yes</td>
<td>Yes</td>
<td>See label for mixing instructions and restrictions. Cinerate is not registered for use in AL, AR, GA, KY, LA, MS, NC, OK, SC, TN, TX, VA, or WV.</td>
</tr>
<tr>
<td>Citric acid</td>
<td>Procidic (Green-spire); FungOUT (Isagro)</td>
<td>Various diseases (see label for crop-specific diseases)</td>
<td>See label (Procidic)</td>
<td>0</td>
<td>See label (FungOUT)</td>
<td>Yes</td>
<td>Check state registration status of products prior to use.</td>
</tr>
<tr>
<td>Coniothyrium minitans strain CON/M/91-08</td>
<td>Contans WG (Sipcam Agro/Bayer)</td>
<td>Sclerotinia (Sclerotinia sclerotiorum and S. minor)</td>
<td>0</td>
<td>4 hr</td>
<td>Yes</td>
<td>Yes</td>
<td>Apply to soil or potting medium. Do not tank-mix products with other fungicides. Rotation with other fungicides is allowed after 3 weeks following an application of this product. Tomato is not included in the list of fruiting vegetables on this label.</td>
</tr>
<tr>
<td>Copper</td>
<td>See disease control tables for individual crops. FRAC M01.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extract of Reynoutria sachalinensis</td>
<td>Regalia, Regalia CG (Marrone BioInnovations)</td>
<td>Certain bacterial and fungal diseases (see label for crop-specific diseases)</td>
<td>0</td>
<td>4 hr</td>
<td>Not prohibited (Regalia)</td>
<td>Yes</td>
<td>See labels for additional application instructions and restrictions. **Regalia has a 2(ee) recommendation for use against various diseases in leaf vegetable crops. Regalia CG is not registered for use in FL. **FRAC P05</td>
</tr>
<tr>
<td>Extract of Swinglea glutinosa</td>
<td>EcoSwing (Gowan)</td>
<td>Fungal diseases such as powdery mildew (oidioms) and Botrytis cinerea</td>
<td>0</td>
<td>4 hr</td>
<td>Yes</td>
<td>Yes</td>
<td>Rates vary for field and enclosed space production – see label. Dilution water should have a pH less than 6. Use product mixture promptly after mixing; do not tank mix sit for more than 6 hr. FRAC BM01.</td>
</tr>
</tbody>
</table>

¹ Data on efficacy is limited or not available for many products listed in this table. Therefore, products listed in this table are not recommendations based on efficacy. Other active ingredients or products may also be available.

² Consult product labels to determine vegetables for which a particular product is labeled.

³ Former names of diseases and pathogens listed in this table that may be still be listed on fungicide labels are as follows: *Athelia rolfsii* (formerly *Sclerotium rolfsii*); *Fulvia fulva* (formerly *Cladosporium fulvum* and *Passalora fulva*); *Xanthomonas* vesicatoria (formerly *Xanthomonas campestris pv. vesicatoria*).
TABLE 3-53. BIOPESTICIDES, FUNGICIDE, AND NEMATICIDE ALTERNATIVES FOR VEGETABLES (cont’d)

R. A. Melanson, Extension Plant Pathologist, Mississippi State University

<table>
<thead>
<tr>
<th>Active Ingredient ¹</th>
<th>Product ¹</th>
<th>Target Diseases/Pests</th>
<th>PH (days)</th>
<th>REI</th>
<th>Greenhouse Use</th>
<th>OMRI-Listed</th>
<th>Comments ²</th>
</tr>
</thead>
<tbody>
<tr>
<td>fats and glyceroic oils of margosa + azadirachtin</td>
<td>Debug Turbo (Agro Logistic Systems, Inc.)</td>
<td>Nematodes, powdery mildew, rust, Rhizoctonia solani, Sclerotinia sclerotiorum, Athelia rolfsii</td>
<td>See label</td>
<td>See label</td>
<td>See label</td>
<td>Yes</td>
<td>See label for application instructions and restrictions. Check state registration status prior to use.</td>
</tr>
<tr>
<td>garlic oil</td>
<td>Brandit Organics Aleo (Brandit)</td>
<td>Various bacterial and fungal diseases (see label)</td>
<td>None</td>
<td>None</td>
<td>Yes</td>
<td>Yes</td>
<td>Do not apply when temperatures are above 90°F. See label for application instructions and additional restrictions. Check state registration status prior to use.</td>
</tr>
<tr>
<td>Gliocladium canterula-tum strain J1446</td>
<td>LALSTOP G46 WG (Lallemand Plant Care)</td>
<td>Seed-borne and soilborne and certain foliar diseases (see labels)</td>
<td>0</td>
<td>4 hr</td>
<td>Not prohibited</td>
<td>Yes</td>
<td>See label for additional instructions, restrictions, and cautions. Check state registration status of product prior to use.</td>
</tr>
<tr>
<td>Gliocladium virens strain GL-21</td>
<td>SoilGard (OHP)</td>
<td>Damping-off and root rots</td>
<td>See label</td>
<td>See label</td>
<td>Yes</td>
<td>Yes</td>
<td>Do not apply in conjunction with chemical fungicides. See label for additional application instructions, precautions, and restrictions. FRAC BM02.</td>
</tr>
<tr>
<td>harpin-β protein</td>
<td>Employ, ProAct (Plant Health Care, Inc)</td>
<td>Nematodes (suppression)</td>
<td>See label</td>
<td>4 hr (Employ)</td>
<td>Yes (ProAct)</td>
<td>No</td>
<td>ProAct and Employ are used to suppress nematode egg production. See product labels for application instructions and restrictions. Check state registration status of products prior to use.</td>
</tr>
<tr>
<td>hydrogen dioxide + peroxyacetic acid</td>
<td>TerraClean 5.0, (BioSafe Systems)</td>
<td>Various diseases (see label for crop-specific diseases)</td>
<td>See label</td>
<td>0</td>
<td>Yes*</td>
<td>Yes</td>
<td>Product is a soil treatment product. See label for instructions on various application uses. *See label for restrictions on greenhouse use.</td>
</tr>
<tr>
<td>hydrogen peroxide + peroxyacetic acid</td>
<td>OxiDate 2.0, OxiDate 5.0, ZeroTol 2.0 (BioSafe Systems)</td>
<td>Various diseases (see label for crop-specific diseases)</td>
<td>0</td>
<td>See label (ProAct)</td>
<td>Yes (ZeroTol) Not prohibited (OxiDate)</td>
<td>Yes</td>
<td>Use spray solution the same day it is prepared; do not store spray or reuse mixed spray solution. Determine if products can be used safely on greenhouse crops prior to application. See product labels for additional precautions, restrictions, and instructions.</td>
</tr>
<tr>
<td>kaolin</td>
<td>Surround WP (Nova-Source)</td>
<td>Powdery mildew (cucurbit crops)</td>
<td>See label</td>
<td>4 hr</td>
<td>Yes</td>
<td>Yes</td>
<td>Suppression only. See product label for additional precautions, restrictions, and instructions.</td>
</tr>
<tr>
<td>laminarin</td>
<td>Vacciplant (UPL)</td>
<td>Various diseases (see label for crop-specific diseases)</td>
<td>0</td>
<td>4 hr</td>
<td>Yes*</td>
<td>No</td>
<td>Do not apply product post-harvest. *Product can be used in greenhouse applications prior to transplant. See labels for additional application instructions, precautions, and restrictions. FRAC PM4.</td>
</tr>
<tr>
<td>milk</td>
<td>N/A</td>
<td>Viruses (tomato mosaic virus (ToMV) and tobacco mosaic virus (TMV))</td>
<td>Untill spray dries</td>
<td>0</td>
<td>Yes</td>
<td>Yes</td>
<td>Spray plants until runoff. Dip hands every 5 min while handling plants. Dip tools for 1 min; do not rinse. Use in combination with seed treatments and sanitation practices. Sooty mold may develop on treated plants.</td>
</tr>
<tr>
<td>mineral oil</td>
<td>SootOil-X (Bio-Works); TriTek (Brandt)</td>
<td>Powdery mildew on certain vegetable crops</td>
<td>See label</td>
<td>4 hr</td>
<td>Yes</td>
<td>Yes</td>
<td>This product may also be used to control certain insects on listed crops. TriTek is not registered for use in AR or TN.</td>
</tr>
<tr>
<td>mustard oil and capsaicin</td>
<td>Dazitol (Champon Millennium Chemicals)</td>
<td>Various soilborne fungi and nematodes</td>
<td>See label</td>
<td>See label</td>
<td>See label</td>
<td>No</td>
<td>Dazitol is a preplant soil treatment product. See label for additional application instructions, precautions, and restrictions. Check state registration status of Dazitol prior to use.</td>
</tr>
<tr>
<td>neem oil (extract)</td>
<td>Triact 70 (OHP); Trilogy (Certis USA)</td>
<td>Foliar fungal diseases (see label for specifics)</td>
<td>See label</td>
<td>4 hr</td>
<td>Yes (Triact) Not prohibited (Trilogy)</td>
<td>Yes</td>
<td>May cause leaf burn; test a small number of plants before spraying entire crop. Toxic to honeybees. Check state registration status of Triact 70 prior to use. FRAC NC.</td>
</tr>
<tr>
<td>oil from cottonseed, corn, and garlic</td>
<td>GC-3, Mildew Cure (JH Biotech Inc)</td>
<td>Powdery mildew</td>
<td>See label</td>
<td>See label</td>
<td>See label</td>
<td>Yes</td>
<td>See label for application instructions, precautions, and restrictions. Check state registration status of products prior to use.</td>
</tr>
</tbody>
</table>

¹ Data on efficacy is limited or not available for many products listed in this table. Therefore, products listed in this table are not recommendations based on efficacy. Other active ingredients or products may also be available.

² Consult product labels to determine vegetables for which a particular product is labeled.

³ Former names of diseases and pathogens listed in this table that may be still be listed on fungicide labels are as follows: Athelia rolfsii (formerly Sclerotium rolfsii); Fulvia fulva (formerly Cladosporium fulvum and Passalora fulva); Xanthomonas vesicatoria (formerly Xanthomonas campestris pv. vesicatoria).
TABLE 3-53. BIOPESTICIDES, FUNGICIDE, AND NEMATICIDE ALTERNATIVES FOR VEGETABLES (cont’d)

<table>
<thead>
<tr>
<th>Active Ingredient 1</th>
<th>Product 1</th>
<th>Target Diseases/Pests</th>
<th>PHI (day(s))</th>
<th>REI</th>
<th>Greenhouse Use</th>
<th>OMRI-Listed</th>
<th>Comments 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>oil from rosemary, clove, thyme, and peppermint</td>
<td>Sporan EC ² (KeyPlex)</td>
<td>Various diseases (see label for diseases listed)</td>
<td>None</td>
<td>None</td>
<td>Yes</td>
<td>Yes</td>
<td>See label for application instructions. The use of an adjuvant is highly recommended. Sporan EC² is not registered for use in AL, AR, LA, KY, MS, OK, or WV.</td>
</tr>
<tr>
<td>Purpureocillium lilicanus strain 251</td>
<td>MeloCon LC (Certis USA)</td>
<td>Nematodes (see label for list of specific species)</td>
<td>See label</td>
<td>4 hr</td>
<td>Not prohibited</td>
<td>Yes</td>
<td>Biobeneficial. See product label for mixing restrictions and application instructions.</td>
</tr>
<tr>
<td>paraffinic oil</td>
<td>JMS Stylet-Oil, Organic JMS Stylet-Oil (JMS Flower Farms)</td>
<td>Various diseases (see label for crop-specific diseases)</td>
<td>0</td>
<td>4 hr</td>
<td>Yes</td>
<td>Yes</td>
<td>Do not apply to vegetables when temperatures are below 50°F. See labels for additional restrictions on spraying and for compatibility information. JMS Stylet-Oil is not registered for use in KY, MS, OK, or WV. Organic JMS Stylet-Oil is not registered for use in KY, MS, OK, TN, or WV.</td>
</tr>
<tr>
<td>phosphoric acid</td>
<td>See disease control tables for individual crops. FRAC P07.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>polyoxin D zinc salt</td>
<td>See disease control tables for individual crops. FRAC 19.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>potassium bicarbonate</td>
<td>Carb-O-Nator (Certis); Kaligreen (OAT AgriCo); MillStop SP (BioWorks)</td>
<td>Various diseases (see label for crop-specific diseases)</td>
<td>1 (Kaligreen) 0 (other)</td>
<td>1 hr (MillStop) 4 hr (other)</td>
<td>Yes (Carb-O-Nator, MillStop) Not prohibited (Kaligreen)</td>
<td>Yes</td>
<td>See labels for application instructions, precautions, and restrictions. FRAC NC.</td>
</tr>
<tr>
<td>potassium salts of fatty acids</td>
<td>Des-X (Certis), M-Pede (Gowan)</td>
<td>Powdery mildew</td>
<td>12 hr (Des-X) 0 (M-Pede)</td>
<td>12 hr</td>
<td>Yes</td>
<td>Yes</td>
<td>See product label for notes regarding plant sensitivity, site uses, and use restrictions.</td>
</tr>
<tr>
<td>potassium silicate</td>
<td>Sil-MATRIX LC (Certis USA)</td>
<td>Powdery mildew</td>
<td>0</td>
<td>4 hr</td>
<td>Not prohibited</td>
<td>Yes</td>
<td>Avoid contact with glass. Tank-mix with a non-ionic surfactant for best results.</td>
</tr>
<tr>
<td>Pseudomonas chlororaphis strain AFS009</td>
<td>Howler (AgBiome)</td>
<td>Rhizoctonia, Pythium, Fusarum, Phytophthora, Sclerotinia, Colletotrichum, and Botrytis</td>
<td>0</td>
<td>4 hr</td>
<td>Yes</td>
<td>Yes</td>
<td>See label for application instructions, cautions, restrictions, and crops on which this product may be used. Check state registration status prior to use. Howler has a 2(ee) Recommendation for some crops/diseases in TX.</td>
</tr>
<tr>
<td>rhamnolipid biosurfactant (from Pseudomonas aeruginosa)</td>
<td>Zonix (Jeneil Biosurfactant Co)</td>
<td>Certain fungal diseases (zoosporic diseases such as blight and downy mildew; see label for specific pathogen groups)</td>
<td>See label</td>
<td>See label</td>
<td>See label</td>
<td>Yes</td>
<td>See label for application instructions, cautions, and restrictions. Check state registration status prior to use.</td>
</tr>
<tr>
<td>sodium carbonate peroxhydrate</td>
<td>PerCarb (BioSafe Systems)</td>
<td>Various foliar bacterial and fungal diseases (see label for crop-specific diseases)</td>
<td>0</td>
<td>See label</td>
<td>Yes</td>
<td>Yes</td>
<td>Corrosive. Do not mix PerCarb with other products with an acidic pH. Not adjust pH after mixing of product. See label for additional instructions and information regarding compatibility and plant sensitivity. PerCarb is not registered for use in WV.</td>
</tr>
<tr>
<td>soybean oil</td>
<td>Oelotrol-M (NTS Research & Inc)</td>
<td>Downy mildew, powdery mildew, Botrytis, rust, sour rot, gray mold</td>
<td>See label</td>
<td>See label</td>
<td>Yes</td>
<td>Yes</td>
<td>Tank-mix with a spreader-sticker. Check state registration status prior to use.</td>
</tr>
<tr>
<td>Streptomyces sp. strain K61</td>
<td>Mycostop, Mycostop Mix (Verdera/AgBio Inc); LALSTOP K61 WP (Lallemand Plant Care)</td>
<td>Seed, root, and stem rots and wilt diseases caused by certain pathogens; suppression of certain diseases (see labels)</td>
<td>See label</td>
<td>See label</td>
<td>Yes</td>
<td>Yes</td>
<td>See labels for additional instructions, restrictions, and cautions. See product labels for crops and specific diseases on which products can be used. Check state registration status of products prior to use. FRAC BM02.</td>
</tr>
<tr>
<td>Streptomyces lydicus WYEC 108</td>
<td>Actinovate AG (Valent)</td>
<td>Foliar diseases and/or damping-off and rootrot (see label for crop-specific diseases)</td>
<td>0</td>
<td>See label</td>
<td>Not prohibited</td>
<td>Yes</td>
<td>See label for instructions on various application uses.</td>
</tr>
</tbody>
</table>

1 Data on efficacy is limited or not available for many products listed in this table. Therefore, products listed in this table are not recommendations based on efficacy. Other active ingredients or products may also be available.

2 Consult product labels to determine vegetables for which a particular product is labeled.

3 Former names of diseases and pathogens listed in this table that may be still be listed on fungicide labels are as follows: Athelia rolfsii (formerly Sclerotium rolfsii); Fulvia fulva (formerly Cladosporium fulvum and Passalora fulva); Xanthomonas vesicatoria (formerly Xanthomonas campestris pv. vesicatoria).
TABLE 3-53. BIOPESTICIDES, FUNGICIDE, AND NEMATICIDE ALTERNATIVES FOR VEGETABLES (cont’d)

<table>
<thead>
<tr>
<th>Active Ingredient 1</th>
<th>Product 1</th>
<th>Target Diseases/Pests</th>
<th>PHI (day(s))</th>
<th>REI</th>
<th>Greenhouse Use</th>
<th>OMRI-Listed</th>
<th>Comments 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>tea tree oil</td>
<td>Timorex Gold (Stockton)</td>
<td>Various foliar diseases (see label for list)</td>
<td>2</td>
<td>12 hr</td>
<td>See label</td>
<td>See label</td>
<td>Yes</td>
</tr>
<tr>
<td>thyme oil</td>
<td>Promax, Proud 3 (Huma Gro and Fertigold/Bio Huma Netics); Thyme Guard (Agro Research International)</td>
<td>See label</td>
<td>See label</td>
<td>See label</td>
<td>Yes</td>
<td>Yes</td>
<td>Products are for use in soil or planting applications or seed or propagative material treatments. Product should not be applied to chickpea. Not for use on aquatic crops. See product labels for instructions and restrictions on various application uses and for information on compatibility.</td>
</tr>
<tr>
<td>Trichoderma harzia-num Rifai strain T-22</td>
<td>RootShield WP, RootShield Granules (BioWorks)</td>
<td>Root pathogens (such as Pythium, Rhizoctonia, and Fusarium)</td>
<td>See label</td>
<td>See label</td>
<td>Yes</td>
<td>Yes</td>
<td>Products are for use in soil or planting mix applications or seed or propagative material treatments. Products should not be applied to chickpea. Not for use on aquatic crops. See product labels to determine if product can be applied when aboveground harvestable food is present. See product labels for instructions on various application uses and on compatibility with other products. Check state registration status of products prior to use.</td>
</tr>
<tr>
<td>Trichoderma harzia-num Rifai strain KRL-AG2</td>
<td>Trianum-G, Tri-anum-P (Koppert Biological Systems)</td>
<td>Soilborne or root pathogens (such as Pythium, Rhizoctonia, and Fusarium)</td>
<td>See label</td>
<td>See label</td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Trichoderma harzia-num Rifai strain T-22 + T. virens strain G-41</td>
<td>RootShield PLUS Granules, RootShield PLUS WP (BioWorks)</td>
<td>Soilborne or root pathogens (such as Pythium, Rhizoctonia, and Fusarium)</td>
<td>See label (Granules)</td>
<td>See label</td>
<td>0 (WP)</td>
<td>Yes</td>
<td>Products are for use in soil or planting mix applications or seed or propagative material treatments. Products should not be applied to chickpea. Not for use on aquatic crops. See product labels for instructions on various application uses and compatibility with other products. Check state registration status of products prior to use.</td>
</tr>
<tr>
<td>Trichoderma spp. (T. aspererium strain ICC 012 and T. gamsal strain ICC 080)</td>
<td>BIO-TAM 2.0 (Se-Pro)</td>
<td>Certain fungal diseases (see label)</td>
<td>See label</td>
<td>See label</td>
<td>Yes</td>
<td>Yes</td>
<td>See label for a list of incompatible fungicides and county restrictions in AR, OK, and TX. Check state registration status of Tenet prior to use.</td>
</tr>
<tr>
<td>Ulocladium oudemans-i strain U3</td>
<td>BotryStop (Bio-Works)</td>
<td>Botrytis spp. and Sclerotinia spp. (see label for crop-specific diseases)</td>
<td>See label</td>
<td>4 hr</td>
<td>Not prohibited</td>
<td>Yes</td>
<td>Product should be stored in a cool, dry place at or below 68°F. See label for tank-mixing and application instructions.</td>
</tr>
<tr>
<td>Yeast extract hydrolysate from Saccharomyces cerevisiae</td>
<td>KeyPlex 350 OR (KeyPlex)</td>
<td>bacterial leaf spot (tomatoes)</td>
<td>See label</td>
<td>4 hr</td>
<td>Not prohibited</td>
<td>No</td>
<td>See product labels for instructions on various application uses. Check state registration status prior to use.</td>
</tr>
</tbody>
</table>

1 Data on efficacy is limited or not available for many products listed in this table. Therefore, products listed in this table are not recommendations based on efficacy. Other active ingredients or products may also be available.
2 Consult product labels to determine vegetables for which a particular product is labeled.
3 Former names of diseases and pathogens listed in this table that may be still be listed on fungicide labels are as follows: Athelia rolfsii (formerly Sclerotium rolfsii); Fulvia fulva (formerly Cladosporium fulvum and Passalora fulva); Xanthomonas vesicatoria (formerly Xanthomonas campestris pv. vesicatoria).

FUNGICIDE RESISTANCE MANAGEMENT

The Fungicide Resistance Action Committee (FRAC, https://www.frac.info/) has organized fungicides according to FRAC groups, which reflect chemical structure and Mode of Action (MoA). Fungicides within a given FRAC group control fungi in a similar manner and share the same risk for fungicide resistance development. Some fungicides are referred to as high- or at-risk fungicides because of their specific MoAs and therefore have a high risk for resistance development.

Groups of fungicides, such as the QoI’s (FRAC group 11) or Phenylamides (FRAC group 4) are prone to resistance development due to very specific MoAs. Fungicides in high- or at-risk groups should be rotated and/or tank-mixed with broad spectrum, protectant fungicides (FRAC group M3 or M5) to delay the development of resistant strains of fungi. For more information on fungicide resistance management see: http://www.frac.info/

2022 Vegetable Crop Handbook for Southeastern United States 323
TABLE 3-54. FUNGICIDE MODES OF ACTION FOR FUNGICIDE RESISTANCE MANAGEMENT

L. Quesada-Ocampo, Plant Pathologist, North Carolina State University

<table>
<thead>
<tr>
<th>FRAC Code</th>
<th>Fungicide Resistance Risk</th>
<th>Group Name</th>
<th>Example Active ingredients</th>
<th>Example Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>P01</td>
<td>Unknown</td>
<td>Benzo-thiadiazole (BTH)</td>
<td>Acibenzolar-S-methyl</td>
<td>Actigard</td>
</tr>
<tr>
<td>M01</td>
<td>Low</td>
<td>Inorganic copper</td>
<td>Fixed copper</td>
<td>Copper (various)</td>
</tr>
<tr>
<td>M02</td>
<td>Low</td>
<td>Inorganic sulfur</td>
<td>Sulfur</td>
<td>Sulfur (various)</td>
</tr>
<tr>
<td>M03</td>
<td>Low</td>
<td>Dithiocarbamates</td>
<td>Mancozeb</td>
<td>Mancozeb (various)</td>
</tr>
<tr>
<td>M05</td>
<td>Low</td>
<td>Chloronitriles</td>
<td>Chlorothalonil</td>
<td>Chlorothalonil (various)</td>
</tr>
<tr>
<td>1</td>
<td>High</td>
<td>Methyl benzimidazole carbamates (MBC)</td>
<td>Thiophanate-methyl</td>
<td>Tospin M</td>
</tr>
<tr>
<td>2</td>
<td>Medium to high</td>
<td>Dicarboximides</td>
<td>Iprodione</td>
<td>Rovral</td>
</tr>
<tr>
<td>3</td>
<td>Medium</td>
<td>Demethylation inhibitors (DMI)</td>
<td>Triflumizole</td>
<td>Procure</td>
</tr>
<tr>
<td>4</td>
<td>High</td>
<td>Phenylamides (PA)</td>
<td>Mefenoxam</td>
<td>Ridomil Gold</td>
</tr>
<tr>
<td>7</td>
<td>Medium to high</td>
<td>Succinate dehydrogenase inhibitors (SDHI)</td>
<td>Boscalid</td>
<td>Endura</td>
</tr>
<tr>
<td>9</td>
<td>Medium</td>
<td>Anilino-pyrimidines (AP)</td>
<td>Pyrimethanil</td>
<td>Scala</td>
</tr>
<tr>
<td>11</td>
<td>High</td>
<td>Quinone outside inhibitors (QoI)</td>
<td>Pyraclostrobin</td>
<td>Cabrio</td>
</tr>
<tr>
<td>12</td>
<td>Low to medium</td>
<td>Phenylpyroles (PP)</td>
<td>Fludioxonil</td>
<td>Maxim</td>
</tr>
<tr>
<td>13</td>
<td>Medium</td>
<td>Azonaphthalenes (AZN)</td>
<td>Quinoxyfen</td>
<td>Quintec</td>
</tr>
<tr>
<td>14</td>
<td>Low to medium</td>
<td>Aromatic hydrocarbons (AH)</td>
<td>Dicloran</td>
<td>Botran</td>
</tr>
<tr>
<td>19</td>
<td>Medium</td>
<td>Poloxins</td>
<td>Polyoxin D</td>
<td>OSO</td>
</tr>
<tr>
<td>21</td>
<td>Medium to high</td>
<td>Quinone inside Inhibitors (Qii)</td>
<td>Cyazofamid</td>
<td>Ranman</td>
</tr>
<tr>
<td>22</td>
<td>Low to medium</td>
<td>Benzamides (toluamides)</td>
<td>Zoxamide</td>
<td>Gavel (contains zoxamide and mancozeb)</td>
</tr>
<tr>
<td>25</td>
<td>High</td>
<td>Glucopyranosyl antibiotics</td>
<td>Streptomycin</td>
<td>Agri-Mycin 17</td>
</tr>
<tr>
<td>27</td>
<td>Low to medium</td>
<td>Cyanoacetamide-oximes</td>
<td>Cymoxanil</td>
<td>Curzate</td>
</tr>
<tr>
<td>28</td>
<td>Low to medium</td>
<td>Carbamates</td>
<td>Propamocarb</td>
<td>Presidio</td>
</tr>
<tr>
<td>29</td>
<td>Low</td>
<td>Dinitroanilines</td>
<td>Fluazinam</td>
<td>Omega</td>
</tr>
<tr>
<td>P07</td>
<td>Low</td>
<td>Phosphonates</td>
<td>Fosetyl AL</td>
<td>Aliette</td>
</tr>
<tr>
<td>40</td>
<td>Low to medium</td>
<td>Carboxylic acid amides (CAA)</td>
<td>Dimethomorph</td>
<td>Forum</td>
</tr>
<tr>
<td>43</td>
<td>High</td>
<td>Benzamides</td>
<td>Fluopicolide</td>
<td>Presidio</td>
</tr>
<tr>
<td>45</td>
<td>Medium to high</td>
<td>Triazole-pyrimidylamine (QoSI)</td>
<td>Ametoctradin</td>
<td>Zampro (contains ametoctradin and dimethomorph)</td>
</tr>
<tr>
<td>49</td>
<td>Medium to high</td>
<td>Oxysterol Binding Protein Inhibitors (OSBPI)</td>
<td>Oxathiapiprolin</td>
<td>Orondis</td>
</tr>
</tbody>
</table>
The following online databases provide current product labels and other relevant information:

<table>
<thead>
<tr>
<th>Database</th>
<th>Web Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrian Label Database</td>
<td>https://home.agrian.com/</td>
</tr>
<tr>
<td>Crop Data Management Systems</td>
<td>http://www.cdms.net/Label-Database</td>
</tr>
<tr>
<td>EPA Pesticide Product and Label System</td>
<td>https://iaspub.epa.gov/apex/pesticides/?p=PPLS:1</td>
</tr>
<tr>
<td>Greenbook Data Solutions</td>
<td>https://www.greenbook.net/</td>
</tr>
<tr>
<td>Kelly Registration Systems 2</td>
<td>http://www.kellysolutions.com</td>
</tr>
<tr>
<td>Arkansas State Plant Board 3</td>
<td>https://www.agriculture.arkansas.gov/plant-industries/pesticide-section/registration/</td>
</tr>
</tbody>
</table>

Additional databases not included in this list may also be available. Please read the database terms of use when obtaining information from a particular website.

Available for AK, AL, AZ, CA, CO, CT, DE, FL, GA, IA, ID, IN, KS, MA, MD, MN, MO, MS, NC, ND, NE, NJ, NV, NY, OK, OH, OR, PA, SC, SD, VA, VT, WA, and WI. Kelly Registration Systems works with State Departments of Agriculture to provide registration and license information.

Arkansas products only.

Images courtesy of A. Mitchell and T. Campbell, Clemson University (right); K. Jennings, NC State University (top); L. Moore, NC State University (bottom).
TABLE 4-1. CHEMICAL WEED CONTROL ASPARAGUS

<table>
<thead>
<tr>
<th>Herbicide, Mode of Action Code* and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Pounds Active Ingredient Per Acre</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASPARAGUS (seeded and new crown plantings), Preemergence</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact kill of all green foliage, stale bed</td>
<td>paraquat, MOA 22 (Parazine) 3 SL (Gramoxone SL) 2 SL</td>
<td>1.7 to 2.7 pt 2.5 to 4 pt</td>
<td>0.6 to 1</td>
</tr>
<tr>
<td>Annual and perennial grass and broadleaf weeds, stale bed application</td>
<td>glyphosate, MOA 9 (numerous brands and formulations)</td>
<td>See labels</td>
<td>See labels</td>
</tr>
<tr>
<td>Broadleaf weeds and some annual grasses</td>
<td>caprylic acid, MOA 26 (Homeplate)</td>
<td>See label</td>
<td>See label</td>
</tr>
<tr>
<td>Annual grasses and small-seeded broadleaf including Palmer amaranth</td>
<td>linuron, MOA 7 (Lorox DF) 50 WDG</td>
<td>1 to 2 lb</td>
<td>0.5 to 1</td>
</tr>
<tr>
<td>ASPARAGUS (seeded and new crown plantings), Postemergence</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual grasses and certain broadleaf weeds</td>
<td>pendimethalin, MOA 3 (Prowl H₂O) 3.8 AS</td>
<td>Up to 8.2 pt</td>
<td>3.9</td>
</tr>
<tr>
<td>ASPARAGUS, (established at least 2 yr. old), Preemergence</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual grasses and small-seeded broadleaf weeds</td>
<td>linuron, MOA 7 (Lorox DF) 50 WDG</td>
<td>1 to 2 lb</td>
<td>0.5 to 1</td>
</tr>
<tr>
<td>napropamide, MOA 15 (Devrinol, Devrinol DF XT) 50 DF (Devrinol 2-XT) 2 EC</td>
<td>8 lb 2 gal</td>
<td>4</td>
<td>Apply to the soil surface in spring before weed and spear emergence. Do not exceed 8 lb per acre per year. See XT labels for information regarding delay in irrigation event.</td>
</tr>
<tr>
<td>trifluralin, MOA 3 (Treflan, Trifluralin, Treflan HFP, Treflan) 4 EC</td>
<td>1 to 4 pt</td>
<td>0.5 to 2</td>
<td>In winter or early spring, apply to dormant asparagus after ferns are removed but before spear emergence, or apply after harvest in late spring or early summer. In a calendar year, the maximum rate is 2 pt per acre for coarse soils, 3 pt on medium soils and 4 pt on fine soils. See label for further restrictions on rates for soil types and on split application. Apply at least 14 d prior to the first spear harvest or after final harvest. Do not apply over the top of emerged spears or severe injury may occur. Do not apply more than 2.4 pt per acre in sandy soils.</td>
</tr>
<tr>
<td>pendimethalin, MOA 3 (Prowl H₂O) 3.8 AS</td>
<td>See labels</td>
<td>See labels</td>
<td>Apply at least 14 days prior to the first spear harvest or after seasonal harvest is complete. Do not apply over the top of emerged spears as severe injury may occur. Do not apply at a rate of 2.4 pt per acre in sandy soils. See label for more information.</td>
</tr>
</tbody>
</table>

* Mode of action (MOA) code developed by the Weed Science Society of America.
TABLE 4-1. CHEMICAL WEED CONTROL ASPARAGUS (cont’d)

<table>
<thead>
<tr>
<th>Weed</th>
<th>Herbicide, Mode of Action Code* and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Pounds Active Ingredient Per Acre</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASPARAGUS, (established at least 2 yr. old), Preemergence (cont’d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual broadleaf and grass weeds</td>
<td>diuron, MOA 7 (Karmex) 80 DF (Direx) 4 L</td>
<td>1 to 4 lb 0.8 to 3.2 qt</td>
<td>0.8 to 3.2</td>
<td>Apply in spring before spear emergence but no earlier than 4 weeks before spear emergence. A second application may be made immediately after last harvest. Diuron also controls small, emerged weeds but less effectively.</td>
</tr>
<tr>
<td></td>
<td>flumioxazin, MOA 14 (Chateau) 51 SW</td>
<td>6 oz</td>
<td>0.188</td>
<td>Apply only to dormant asparagus no sooner than 14 days before spears emerge or after the last harvest. Do not apply more than 6 oz per acre during a single growing season. Provides residual weed control. Can be tank mixed with paraquat for control of emerged weeds. Apply in a minimum of 15-gal spray mix per acre. Add a nonionic surfactant at 1 qt per 100-gal of spray mix. A spray-grade nitrogen source (either ammonium sulfate at 2 to 2.5 lb per acre or 28 to 32 percent nitrogen solutions at 1 to 2 qt per acre) may be added to increase herbicidal activity.</td>
</tr>
<tr>
<td></td>
<td>metribuzin, MOA 5 (Metrifluzen, Tricor DF, Dimetrix DF) 75 WDG (TriCor 4F) 4 F</td>
<td>1.3 to 2.67 lb 2 to 4 pt</td>
<td>1 to 2</td>
<td>Make a single application to small, emerged weeds and the soil surface in early spring before spear emergence or after final cutting. Do not apply within 14 days of harvest or after spear emergence. A split application can be used. See label for rates.</td>
</tr>
<tr>
<td></td>
<td>terbacil, MOA 5 (Sinbar) 80 WDG</td>
<td>See labels</td>
<td>See labels</td>
<td>Apply in spring before weed emergence and spear emergence or immediately after last clean-cut harvest. Use the lower rate on sandy soils and the higher rate on silty or clay soils. Do not use on soils containing less than 1% organic matter nor on gravelly soils or eroded areas where subsoil or roots are exposed. See label about rotation restrictions. PHI = 5 days.</td>
</tr>
<tr>
<td></td>
<td>norflurazon, MOA 12 (Solicham) 80 DF</td>
<td>2.5 to 5 lb</td>
<td>2 to 4</td>
<td>Rate is soil type dependent. See label for rates and tank mix information. PHI = 14 d.</td>
</tr>
<tr>
<td></td>
<td>mesotrione, MOA 27 (Callisto) 4 F</td>
<td>See labels</td>
<td>See labels</td>
<td>Preemergence application. Apply as a spring application prior to spear emergence, after final harvest, or both. For optimum control, apply after fern mowing, disking, or other tillage operation but before spear emergence. Directed or semi directed application. Apply after final harvest with care to minimize contact with any standing asparagus spears to avoid crop injury. Do not make more than two applications per year or apply more than 7.7 oz per acre per year.</td>
</tr>
<tr>
<td>ASPARAGUS (established at least 2 yr. old), Postemergence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Broadleaf weeds</td>
<td>2,4-D, MOA 4 (amine 4 and various others)</td>
<td>1.3 to 2.67 lb</td>
<td>1.5 to 2</td>
<td>Apply in spring before spear emergence or immediately following a clean cutting. Make no more than two applications during the harvest season and these should be spaced at least 1 month apart. Postharvest sprays should be directed under ferns, avoiding contact with ferns, stems, or emerging spears. Add a nonionic surfactant at a rate of 1 qt per 100-gal spray mix. Do not apply if sensitive crops are planted nearby or if conditions favor drift. PHI = 3 days.</td>
</tr>
<tr>
<td></td>
<td>dicamba, diglycolamine salt, MOA 4 (Clarity) 4 L</td>
<td>8 to 16 oz</td>
<td>0.25 to 0.5</td>
<td>Apply to emerged and actively growing weeds in 40 to 60-gallons of diluted spray per treated acre immediately after cutting in the field but at least 24 hours before the next cutting. If spray contacts emerged spears, twisting of spears may occur. Discard twisted spears. See label for more information. Follow pre-cautions on label concerning drift to sensitive crops. PHI = 1 day.</td>
</tr>
<tr>
<td></td>
<td>carfentrazone-ethyl, MOA 14 (Aim) 2 EC</td>
<td>Up to 2 oz</td>
<td>Up to 0.031</td>
<td>Apply one to two applications. Use higher rate when weeds are under stress or are larger. See label for further instructions. PHI = 5 days.</td>
</tr>
<tr>
<td>Contact kill of emerged annual weeds, suppression of emerged perennial weeds, and contact kill of volunteer ferns</td>
<td>paraquat, MOA 22 (ParaZone) 3 SL (Gramoxone SL) 2 SL</td>
<td>1.7 to 2.7 pt 2.5 to 4 pt</td>
<td>0.6 to 1</td>
<td>Apply to control emerged weeds (including volunteer ferns). Apply in a minimum of 20-gal spray mix per acre to control weeds before spears emerge or after last harvest. Do not apply within 6 days of harvest. Use a nonionic surfactant at a rate of 1 qt per 100-gal spray mix or 1-gal approved crop oil concentrate per 100-gal spray mix. Paraquat product labels require applicators to take an EPA-approved training every 3 years to mix, load, and apply paraquat.</td>
</tr>
<tr>
<td>Volunteer ferns (seedling) and certain broadleaf weeds; established volunteer ferns</td>
<td>linuron, MOA 7 (Lorox DF) 50 WDG</td>
<td>1 to 2 lb</td>
<td>0.5 to 1</td>
<td>Apply before cutting season or immediately after. Do not apply within 1 day of harvest. Lorox will also control emerged annual broadleaf weeds that are up to 3 inches.</td>
</tr>
<tr>
<td>Annual and perennial grass and broadleaf weeds; established volunteer ferns</td>
<td>glyphosate, MOA 9 (numerous brands and formulations)</td>
<td>See labels</td>
<td>See labels</td>
<td>Apply to emerged weeds up to 1 week before spear emergence or immediately after last cutting has removed all aboveground parts or as a directed spray under mature fern. Avoid contact with the stem to reduce risk of injury. Perennial weeds may require higher rates of glyphosate. For spot treatment, apply immediately after cutting but prior to emergence of new spears. Certain glyphosate formulations may require the addition of a surfactant. Adding nonionic surfactant to glyphosate formulated with nonionic surfactant may result in reduced weed control.</td>
</tr>
</tbody>
</table>

* Mode of action (MOA) code developed by the Weed Science Society of America.
TABLE 4.1. CHEMICAL WEED CONTROL ASPARAGUS (cont’d)

<table>
<thead>
<tr>
<th>Weed</th>
<th>Herbicide, Mode of Action Code* and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Pounds Active Ingredient Per Acre</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASPARAGUS (established at least 2 yr. old), Postemergence (cont’d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yellow and purple nutsedge, wild radish, non-ALS resistant pigweed, cocklebur, ragweed, and other broadleaf weeds</td>
<td>halosulfuron-methyl, MOA 2 (Profine 75, Sandea) 75 DF</td>
<td>0.5 to 1.5 oz</td>
<td>0.024 to 0.072</td>
<td>Postemergence and post-transplant. Apply before or during harvesting season. Do not use nonionic surfactant or crop oil because unacceptable crop injury may occur. Without the addition of a nonionic surfactant, post emergence weed control maybe reduced. PHI = 1 day.</td>
</tr>
<tr>
<td></td>
<td>clethodim, MOA 1 (Intensity One, Select Max) 1 EC (Arrow) 2EC</td>
<td>9 to 16 oz</td>
<td>0.07 to 0.125</td>
<td>For Select Max, add 2 pt nonionic surfactant per 100-gal spray mixture. PHI = 1 day.</td>
</tr>
<tr>
<td></td>
<td>fluazifop, MOA 1 (Fusilade DX) 2 EC</td>
<td>6 to 16 oz</td>
<td>0.1 to 0.25</td>
<td>Apply to actively growing grasses not under drought stress. See label for rates for specific weeds. See label for adjuvant and rate. PHI = 1 day.</td>
</tr>
<tr>
<td></td>
<td>sethoxydim, MOA 1 (Poast) 1.5 EC</td>
<td>1.5 to 2.5 pt</td>
<td>0.3 to 0.5</td>
<td>Apply to emerged grasses. Consult manufacturer’s label for specific rates and best times to treat. See label for adjuvant and rate. Adding crop oil to Poast may increase the likelihood of crop injury at high air temperatures and high humidity. PHI = 1 day.</td>
</tr>
</tbody>
</table>

* Mode of action (MOA) code developed by the Weed Science Society of America.

TABLE 4.2. CHEMICAL WEED CONTROL BEANS

<table>
<thead>
<tr>
<th>Weed, Preplant and Preemergence</th>
<th>Herbicide, Mode of Action Code* and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Pounds Active Ingredient Per Acre</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEANS, Preplant and Preemergence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact kill of all green foliage, stale bed application</td>
<td>paraquat, MOA 22 (Parazone) 3 SL (Gramoxone SL) 2 SL</td>
<td>1.3 to 2.7 pt</td>
<td>0.5 to 1</td>
<td>Lima or snap beans only. Apply in a minimum of 10-gal spray mix per acre to emerged weeds before crop emergence as a broadcast or band treatment over a preformed row. Use sufficient water to give thorough coverage. Row should be formed several days ahead of planting and treating to allow maximum weed emergence. Use a nonionic surfactant at a rate of 16 to 32 oz per 100-gal spray mix or 1-gal approved crop oil concentrate per 100-gal spray mix. Paraquat product labels require applicators to take an EPA-approved training every 3 years to mix, load, and apply paraquat.</td>
</tr>
<tr>
<td></td>
<td>carfentrazone-ethyl, MOA 14 (Aim) 1.9 EW or 2 EC</td>
<td>Up to 2 oz</td>
<td>Up to 0.031</td>
<td>Legume vegetable group (Group 6) such as but not limited to edamame, kidney bean, lima bean, pinto bean, snap bean, soybean, and wax bean only. Apply prior to or no later than one day after planting. Use a nonionic surfactant or crop oil with Aim. See label for rate. Coverage is essential for good weed control. Can be tank mixed with other registered burndown herbicides.</td>
</tr>
<tr>
<td>Annual and perennial grass and broadleaf weeds, stale bed application</td>
<td>glyphosate, MOA 9 (numerous brands and formulations)</td>
<td>See labels</td>
<td>See labels</td>
<td>Various beans are covered. Apply to emerged weeds before crop emergence. Perennial weeds may require higher rates of glyphosate. Consult the manufacturer’s label for rates for specific weeds. Certain glyphosate formulations may require the addition of a surfactant. Adding nonionic surfactant to glyphosate formulated with nonionic surfactant may result in reduced weed control. See label for details.</td>
</tr>
<tr>
<td>Broadleaf weeds and some annual grasses</td>
<td>caprylic acid, MOA 26 (Homeplate)</td>
<td>See label</td>
<td>See label</td>
<td>May be applied prior to planting as a burndown treatment for emerged weeds, as a preemergence application after seeding but before emergence, as a directed or shielded application between rows. Use higher spray volumes for high weed density and weeds larger than 5 in. Coverage is important for acceptable weed control. May be tank mixed with other herbicides. See label for further instructions.</td>
</tr>
<tr>
<td>Annual grasses and small-seeded broadleaf weeds</td>
<td>ethalfuralin, MOA 3 (Sonalan HFP) 3 EC</td>
<td>1.5 to 3 pt</td>
<td>0.6 to 1.1</td>
<td>Dry beans only. See label for specific bean. Apply preplant and incorporate into the soil 2 to 3 in. deep using a rototiller or tandem disk. If groundcherry or nightshade is a problem, the rate range can be increased to 3 to 4.5 pt per acre. For broader spectrum control, Sonalan may be tank mixed with Eptam or Dual Magnum. Read the combination product labels for directions, cautions, and limitations before use.</td>
</tr>
<tr>
<td></td>
<td>dimethenamid, MOA 15 (Outlook) 6.0 EC</td>
<td>12 to 18 oz</td>
<td>0.55 to 0.85</td>
<td>Dry beans only. See label for specific bean. Apply preplant incorporated, preemergence to the soil surface after planting, or early postemergence (first to third trifoliate stage). Dry beans may be harvested 70 or more days after Outlook application. For soils having 3% or greater organic matter, see label for rate. See label for further instructions including those for tank mixtures.</td>
</tr>
</tbody>
</table>

*Mode of action (MOA) code developed by the Weed Science Society of America.
TABLE 4-2. CHEMICAL WEED CONTROL BEANS (cont'd)

<table>
<thead>
<tr>
<th>Weed</th>
<th>Herbicide, Mode of Action Code* and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Pounds Active Ingredient Per Acre</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEANS, Preplant and Preemergence (cont’d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual grasses and small-seeded broadleaf weeds (cont’d)</td>
<td>trifluralin, MOA 3 (Treflan, Trifluralin, Trifluralin HF, and other brands) 4 EC</td>
<td>1 to 1.5 pt</td>
<td>0.5 to 0.75</td>
<td>Dry, lima, or snap beans only. See label for specific bean. Apply preplant and incorporate into the soil 2 to 3 in. deep within 8 hours. Incorporate with a power-driven rototiller or by cross diskling.</td>
</tr>
<tr>
<td></td>
<td>pendimethalin, MOA 3 (Prowl H₂O) 3.8 AS</td>
<td>1.5 to 3 pt</td>
<td>0.75 to 1.5</td>
<td>Edible beans: dry, lima, or snap beans and certain others. See label for specific bean. Apply preplant and incorporate into the soil 2 to 3 in. using a power-driven rototiller or by cross diskling. DO NOT APPLY AFTER SEEDING.</td>
</tr>
<tr>
<td></td>
<td>S-metolachlor, MOA 15 (Brawl, Dual Magnum, Medal) 7.62 EC, (Brawl II, Dual II Magnum, Medal II) 7.64 EC</td>
<td>1 to 2 pt</td>
<td>0.95 to 1.91</td>
<td>Dry, lima, or snap beans and certain others. See label for specific bean, and specific rate based on soil texture. Apply preplant incorporated or preemergence to the soil surface after planting.</td>
</tr>
<tr>
<td></td>
<td>clomazone, MOA 13 (Command) 3ME</td>
<td>0.4 to 0.67 pt</td>
<td>0.15 to 0.25</td>
<td>Snap beans (succulent) only. Apply to the soil surface immediately after seeding. Offers weak control of pigweed. See label for further instructions. PHI = 45 days.</td>
</tr>
<tr>
<td></td>
<td>EPTC, MOA 8 (Eptam) 7 EC</td>
<td>3.5 pt</td>
<td>3</td>
<td>Dry or snap beans only. See label for specific bean. Apply preplant and incorporate immediately to a depth of 3 in. or may be applied at lay-by as a directed application before bean pods start to form to control late season weeds. See label for instructions on incorporation. May be tank mixed with Prowl. Do not use on black-eyed beans, lima beans, or other flat-podded beans except Romano.</td>
</tr>
<tr>
<td>Many broadleaf weeds</td>
<td>fomesafen, MOA 14 (Reflex 2 EC)</td>
<td>1 to 1.5 pt</td>
<td>0.25 to 0.375</td>
<td>Dry bean and snap beans only. Apply preplant surface or preemergence. Total use per year cannot exceed 1.5 pt per acre. See label for further instructions and precautions.</td>
</tr>
<tr>
<td></td>
<td>halosulfuron-methyl, MOA 2 (Profine 75, Sandea) 75 DG</td>
<td>0.5 to 0.75 oz</td>
<td>0.024 to 0.036</td>
<td>Dry beans and succulent snap beans including lima beans only. Apply after seedling but prior to cracking. Do not apply more than 0.67 oz product per acre to dry bean. Data are lacking on runner-type snap beans. See label for other instructions.</td>
</tr>
<tr>
<td>Broadleaf weeds including morningglory, pigweed, smartweed, and purslane</td>
<td>imazethapyr, MOA 2 (Pursuit) 2 EC</td>
<td>1.5 oz</td>
<td>0.023</td>
<td>Dry beans and lima beans only. See label for specific bean. Apply preemergence or preplant incorporated. Pursuit should be applied with a registered preemergence grass herbicide. Snap beans only. Apply preemergence or preplant incorporated. For preplant incorporated application, apply within 1 week of planting. May be used with a registered grass herbicide. Reduced crop growth, quality, yield, and/or delayed crop maturation may result. PHI = 30 days.</td>
</tr>
</tbody>
</table>

BEANS, Postemergence

<table>
<thead>
<tr>
<th>Weed</th>
<th>Herbicide, Mode of Action Code* and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Pounds Active Ingredient Per Acre</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual broadleaf weeds and yellow nutsedge</td>
<td>bentazon, MOA 6 (Basagran) 4 SL</td>
<td>1 to 1.5 pt</td>
<td>0.5 to 1</td>
<td>Dry, lima, or snap beans only. Apply overtop of beans and weeds when beans have one expanded trifoliate. Two applications spaced 7 to 10 days apart may be made for nutsedge control. Do not apply more than 2 qt per season or within 30 days of harvest. Use of crop oil as an adjuvant will improve weed control but will likely increase crop injury. See label regarding crop oil concentrate use. PHI = 30 days.</td>
</tr>
<tr>
<td>Many broadleaf weeds</td>
<td>fomesafen, MOA 14 (Relex) 2 EC</td>
<td>0.75 to 1 pt</td>
<td>0.188 to 0.25</td>
<td>Dry or snap beans only. See label for specific bean. Apply postemergence to dry beans or snap beans that have at least one expanded trifoliate leaf. Include a nonionic surfactant at 1 qt per 100-gal spray mixture. Total use per year cannot exceed 1.5 pt per acre. Do not apply within 45 days of dry bean harvest or 30 days of snap bean harvest. Postemergence application of fomesafen can cause significant injury to the crop. See label for further information.</td>
</tr>
<tr>
<td>Most broadleaf weeds less than 4 in. tall or rosettes less than 3 in. in diameter. Does not control grasses</td>
<td>carfentrazone-ethyl, MOA 14 (Aim) 1.9 EW or 2 EC</td>
<td>Up to 2 oz</td>
<td>Up to 0.031</td>
<td>Edible beans: edamame, kidney bean, lima bean, pinto bean, snap bean, and wax bean only. Apply post-directed using hooded sprayers for control of emerged weeds. If crop is contacted, burning of contacted area will occur. Use a nonionic surfactant or crop oil with Aim. See label for rate. Coverage is essential for good weed control. Can be tank mixed with other registered herbicides.</td>
</tr>
<tr>
<td>Yellow and purple nutsedge</td>
<td>EPTC, MOA 8 (Eptam) 7 EC</td>
<td>3.5 pt</td>
<td>3</td>
<td>Green or dry beans only. See label for specific bean. Do not use on lima bean or pea. Apply and incorporate at last cultivation as a directed spray to soil at the base of crop plants before pods start to form.</td>
</tr>
<tr>
<td>Yellow and purple nutsedge, common cocklebur, and other broadleaf weeds</td>
<td>halosulfuron-methyl, MOA 2 (Profine 75, Sandea) 75 DG</td>
<td>0.5 to 0.66 oz</td>
<td>0.024 to 0.031</td>
<td>Succulent snap beans, including lima beans. Apply after crop has reached 2-to-4 trifoliate leaf stage but prior to flowering. Postemergence application may cause significant but temporary stunting and may delay crop maturation. Use directed spray to limit crop injury. Do not apply within 30 days of harvest. See label for further precautions. Data lacking on runner-type snap beans.</td>
</tr>
</tbody>
</table>

*Mode of action (MOA) code developed by the Weed Science Society of America.
<table>
<thead>
<tr>
<th>Weed</th>
<th>Herbicide, Mode of Action Code* and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Pounds Active Ingredient Per Acre</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual broadleaf weeds, including morningglory, pigweed, smartweed, and purslane</td>
<td>imazethapyr, MOA 2 (Pursuit) 2 EC</td>
<td>1.5 to 3 oz</td>
<td>0.023 to 0.047</td>
<td>Dry beans and snap beans only. See label for specific bean. Use only 1.5 oz EC formulation on snap bean and up to 3 oz on dry beans. Apply postemergence to 1- to 3-in. weeds (one to four leaves) when dry beans have at least one fully expanded trifoliate leaf. Add nonionic surfactant at 2 pt per 100-gal of spray mixture with all postemergence applications. For snap beans, PHI = 30 days. For dry bean, PHI = 60 days. See label for instructions on use.</td>
</tr>
<tr>
<td>Most emerged weeds</td>
<td>glyphosate, MOA 9 (Roundup PowerMax) 5.5L</td>
<td>11 to 22 oz</td>
<td>0.5 to 0.94</td>
<td>Row middles only. See label for specific bean. Apply as a hooded spray in row middles, as shielded spray in row middles, as wiper applications in row middles, or post-harvest. Spot treatment is allowed in some bean crops. To avoid severe injury to crop, do not allow herbicide to contact foliage, green shoots, stems, exposed, roots, or fruit of crop. PHI = 14 days.</td>
</tr>
<tr>
<td>Annual and perennial grasses</td>
<td>sethoxydim, MOA 1 (Poast) 1.5 EC</td>
<td>1 to 1.5 pt</td>
<td>0.2 to 0.3</td>
<td>Dry or succulent beans only. See label for specific bean. For succulent beans, products with quizalofop are limited to snap beans. Apply to emerged grasses. Consult manufacturer’s label for specific rates and best times to treat. See label for specific adjuvant and rate. Adding crop oil to Poast may increase the likelihood of crop injury at high air temperatures. Do not apply on days that are unusually hot and humid. Do not apply within 15 days and 30 days of harvest for succulent and dry beans, respectively.</td>
</tr>
<tr>
<td></td>
<td>quizalofop p-ethyl, MOA 1 (Assure II) 0.88 EC</td>
<td>6 to 12 oz</td>
<td>0.04 to 0.08</td>
<td>Dry or succulent beans only. See label for specific bean. For succulent beans, products with quizalofop are limited to snap beans. Apply to emerged grasses. Consult manufacturer’s label for specific rates and best times to treat. With sethoxydim, add 1 qt of crop oil concentrate per acre. With quizalofop, add 1-gal oil concentrate or 1 qt nonionic surfactant per 100-gal spray. Adding crop oil to Poast may increase the likelihood of crop injury at high air temperatures. Do not apply on days that are unusually hot and humid. Do not apply within 15 days and 30 days of harvest for succulent and dry beans, respectively.</td>
</tr>
<tr>
<td></td>
<td>clethodim, MOA 1 (Arrow, Clethodim, Intensity, Select) 2 EC (Intensity One, Select Max) 1 EC</td>
<td>6 to 16 oz 9 to 16 oz</td>
<td>0.094 to 0.25 0.07 to 1.125</td>
<td>Dry or succulent beans. See label for specific bean. Select is registered for dry beans only. Apply postemergence for control of emerged grasses. See label for specific rate for crop. Adding crop oil may increase the likelihood of crop injury at high air temperatures. Very effective in controlling annual bluegrass. Apply to actively growing grasses not under drought stress. See label for minimum time from application to harvest.</td>
</tr>
</tbody>
</table>

*Mode of action (MOA) code developed by the Weed Science Society of America.
TABLE 4-3. CHEMICAL WEED CONTROL BEETS

<table>
<thead>
<tr>
<th>Weed</th>
<th>Herbicide, Mode of Action Code* and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Pounds Active Ingredient Per Acre</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEETS (Garden or Table), Preplant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual and perennial grasses and broadleaf weeds, stale bed application</td>
<td>glyphosate, MOA 9 (numerous brands and formulations)</td>
<td>See labels</td>
<td>See labels</td>
<td>Garden beets only. Apply to emerged weeds before seeding or after seeding but before crop emergence. Perennial weeds may require higher rates. Certain glyphosate formulations may require the addition of a surfactant. Adding nonionic surfactant to glyphosate formulated with nonionic surfactant may result in reduced weed control.</td>
</tr>
<tr>
<td>Emerged broadleaf and grass weeds</td>
<td>pelargonic acid, MOA 26 (Sicyte) 4.2 EC</td>
<td>See label</td>
<td>Apply as a preplant burndown treatment.</td>
<td></td>
</tr>
<tr>
<td>Emerged broadleaf weeds</td>
<td>pyraflufen, MOA 14 (ET Herbicide) 0.208 EC</td>
<td>0.5 to 2 oz</td>
<td>0.008 to 0.003</td>
<td>Garden beets only. Apply as a preplant burndown treatment in a minimum of 10-gallon solution per acre.</td>
</tr>
<tr>
<td>BEETS (Garden or Table), Preemergence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual grasses (crabgrass spp., foxtail spp., barnyardgrass, annual ryegrass, annual bluegrass) and broadleaf weeds (Lamium spp., lambsquarters, common purslane, redroot pigweed, shepherdspurse)</td>
<td>cycloate, MOA 8 (Ro-Neet) 6 EC</td>
<td>0.5 to 0.67 gal</td>
<td>3 to 4</td>
<td>Use on mineral soils only. Use higher rate on heavier soils. Read label for further instructions.</td>
</tr>
<tr>
<td>BEETS (Garden or Table), Postemergence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Broadleaf weeds including sowthistle clover, cocklebur, jimsonweed, vetch, ragweed</td>
<td>clopyralid, MOA 4 (Solix 3, Stinger) 3EC</td>
<td>0.25 to 0.5 pt</td>
<td>0.093 to 0.187</td>
<td>Apply to beets having 2 to 8 leaves when weeds are small and actively growing. Will control most legumes. Do not apply within 30 days of harvest. Do not apply more than 0.5 pt per acre per year. See label for information regarding rotational restrictions. PHI = 30 days.</td>
</tr>
<tr>
<td>Broadleaf weeds including wild mustard, common lambsquarters, common chickweed, purslane suppression</td>
<td>phenoxydipham, MOA 6 (Spin-Aid) 1.3EC</td>
<td>3 to 6 pt</td>
<td>0.5 to 1</td>
<td>Red garden beets only. Apply to red garden beets in the 2- to 6-leaf stage. Rate is dependent on crop stage. See label for specific rate. Best control occurs when applied to weeds in cotyledon to 2-leaf stage. Minor crop stunting may be observed for approximately 10 days. Do not include spray adjuvant. PHI = 60 days.</td>
</tr>
<tr>
<td>Broadleaf weeds including wild mustard, shepherd’s purse</td>
<td>triflusulfuron, MOA 2 (Upbeet) 50 DF</td>
<td>0.5 oz</td>
<td>0.0156</td>
<td>Garden beets. Apply when beets are at the 2- to 4-leaf stage. Additional applications may be made at the 4 to 6- and 6- to 8-leaf stages. Total amount must not exceed 1.5 oz per acre per growing season. PHI = 30 days.</td>
</tr>
<tr>
<td>Annual and perennial grasses</td>
<td>sethoxydim, MOA 1 (Poast) 1.5 EC</td>
<td>1 to 1.5 pt</td>
<td>0.2 to 0.3</td>
<td>Apply postemergence for control of emerged grasses. Consult manufacturer’s label for specific rates and best times to treat. See label for adjuvant and rate. Adding crop oil to Poast may increase the likelihood of crop injury at high air temperatures and high humidity. PHI = 60 days.</td>
</tr>
<tr>
<td></td>
<td>clethodim, MOA 1 (Arrow, Clethodim, Intensity, Select) 2 EC (Select Max, Intensity One) 1 EC</td>
<td>6 to 8 oz</td>
<td>0.094 to 0.125</td>
<td>Apply postemergence for annual grasses at 6 to 8 oz per acre or bermudagrass and johnsongrass at 8 oz per acre. See label for adjuvant and rate. Adding crop oil may increase the likelihood of crop injury at high air temperatures and high humidity. Very effective in controlling annual bluegrass. Apply to actively growing grasses not under drought stress. PHI = 30 days.</td>
</tr>
<tr>
<td>BEETS (Garden or Table), Row Middles Only</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Most emerged weeds except for resistant pigweed</td>
<td>glyphosate, MOA 9 (numerous brands and formulations)</td>
<td>See labels</td>
<td>See labels</td>
<td>Apply as a hooded spray in row middles, as shielded spray in row middles, as wiper applications in row middles, or postharvest. To avoid severe injury to crop, do not allow herbicide to contact foliage, green shoots, stems, exposed roots, or fruit of crop. The need for an adjuvant depends on brand used. PHI = 14 days.</td>
</tr>
<tr>
<td>Annual broadleaf weeds including morningglory, spiderwort, and very small pigweed</td>
<td>carfentrazone-ethyl, MOA 14 (Aim) 1.9 EW or 2 EC</td>
<td>Up to 2 oz</td>
<td>Up to 0.031</td>
<td>Apply post-directed using hooded sprayers for control of emerged weeds. If crop is contacted, burning of contacted area will occur. Use a crop oil concentrate or a nonionic surfactant with Aim. See label for directions. Coverage is essential for good weed control. Can be tank mixed with other registered herbicides.</td>
</tr>
</tbody>
</table>

*Mode of action (MOA) code developed by the Weed Science Society of America.

BROCCOLI – SEE COLE CROPS

CABBAGE – SEE COLE CROPS
TABLE 4-4. CHEMICAL WEED CONTROL IN CANTALOUPES (MUSKMELONS)

<table>
<thead>
<tr>
<th>Weed</th>
<th>Herbicide, Mode of Action Code* and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Pounds Active Ingredient Per Acre</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suppression or control of most annual grasses and broadleaf weeds, full rate required for nutseed control</td>
<td>metam sodium (Vapam HL) 42%</td>
<td>37.5 to 75 gal</td>
<td>15.7 to 31.5</td>
<td>For nutseed control, use 75-gal per acre. Rates are dependent on soil type and weeds present. Apply when soil moisture is at field capacity (100 to 125%). Apply through soil injection using a rotary tiller or inject with knives no more than 4 in. apart; follow immediately with a roller to smooth and compact the soil surface or with mulch. May apply through drip irrigation prior to planting a second crop on mulch. Plant back interval is often 14 to 21 days and can be 30 days in some environments. See label for all restrictions and additional information.</td>
</tr>
<tr>
<td>Broadleaf weeds and some annual grasses</td>
<td>caprylic acid, MOA 26 (Homeplate)</td>
<td>See label</td>
<td>See label</td>
<td>May be applied prior to planting as a burndown treatment for emerged weeds, as a preemergence application after seeding but before emergence. Use higher spray volumes for high weed density and weeds larger than 5 in. Coverage is important for acceptable weed control. May be tank mixed with other herbicides. See label for further instructions.</td>
</tr>
<tr>
<td>Most broadleaf weeds less than 4 in. tall or rosettes less than 3 in. in diameter; does not control grasses</td>
<td>carfentrazone-ethyl, MOA 14 (Aim) 1.9 EW or 2 EC</td>
<td>Up to 2 oz</td>
<td>Up to 0.031</td>
<td>Transplant crop. Apply no later than one day before transplanting crop.</td>
</tr>
<tr>
<td>Contact kill of all green foliage, stale bed application</td>
<td>paraquat, MOA 22 (Parazone) 3 SL (Gramoxone SL) 2 SL</td>
<td>1.3 to 2.7 pt 2 to 4 pt</td>
<td>0.5 to 1</td>
<td>Transplant crop. Apply no later than one day before transplanting crop. Use a crop oil at up to 1-gal per 100-gal of spray solution or nonionic surfactant at 2 pt per 100-gal of spray solution. Coverage is essential for good weed control. Can be tank mixed with other registered burndown herbicides.</td>
</tr>
<tr>
<td>Annual and perennial grass and broadleaf weeds, stale bed application</td>
<td>glyphosate, MOA 9 (numerous brands and formulations)</td>
<td>See labels</td>
<td>See labels</td>
<td>Apply to emerged weeds at least 3 days before seeding or transplanting. Perennial weeds may require higher rates of glyphosate. Consult manufacturer’s label for rates for specific weeds. When applying Roundup before transplanting crops into plastic mulch, carefully remove residues of this product from the plastic prior to transplanting. To prevent crop injury, residues can be removed by 0.5 in. rainfall or by applying water via a sprinkler system. Certain glyphosate formulations may require the addition of a surfactant. Adding nonionic surfactant to glyphosate formulated with nonionic surfactant may result in reduced weed control.</td>
</tr>
<tr>
<td>Emerged broadleaf weeds</td>
<td>pyraflufen, MOA 14 (ET Herbicide) 0.208 EC</td>
<td>0.5 to 2 oz</td>
<td>0.0008 to 0.003</td>
<td>Apply as a preplant burndown treatment in a minimum of 10-gallons per acre. Addition of a crop oil concentrate at 1 to 2% is recommended for optimum weed control. See label for additional information.</td>
</tr>
<tr>
<td>Emerged broadleaf and grass weeds</td>
<td>pelargonic acid, MOA 26 (Scythe) 4.2 EC</td>
<td>See label</td>
<td>See label</td>
<td>Apply before crop emergence and control emerged weeds. There is no residual activity. May be tank mixed with soil residual compounds. See label for instruction. May also be used as a banded spray between row middles. Use a shielded sprayer directed to the row middles to reduce drift to the crop.</td>
</tr>
<tr>
<td>Annual grasses and small-seeded broadleaf weeds</td>
<td>bensulide, MOA 8 (Prefar) 4 EC</td>
<td>5 to 6 qt</td>
<td>5 to 6</td>
<td>Apply preplant and incorporate into the soil 1 to 2 in. (1 in. incorporation is optimum) with a rototiller or tandem disk or apply preemergence after seeding and follow with irrigation. Check re-plant restrictions for small grains and other crops on label.</td>
</tr>
<tr>
<td>Annual grasses and broadleaf weeds; weak on pigweed and morningglory</td>
<td>clomazone, MOA 13 (Command) 3 ME</td>
<td>0.4 to 0.67 pt</td>
<td>0.15 to 0.25</td>
<td>Apply immediately after seeding or just prior to transplanting with transplanted crop. Roots of transplants must be below the chemical barrier when planting. See label for further instruction.</td>
</tr>
<tr>
<td>Annual grasses and some small-seeded broadleaf weeds</td>
<td>ethalfluralin, MOA 3 (Curbit) 3 EC</td>
<td>3 to 4.5 pt</td>
<td>1.1 to 1.7</td>
<td>Apply post plant to seeded crop prior to crop emergence, or as a banded spray between rows after crop emergence or transplanting. See label for timing. Shallow cultivation, irrigation, or rainfall within 5 days needed for good weed control. Do not use under mulches, row covers, or hot caps. Under conditions of unusually cold or wet soil and air temperatures, crop stunting and injury may occur. Crop injury can occur if seeding depth is too shallow.</td>
</tr>
<tr>
<td>Annual grasses and broadleaf weeds</td>
<td>ethalfluralin, MOA 3 + clomazone, MOA 13</td>
<td>2 to 6 pt</td>
<td>0.4 to 1.2 + 0.125 to 0.375</td>
<td>Apply to the soil surface immediately after seeding crop for preemergence control of weeds. DO NOT APPLY PRIOR TO PLANTING CROP. DO NOT SOIL INCORPORATE. May also be used as a banded treatment between rows after crop emergence or transplanting. Do not apply over or under plastic mulch.</td>
</tr>
<tr>
<td>Yellow and purple nutseed and broadleaf weeds</td>
<td>halosulfuron-methyl, MOA 2 (Profine 75, Sandea) 75 DG</td>
<td>0.5 to 0.75 oz</td>
<td>0.024 to 0.036</td>
<td>Apply after seeding or prior to transplanting crop. For transplanted crop, do not transplant until 7 days after application. Rate can be increased to 1 ounce of product per acre to middles between rows. PHI = 57 days.</td>
</tr>
</tbody>
</table>

*Mode of action (MOA) code developed by the Weed Science Society of America.
<table>
<thead>
<tr>
<th>Weed</th>
<th>Herbicide, Mode of Action Code* and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Pounds Active Ingredient Per Acre</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>CANTALOUE (MUSKMELON), Preplant and Preemergence (cont’d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual grasses, some small-seeded broadleaf weeds</td>
<td>pendimethalin, MOA 3 (Prowl H₂O) 3.8 AS</td>
<td>Up to 2.1 pt</td>
<td>Up to 1</td>
<td>Row middles only. May be applied sequentially in bareground and plasticulture production systems at a minimum of 21 days apart. Refer to label for specific instructions.</td>
</tr>
<tr>
<td>Broadleaf weeds and yellow nutsedge</td>
<td>imazosulfuron, MOA 2 (League) 75% WDG</td>
<td>4 to 6.4 oz</td>
<td>0.19 to 0.3</td>
<td>Row middles only. Use a shielded sprayer directed to the row middles to reduce drift to the crop. In plasticulture, prevent the spray from contacting the plastic. Consult label for further instructions. PHI = 48 days.</td>
</tr>
</tbody>
</table>

CANTALOUE (MUSKMELON), Postemergence				
Annual grasses and small-seeded broadleaf weeds	DCPA, MOA 3 (Dacthal) W-75 (Dacthal) 6 F	8 to 10 lb	4.5 to 7.5	Not labeled for transplanted crop. To improve preemergence control of late emerging weeds. Apply only when crop has 4 to 5 true leaves, is well established, and growing conditions are favorable. Will not control emerged weeds. Incorporation not recommended.
	trifluralin, MOA 3 (Treflan HFP, Trifluralin, Trifluralin HF) 4EC	1 to 2 pt	0.5 to 0.75	Apply as a directed spray to soil between rows after crop emergence when crop plants have reached three to four true leaf stage of growth. Avoid contacting foliage as slight crop injury may occur. Set incorporation equipment to move treated soil around base of crop plants. Will not control emerged weeds. PHI = 30 days.
	pendimethalin, MOA 3 (Prowl H₂O) 3.8	Up to 2.1 pt	Up to 1	May be applied sequentially in bareground and plasticulture production systems at a minimum of 21 days apart. Refer to label for specific instructions.
Yellow and purple nutsedge and broadleaf weeds including cocklebur, galinsoga, smartweed, ragweed, wild radish, and non-ALS resistant pigweed	halosulfuron-methyl, MOA 2 (Profine 75, Sandea) 75 DG	0.5 to 0.75 oz	0.024 to 0.036	Apply postemergence only after the crop has reached 3 to 5 true leaves but before first female flowers appear. Do not apply sooner than 14 days after transplanting. Use nonionic surfactant at 1 qt per 100-gal of spray solution with all postemergence applications. Avoid over-the-top application when temperature and humidity are high. PHI = 57 days.
Most broadleaf weeds less than 4 in. tall or rosettes less than 3 in. in diameter; does not control grasses	carfentrazone-ethyl, MOA 14 (Aim) 1.9 EW or 2 EC	Up to 2 oz	Up to 0.031	Apply post-directed using hooded sprayers for control of emerged weeds. If crop is contacted, burning of contacted area will occur. Use a crop oil concentrate or a nonionic surfactant with Aim. See label for directions. Coverage is essential for good weed control. Can be tank mixed with other registered herbicides.
Most emerged weeds	glyphosate, MOA 9 (numerous brands and formulations)	See labels	See labels	Apply as a hooded spray in row middles, as shielded spray in row middles, as wiper applications in row middles, or postharvest. To avoid severe injury to crop, do not allow herbicide to contact foliage, green shoots, stems, exposed, roots, or fruit of crop. PHI = 14 days.
Annual and perennial grasses only	sethoxydim, MOA 1 (Poast) 1.5 EC	1 to 1.5 pt	0.2 to 0.3	Apply to emerged grasses. Consult manufacturer’s label for specific rates and best times to treat. See label for adjuvant and rate. Adding crop oil to Poast may increase the likelihood of crop injury at high air temperatures and high humidity. PHI = 3 days.
	clethodim, MOA 1 (Arrow, Clethodim, Intensity, Select) 2 EC (Intensity One, Select Max) 1 EC	6 to 8 oz	0.094 to 0.125	Apply postemergence for control of emerged grass in cantaloupes (muskmelons). Adding crop oil may increase the likelihood of crop injury at high air temperatures and high humidity. Very effective in controlling annual bluegrass. Apply to actively growing grasses not under drought stress. PHI = 14 days.

*Mode of action (MOA) code developed by the Weed Science Society of America.
WEED CONTROL

glyphosate, MOA 9

Apply post plant within 2 days after planting but prior to crop emergence. See label.

Annual and perennial grass and broadleaf weeds, stale bed application

glyphosate, MOA 9 (numerous brands and formulations) See labels See labels

Apply to emerged weeds before seeding or crop emergence. Perennial weeds may require higher rates. Certain glyphosate formulations require the addition of surfactant. Adding nonionic surfactant to glyphosate formulated with nonionic surfactant may result in reduced weed control.

情緒 broadleaf and grass weeds

pelargonic acid, MOA 26 (Scythe) 4.2 EC See label See label

Apply as a preplant burndown or prior to emergence of plants from seed. There is no residual activity. May be tank mixed with soil residual herbicides. See label for instructions. May also be used as a banded spray between row middles. Use a shielded sprayer directed to the row middles to reduce drift to the crop.

CARROTS, Preplant

Contact kill of all green foliage, stale bed application

paraquat, MOA 22 (Parazine) 3 SL (Gramoxone SL) 2 SL 1.3 to 2.7 pt 2 to 4 pt 0.5 to 1 Apply to emerged weeds before crop emergence as a broadcast or band treatment over a preformed row. Use sufficient water to give thorough coverage. Row should be formed several days ahead of planting and treating to allow maximum weed emergence. Use a nonionic surfactant at a rate of 16 to 32 oz per 100-gal spray mix or 1-gal approved crop oil concentrate per 100-gal spray mix. Paraquat product labels require applicators to take an EPA-approved training every 3 years to mix, load, and apply paraquat.

Annual and perennial grass and broadleaf weeds, stale bed application

glyphosate, MOA 9 (numerous brands and formulations) See labels See labels

Apply to emerged weeds before seeding or crop emergence. Perennial weeds may require higher rates. Certain glyphosate formulations require the addition of surfactant. Adding nonionic surfactant to glyphosate formulated with nonionic surfactant may result in reduced weed control.

CARROTS, Preemergence

Annual grasses and small-seeded broadleaf weeds

trifluralin, MOA 3 (Treflan, Trifluralin) 4 EC 1 to 2 pt 0.5 to 1 Apply preplant and incorporate into the soil 2 to 3 in. within 8 hours. Use lower rate on coarse soils with less than 2% organic matter.

Broadleaf and grass weeds

prometryn, MOA 5 (Caparol) 4L 2 to 4 pt 1 to 2 Apply as preemergence and or postemergence over the top to carrot. Make POST application through the six-leaf stage of carrot. See label for application rate and crop rotation restrictions. PHI = 30 days.

pendimethalin, MOA 3 (Prowl H2O) 3.8 AS 2 pt 0.95 Apply post plant within 2 days after planting but prior to crop emergence. See label for instruction on layby treatment. PHI = 60 days.

CARROTS, Postemergence

Annual grasses and broadleaf weeds

linuron, MOA 7 (Lorox DF) 50 WDG 1.5 to 3 lb 0.75 to 1.5 Apply as a broadcast spray after carrots are at least 3 in. tall. If applied earlier crop injury may occur. Avoid spraying after three or more cloudy days. Repeat applications may be made, but do not exceed 4 lb of Lorox DF per acre per season. Do not use a surfactant or crop oil. Carrot varieties vary in their resistance; therefore, determine tolerance to Lorox DF before adoption as a field practice to prevent potential crop injury. See label for further directions. PHI = 14 days.

Annual broadleaf weeds and some grasses

metribuzin, MOA 5 (Dimetric, Metribuzin, TriCor DF) 75 WDG (TriCor 4F) 4 F 0.33 lb 0.5 pt 0.25 0.25 Apply overtap when weeds are less than 1 in. tall and carrots have 5 to 6 true leaves. A second application may be made after a time interval of at least 3 weeks. Do not apply unless 3 sunny days precede application. Do not apply within 3 days of other pesticide applications. PHI = 60 days.

Annual and perennial grasses

clothodin, MOA 1 (Arrow, Clothodin, Intensity, Select) 2 EC (Select Max) 1 EC 6 to 8 oz 9 to 16 oz 0.094 to 0.125 0.07 to 0.125 Apply to actively growing grasses not under drought stress. See label for adjuvant and rate. Adding crop oil may increase the likelihood of crop injury at high air temperatures and high humidity. Do not mix with other pesticides. Very effective in controlling annual bluegrass. PHI = 30 days.

flumioxazin, MOA 1 (Fusilade DX) 2 EC 6 to 16 oz 0.1 to 0.25 Apply to actively growing grasses not under drought stress. Up to 48 oz of Fusilade DX may be applied per year. See label for rates for specific weeds. See label for adjuvant and rate. Do not mix with other pesticides. PHI = 45 days.

sethoxydim, MOA 1 (Poast) 1.5 EC 1 to 1.5 pt 0.2 to 0.3 Apply to actively growing grasses not under drought stress. Consult manufacturer’s label for specific rate and best times to treat. Adding crop oil may increase the likelihood of crop injury at high air temperatures and high humidity. Do not apply with other pesticides. PHI = 30 days.

CARROTS, Row Middles

Most broadleaf weeds less than 4 in. tall or rosettes less than 3 in. in diameter; does not control grasses

carfenprazone-ethyl, MOA 14 (Aim) 1.9 EW or 2 EC Up to 2 oz Up to 0.031 Apply as a hooded spray in row middles for control of emerged weeds. If crop is contacted, burning of contacted area will occur. Use a crop oil concentrate or a nonionic surfactant with Aim. See label for directions. Coverage is essential for good weed control. Can be tank mixed with other registered herbicides.

Most emerged weeds

glyphosate, MOA 9 (numerous brands and formulations) See labels See labels

Apply as a hooded spray in row middles, as shielded spray in row middles, as wiper applications in row middles, or postharvest. To avoid severe injury to crop, do not allow herbicide to contact foliage, green shoots or stems, exposed roots, or fruit of crop. PHI = 14 days.

TABLE 4-5. CHEMICAL WEED CONTROL IN CARROTS

<table>
<thead>
<tr>
<th>Weed</th>
<th>Herbicide, Mode of Action Code* and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Pounds Active Ingredient Per Acre</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARROTS, Preplant</td>
<td>Contact kill of all green foliage, stale bed application</td>
<td>paraquat, MOA 22 (Parazine) 3 SL (Gramoxone SL) 2 SL</td>
<td>1.3 to 2.7 pt 2 to 4 pt</td>
<td>0.5 to 1</td>
</tr>
<tr>
<td>CARROTS, Preemergence</td>
<td>Annual and perennial grass and broadleaf weeds, stale bed application</td>
<td>glyphosate, MOA 9 (numerous brands and formulations)</td>
<td>See labels</td>
<td>See labels</td>
</tr>
<tr>
<td>CARROTS, Postemergence</td>
<td>Annual grasses and broadleaf weeds</td>
<td>linuron, MOA 7 (Lorox DF) 50 WDG</td>
<td>1.5 to 3 lb</td>
<td>0.75 to 1.5</td>
</tr>
<tr>
<td>CARROTS, Row Middles</td>
<td>Most broadleaf weeds less than 4 in. tall or rosettes less than 3 in. in diameter; does not control grasses</td>
<td>carfenprazone-ethyl, MOA 14 (Aim) 1.9 EW or 2 EC</td>
<td>Up to 2 oz</td>
<td>Up to 0.031</td>
</tr>
</tbody>
</table>

*Mode of action (MOA) code developed by the Weed Science Society of America.

CAULIFLOWER – SEE – COLE CROPS
TABLE 4-6. CHEMICAL WEED CONTROL IN CELERY

<table>
<thead>
<tr>
<th>Weed</th>
<th>Herbicide, Mode of Action Code* and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Pounds Active Ingredient Per Acre</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>CELERY, Preplant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual and perennial grass and broadleaf weeds, stale bed application</td>
<td>glyphosate, MOA 9 (numerous brands and formulations)</td>
<td>See labels</td>
<td>See labels</td>
<td>Apply to emerged weeds before crop emergence. Perennial weeds may require higher rates. Consult the manufacturer’s label for rates for specific weeds. Certain glyphosate formulations require the addition of surfactant. Adding nonionic surfactant to glyphosate formulated with nonionic surfactant may result in reduced weed control.</td>
</tr>
<tr>
<td>Broadleaf weeds and some annual grasses</td>
<td>caprylic acid, MOA 26 (Homeplate)</td>
<td>See label</td>
<td>See labels</td>
<td>May be applied prior to planting as a burndown treatment for emerged weeds, as a preemergence application after seeding but before emergence, as a directed or shielded application between rows or as a post-harvest application. Use higher spray volumes for high weed density and weeds larger than 5 in. Coverage is important for acceptable weed control. May be tank mixed with other herbicides. See label for further instructions.</td>
</tr>
<tr>
<td>Cutleaf evening primrose, Carolina geranium, henbit, and a few grasses</td>
<td>oxyfluorfen, MOA 14 (Goatender) 4 F (Goal 2 XL) 2 EC</td>
<td>Up to 1 pt</td>
<td>Up to 0.5</td>
<td>Transplants only. Apply to soil surface of pre-formed beds at least 30 days prior to transplanting.</td>
</tr>
<tr>
<td>Emerged broadleaf and grass weeds</td>
<td>pelargonic acid, MOA 26 (Scythe) 4.2 EC</td>
<td>See label</td>
<td>See label</td>
<td>Apply as a preplant burndown. There is no residual activity. May be tank mixed with soil residual compounds. See label for instructions. May also be used as a banded spray between row middles. Use a shielded sprayer directed to the row middles to reduce drift to the crop.</td>
</tr>
<tr>
<td>CELERY, Preemergence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual grasses and small-seeded broadleaf weeds</td>
<td>trifluralin, MOA 3 (Treflan, Treflan HFP, Trifluralin) 4 EC</td>
<td>1 to 2 pt</td>
<td>0.5 to 1</td>
<td>Apply incorporated to direct seeded or transplant celery before planting, at planting, or immediately after planting. Use lower rate on coarse soils with less than 2% organic matter.</td>
</tr>
<tr>
<td></td>
<td>bensulide (Prefar) 4-E</td>
<td>5 to 6 qt</td>
<td>5 to 6</td>
<td>Transplants only. Apply after planting. Irrigate immediately after application. See label for rotation restrictions.</td>
</tr>
<tr>
<td>CELERY, Postemergence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual broadleaf and grass weeds</td>
<td>linuron, MO 7 (Lorox DF) 50 WDG</td>
<td>1.5 to 3 lb</td>
<td>0.75 to 1.5</td>
<td>Apply after celery is transplanted and established but before celery is 8 in. tall. Grasses should be less than 2 in. in height, and broadleaf weeds should be less than 6 in. tall. Do not tank mix with other products including surfactant or crop oil. Avoid spraying after 3 or more cloudy days or when temperature exceeds 85°F. Not recommended for sands or loamy sand soil. PHI = 45 days.</td>
</tr>
<tr>
<td></td>
<td>clethodim, MOA 1 (Arrow, Clethodim, Intensity, Select) 2 EC (Select Max) 1 EC</td>
<td>6 to 8 oz</td>
<td>0.094 to 0.125</td>
<td>Apply to actively growing grasses not under drought stress. See label for adjuvant and rate. Very effective in controlling annual bluegrass. Adding crop oil may increase the likelihood of crop injury at high air temperature and high humidity. PHI = 30 days.</td>
</tr>
<tr>
<td></td>
<td>sethoxydim, MOA 1 (Poast) 1.5 EC</td>
<td>1 to 1.5 pt</td>
<td>0.2 to 0.3</td>
<td>Apply to actively growing grasses not under drought stress. See label for adjuvant and rate. Adding crop oil to Poast may increase the likelihood of crop injury at high air temperatures and high humidity. PHI = 30 days.</td>
</tr>
<tr>
<td>Most broadleaf weeds less than 4 in. tall or rosettes less than 3 in. in diameter; does not control grasses</td>
<td>carfentrazone-ethyl, MOA 14 (Aim) 1.9 EW or 2 EC</td>
<td>Up to 2 oz</td>
<td>Up to 0.031</td>
<td>Apply post-directed using hooded sprayers for control of emerged weeds. If crop is contacted, burning of contacted area will occur. Use a crop oil concentrate or a nonionic surfactant with Aim. See label for directions. Coverage is essential for good weed control. Can be tank mixed with other registered herbicides.</td>
</tr>
<tr>
<td>Most emerged weeds</td>
<td>glyphosate, MOA 9 (numerous brands and formulations)</td>
<td>See labels</td>
<td>See labels</td>
<td>Row middles only. Apply as a hooded spray in row middles, as shielded spray in row middles, as wiper applications in row middles, or postharvest. To avoid severe injury to crop, do not allow herbicide to contact foliage, green shoots, stems, exposed, roots, or fruit of crop. PHI = 14 days.</td>
</tr>
</tbody>
</table>

*Mode of action (MOA) code developed by the Weed Science Society of America.
TABLE 4-7. CHEMICAL WEED CONTROL IN CILANTRO

<table>
<thead>
<tr>
<th>Weed</th>
<th>Herbicide, Mode of Action Code* and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Pounds Active Ingredient Per Acre</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>CILANTRO, Preemergence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual grasses and broadleaf weeds</td>
<td>prometryn, MOA 5 (Caparol) 4L</td>
<td>2 to 3.2 pt</td>
<td>1 to 1.6</td>
<td>Rates are soil-dependent. See label for more information. Do not use on sand or loamy soils. PHI = 30 days. Check label for crop rotation restrictions.</td>
</tr>
<tr>
<td>Annual grasses small-seeded broadleaf weeds</td>
<td>linuron, MOA 7 (Lorox DF) 50 WDG</td>
<td>1 to 2 lb</td>
<td>0.5 to 1</td>
<td>Some cultivars may be susceptible to injury. Do not use on sandy or loamy soils, or soils with less than 1% organic matter. Plant at least 0.5 in. deep. PHI for leaves = 21 days. PHI for coriander seed = 155 days.</td>
</tr>
<tr>
<td>CILANTRO, Postemergence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual grasses and small-seeded broadleaf weeds (1 to 3 leaf stage)</td>
<td>linuron, MOA 7 (Lorox DF) 50 WDG</td>
<td>1 to 2 lb</td>
<td>0.5 to 1</td>
<td>Apply to crop plants with a minimum of 3 true leaves to avoid significant injury. Early occurring minor injury should not affect yield. If no injury occurs after the initial application, a second may be made 14 days after the first. Injury may occur under high temperatures, following cloudy periods or when mixed with other pesticides or adjuvants (see label for details). PHI = 21 days.</td>
</tr>
<tr>
<td>Annual and perennial grasses</td>
<td>sethoxydim, MOA 1 (Poeast) 1.5 EC</td>
<td>1.5 pt</td>
<td>0.185</td>
<td>Maximum use rate per season is 3 pt per acre. PHI = 15 days.</td>
</tr>
<tr>
<td>Most broadleaf weeds less than 4 in. tall or rosettes less than 3 in. in diameter; does not control grasses</td>
<td>carfentrazone-ethyl, MOA 14 (Aim) 2 EC</td>
<td>Up to 2 oz</td>
<td>Up to 0.031</td>
<td>Apply post-directed using hooded sprayers for control of emerged weeds. If crop is contacted, burning of contacted area will occur. Use a crop oil concentrate or a nonionic surfactant with Aim. See label for directions. Coverage is essential for good weed control. Can be tank mixed with other registered herbicides.</td>
</tr>
<tr>
<td>Broadleaf weeds and some annual grasses</td>
<td>caprylic acid, MOA 26 (Homeplate)</td>
<td>See label</td>
<td>See label</td>
<td>May be applied prior to planting as a burndown treatment for emerged weeds, as a preemergence application after seeding but before emergence, as a directed or shielded application between rows or as a postharvest application. Use higher spray volumes for high weed density and weeds larger than 5 in. Coverage is important for acceptable weed control. May be tank mixed with other herbicides. See label for further instructions.</td>
</tr>
</tbody>
</table>

*Mode of action (MOA) code developed by the Weed Science Society of America.

TABLE 4-8. CHEMICAL WEED CONTROL IN COLE CROPS: BROCCOLI, CABBAGE, CAULIFLOWER

<table>
<thead>
<tr>
<th>Weed</th>
<th>Herbicide, Mode of Action Code* and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Pounds Active Ingredient Per Acre</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>COLE CROPS: BROCCOLI, CABBAGE, CAULIFLOWER — Preplant and Preemergence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact kill of all green foliage, stale bed application</td>
<td>parququat, MOA 22 (Parazone) 3 SL (Gramoxone SL) 2 SL</td>
<td>1.3 to 2.7 pt 2 to 4 pt</td>
<td>0.5 to 1</td>
<td>Apply in a minimum of 10-gal spray mix per acre to emerged weeds before crop emergence or transplanting as a broadcast or band treatment over a preformed row. Use sufficient water to give thorough coverage. Row should be formed several days ahead of planting and treating to allow maximum weed emergence. Use a nonionic surfactant at a rate of 16 to 32 oz per 100-gal spray mix or 1-gal approved crop oil concentrate per 100-gal spray mix. Paraquat product labels require applicators to take an EPA-approved training every 3 years to mix, load, and apply paraquat.</td>
</tr>
<tr>
<td>Most broadleaf weeds less than 4 in. tall or rosettes less than 3 in. in diameter; does not control grasses</td>
<td>carfentrazone-ethyl, MOA 14 (Aim) 2 EC</td>
<td>Up to 2 oz</td>
<td>Up to 0.031</td>
<td>Apply no later than one day before transplanting, or seven days before seeding. See label for rate for crop oil or nonionic surfactant. Coverage is essential for good weed control. See label for more information.</td>
</tr>
<tr>
<td>Annual and perennial grass and broadleaf weeds, stale bed application</td>
<td>glyphosate, MOA 9 (numerous brands and formulations)</td>
<td>See labels</td>
<td>See labels</td>
<td>Apply to emerged weeds before crop emergence or before transplanting. Perennial weeds may require higher rates of glyphosate. Consult the manufacturer’s label for rates for specific weeds. When applying Roundup before transplanting crops into plastic mulch, care must be taken to remove residues of this product from the plastic prior to transplanting. To prevent crop injury, residues can be removed by 0.5 in. rainfall or by applying water via a sprinkler system applied at one time. Certain glyphosate formulations may require the addition of a surfactant. Adding nonionic surfactant to glyphosate formulated with nonionic surfactant may result in reduced weed control.</td>
</tr>
<tr>
<td>Emerged broadleaf and grass weeds</td>
<td>pelargonic acid, MOA 26 (Scythe) 4.2 EC</td>
<td>See label</td>
<td>See label</td>
<td>Also labeled for collards, kale, mustard/turnip greens. Apply as a preplant burn-down or prior to emergence from seed. There is no residual activity. May be tank mixed with soil residual herbicides. See label for instructions. May also be used as a banded spray between row middles. Use a shielded sprayer directed to the row middles to reduce drift to the crop.</td>
</tr>
</tbody>
</table>

*Mode of action (MOA) code developed by the Weed Science Society of America.
TABLE 4-8. CHEMICAL WEED CONTROL IN COLE CROPS: BROCCOLI, CABBAGE, CAULIFLOWER (cont’d)

<table>
<thead>
<tr>
<th>Weed</th>
<th>Herbicide, Mode of Action Code* and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Pounds Active Ingredient Per Acre</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broadleaf weeds and some annual grasses</td>
<td>caprylic acid, MOA 26 (Homeplate)</td>
<td>See label</td>
<td>See label</td>
<td>Do not apply in cabbage except Chinese cabbage. May be applied prior to planting</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>as a burndown treatment for emerged weeds, as a preemergence application after</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>seeding but before emergence, as a directed or shielded application between rows or</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>as a postharvest application. Use higher spray volumes for high weed density and</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>weeds larger than 5 in. Coverage is important for acceptable weed control. May be</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>tank mixed with other herbicides. See label for further instructions.</td>
</tr>
<tr>
<td>Annual grasses and small-seeded broadleaf</td>
<td>bensulide, MOA 8 (Prefar) 4 EC</td>
<td>5 to 6 qt</td>
<td>5 to 6</td>
<td>Also labeled for Chinese brocoli, brocoli raab, Chinese cabbage (bok choy, Napa),</td>
</tr>
<tr>
<td>weeds</td>
<td></td>
<td></td>
<td></td>
<td>Chinese mustard cabbage (gai choy), and kohlrabi. Apply preplant or</td>
</tr>
<tr>
<td></td>
<td>trifluralin, MOA 3 (TreflanHFP, Trifluralin,</td>
<td>1 to 1.5 pt</td>
<td>0.5 to 0.75</td>
<td>preemergence after planting. With preemergence application, irrigate immediately</td>
</tr>
<tr>
<td></td>
<td>Trifluralin HF) 4 EC</td>
<td></td>
<td></td>
<td>after application. See label for more directions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DCPA, MOA3 (Dacthal) W-75 (Dacthal) 6 F</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8 to 10 lb</td>
<td>6 to 7.5</td>
<td>Also labeled for Brussels sprouts. Apply and incorporate prior to transplanting.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8 to 10 pt</td>
<td></td>
<td>Caution: If soil conditions are cool and wet, reduced stands and stunting may occur.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Direct seeded Cole crops exhibit marginal tolerance to higher than recommended rates.</td>
</tr>
<tr>
<td>Annual grasses and broadleaf weeds; weak</td>
<td>Direct-seeded Cabbage clomazine, MOA 13 (Command)</td>
<td>0.67 pt</td>
<td>0.25</td>
<td>Apply to the soil surface immediately after seeding. See label for further instruc-</td>
</tr>
<tr>
<td>on pigweed spp.</td>
<td>3ME</td>
<td></td>
<td></td>
<td>tions.</td>
</tr>
<tr>
<td>Transplanted Cabbage clomazine, MOA 13</td>
<td>0.67 to 1.3 pt</td>
<td></td>
<td>0.25 to 0.5</td>
<td>Apply broadcast to the soil prior to transplanting cabbage. See label for further</td>
</tr>
<tr>
<td>(Command) 3ME</td>
<td></td>
<td></td>
<td></td>
<td>instructions.</td>
</tr>
<tr>
<td>Annual grasses and broadleaf weeds, yellow</td>
<td>S-metolachlor, MOA 15 (Dual Magnum) 7.82 EC</td>
<td>8 to 16 oz</td>
<td>0.47 to 0.96</td>
<td>Cabbage, direct seeded and transplanted; Chinese cabbage (Napa); Chinese cabbage (Bok</td>
</tr>
<tr>
<td>nutsedge suppression</td>
<td></td>
<td></td>
<td></td>
<td>Choy); broccoli, and caulifower. Chinese cabbage may be more sensitive to injury from</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dual Magnum. This is a Section 24(c) Special Local Need Label. Growers must make sure</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dual Magnum is registered for use in their state and to obtain the label prior to</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>application. Irrigation following the application of Dual Magnum will increase the</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>risk of crop injury. Use lower rates on coarse-textured soils and higher rates on</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>fine-textured soils. See label for more information.</td>
</tr>
<tr>
<td>Hairy galinsoga, common lambsquarters,</td>
<td>sulfentrazone, MOA 14 (Spartan) 4 F</td>
<td>2.25 to 4.5 oz</td>
<td>0.07 to 0.14</td>
<td>Mulched Systems with Transplanted Crop.</td>
</tr>
<tr>
<td>redroot pigweed, and Palmer amaranth</td>
<td></td>
<td></td>
<td></td>
<td>Option 1: Apply 8 to 16 oz per acre to the soil surface of pre-formed beds prior</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>to laying plastic. Ensure the plastic laying process does not incorporate or disturb</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>the treated bed. Unless restricted by other products, crops may be transplanted</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>immediately following Dual Magnum application.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Option 2: Apply 8 to 16 oz per acre overtop of crop at least 10 days after</td>
</tr>
<tr>
<td>Annual grasses and small-seeded broadleaf</td>
<td>napropamide, MOA 15 (Devrinol DF) 50 DF (</td>
<td>4 lb</td>
<td>2</td>
<td>transplanting to ensure root system is well developed. Does not control emerged</td>
</tr>
<tr>
<td>weeds, including galinsoga, common</td>
<td>Devrinol DF-XT) 50 DF (Devrinol 2-XT) 2 EC</td>
<td>4 lb</td>
<td>2</td>
<td>weeds. Limited data are available for NC. Read label for further instructions.</td>
</tr>
<tr>
<td>ragweed, and smartweed</td>
<td></td>
<td>4 qt</td>
<td>2</td>
<td>Bare Ground Application for Transplanted Crop. After transplanting, irrigate to</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>seal the soil around the transplanted root ball. Five to ten days after transplanting</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>and irrigating, apply Dual Magnum over the top of transplants. If soil is not sealed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>around the transplant root ball, crop injury may occur.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Direct Seeded Application. May be applied over the top after the crop reaches a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>minimum of 3 in, tall.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Row Middle Application to Transplanted and Direct Seeded Crop. Apply as a</td>
</tr>
<tr>
<td>Many broadleaf weeds, including galinsoga,</td>
<td>oxyfluorfen, MOA 14 (Goal 2 XL, Galigan) 2 EC</td>
<td>1 to 2 pt</td>
<td>0.25 to 0.5</td>
<td>banded application at a rate up to 1.25 pt per acre.</td>
</tr>
<tr>
<td>common ragweed, and smartweed</td>
<td>(GoalTender) 4 E</td>
<td>0.5 to 1 pt</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Mode of action (MOA) code developed by the Weed Science Society of America.
TABLE 4-8. CHEMICAL WEED CONTROL IN COLE CROPS: BROCCOLI, CABBAGE, CAULIFLOWER (cont’d)

<table>
<thead>
<tr>
<th>Weed</th>
<th>Herbicide, Mode of Action Code* and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Pounds Active Ingredient Per Acre</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>COLE CROPS: BROCCOLI, CABBAGE, CAULIFLOWER — Postemergence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Most emerged weeds</td>
<td>glyphosate, MOA 9 (numerous brands and formulations)</td>
<td>See labels</td>
<td>See labels</td>
<td>Row middles only. Apply as a hooded spray in row middles, as shielded spray in row middles, or postharvest. To avoid severe injury to crop, do not allow herbicide to contact foliage, green shoots, stems, exposed, roots, or fruit of crop. PHI = 14 days.</td>
</tr>
<tr>
<td>Most broadleaf weeds less than 4 in. tall or rosettes less than 3 in. in diameter; does not control grasses</td>
<td>carfentrazone-ethyl, MOA 14 (Aim) 1.9 EW or 2 EC</td>
<td>Up to 2 oz</td>
<td>Up to 0.031</td>
<td>Apply post-directed using hooded sprayers for control of emerged weeds. If crop is contacted, burning of contacted area will occur. Use crop oil concentrate at up to 1-gal per 100-gal solution or a nonionic surfactant at 2 pt per 100-gal of spray solution. Coverage is essential for good weed control. Can be tank mixed with other registered herbicides.</td>
</tr>
<tr>
<td>Broadleaf weeds including sowthistle, clover, cocklebur, jimsonweed, and ragweed</td>
<td>dicypramid, MOA 4 (Stinger) 3 EC</td>
<td>0.25 to 0.5 pt</td>
<td>0.09 to 0.187</td>
<td>Labeled for broccoli, cabbage, cauliflower, broccoli raab, Brussels sprouts, Cavalo broccoli, Chinese cabbage (bok choy), Chinese broccoli, Chinese mustard, and Chinese cabbage (Napa). Apply to crop when weeds are small and actively growing. Will control most legumes. PHI = 30 days.</td>
</tr>
<tr>
<td>Annual and perennial grasses only</td>
<td>clodethlin, MOA 1 (Arrow, Clethodim, Intensity, Select) 2 EC (Select Max) 1 EC</td>
<td>6 to 8 oz, 9 to 16 oz</td>
<td>0.094 to 0.125, 0.07 to 0.125</td>
<td>Apply to emerged grasses. Consult manufacturer’s label for specific rates and best times to treat. See label for adjuvant and rate. Adding crop oil to Poast or Select may increase the likelihood of crop injury at high air temperature and high humidity. PHI = 30 days.</td>
</tr>
<tr>
<td></td>
<td>sethoxydim, MOA 1 (Poast) 1.5 EC</td>
<td>1 to 1.5 pt</td>
<td>0.2 to 0.3</td>
<td></td>
</tr>
</tbody>
</table>

*Mode of action (MOA) code developed by the Weed Science Society of America.

TABLE 4-9. CHEMICAL WEED CONTROL IN CORN, SWEET

<table>
<thead>
<tr>
<th>Weed</th>
<th>Herbicide, Mode of Action Code* and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Pounds Active Ingredient Per Acre</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>CORN, SWEET, Preplant Burndown</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Most broadleaf weeds less than 4 in. tall or rosettes less than 3 in. in diameter; does not control grasses</td>
<td>carfentrazone-ethyl, MOA 14 (Aim) 1.9 EW or 2 EC</td>
<td>Up to 2 oz</td>
<td>Up to 0.031</td>
<td>Apply prior to planting or within 24 hours after planting. Use a crop oil concentrate or a nonionic surfactant with Am. For optimum performance, make applications to actively growing weeds up to 4 in. high or rosettes less than 3 in. across. Coverage is essential for good weed control. Optimum broad-spectrum control of annual and perennial weeds requires a tank mix with burndown herbicides such as glyphosate, paraquat or 2,4-D. Must be applied prior to the pre-harvest interval of 14 leaf collars. See label for directions.</td>
</tr>
<tr>
<td>Contact kill of all green foliage, stale bed, and minimum tillage application</td>
<td>paraquat, MOA 22 (Parazone) 3 SL (Gramoxone SL) 2 SL</td>
<td>1.5 to 2.7 pt, 2.4 to 4 pt</td>
<td>0.6 to 1</td>
<td>Apply in a minimum of 20-gal spray mix per acre to emerged weeds before crop emergence as a broadcast or band treatment over a preformed row. Seedbeds should be formed several days ahead of planting and treating to allow maximum weed emergence. Plant with a minimum of soil movement for best results. Use a nonionic surfactant at a rate of 16 to 32 oz per 100-gal spray mix or 1 woman approved crop oil concentrate per 100-gal spray mix. May be tank mixed with preemergence sweetcorn herbicides and herbicide combinations. Check label for directions and specific rates. Paraquat product labels require applicators to take an EPA-approved training every 3 years to mix, load, and apply paraquat.</td>
</tr>
<tr>
<td>Annual and perennial grass and broadleaf weeds, stale bed application</td>
<td>glyphosate, MOA 9 (numerous brands and formulations)</td>
<td>See labels</td>
<td>See labels</td>
<td>Apply to emerged weeds before crop emergence. Do not feed crop residue to livestock for 8 weeks following treatment. Perennial weeds may require higher rates of glyphosate. Consult manufacturer’s label for rates for specific weeds. Check label for directions. Certain glyphosate formulations require addition of surfactant. Adding nonionic surfactant to glyphosate formulated with nonionic surfactant may result in reduced weed control. Glyphosate-resistant horseweed (marestail) is now common in eastern North Carolina counties. If horseweed is present at planting time, a tank mixture of paraquat and atrazine is suggested.</td>
</tr>
</tbody>
</table>

*Mode of action (MOA) code developed by the Weed Science Society of America.
TABLE 4-9. CHEMICAL WEED CONTROL IN CORN, SWEET (cont’d)

<table>
<thead>
<tr>
<th>Weed</th>
<th>Herbicide, Mode of Action Code* and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Pounds Active Ingredient Per Acre</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>CORN, SWEET, Preemergence (cont’d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Broadleaf weeds</td>
<td>2,4-D amine 4, MOA 4 (various brands)</td>
<td>1 to 3 pt</td>
<td>0.5 to 1</td>
<td>May be tank mixed with glyphosate for broad-spectrum weed control including glyphosate-resistant horseweed (marestail). See label for planting restrictions if applied prior to planting.</td>
</tr>
<tr>
<td>Most annual grass weeds, including fall panicum, broadleaf signalgrass, and small-seeded broadleaf weeds</td>
<td>dimethenamid-P, MOA 15 (Outlook) 6.0 EC</td>
<td>12 to 21 oz</td>
<td>0.56 to 1.0</td>
<td>Apply to soil surface immediately after planting. May be tank mixed with atrazine, glyphosate, or paraquat. See label for other herbicides that may be tank mixed to broaden weed control spectrum.</td>
</tr>
<tr>
<td></td>
<td>metolachlor, MOA 15 (Me-Too-Lachlor II) 7.8 EC (Parallel) 7.8 EC</td>
<td>1 to 2 pt</td>
<td>0.98 to 1.98</td>
<td>See comments for S-metolachlor products. Products containing S-metolachlor are more active on weeds per unit of formulated product than those containing metolachlor. See label for all instructions.</td>
</tr>
<tr>
<td></td>
<td>S-metolachlor, MOA 15 (Brawl II, Dual II Magnum, Medal II) 7.64 EC</td>
<td>1 to 2 pt</td>
<td>0.95 to 1.91</td>
<td>Apply to soil surface immediately after planting. May be tank mixed with atrazine, glyphosate, or simazine. Check label for directions. Rate is soil-texture and organic-matter dependent. See label for details. Dual II Magnum contains the corn safener benoxacor; thus is safer on sweet corn than Dual Magnum, which does not contain benoxacor.</td>
</tr>
<tr>
<td></td>
<td>pyroxasulfone, MOA 15 (Zidua) 85 WG</td>
<td>1.5 to 4 oz</td>
<td>0.0796 to 0.213</td>
<td>Rate ranges based on soil texture. See label for specific rate relating to your fields. Sweetcorn seed must be planted a minimum of 1 in. deep. Provides suppression of Texas panicum, seedling johnsongrass, and shattercane. Do not harvest sweet corn ears for human consumption less than 37 days after application of this herbicide. See label regarding tank mixtures for broader spectrum control and/or control of emerged weeds.</td>
</tr>
<tr>
<td>Most annual broadleaf and grass weeds</td>
<td>atrazine, MOA 5 (various brands) 4 F (various brands) 90 WDG</td>
<td>1 to 2 qt</td>
<td>1 to 2</td>
<td>Apply to soil surface immediately after planting. Shallow cultivations will improve control. Check label for restrictions on rotational crops. See label for reduced rate if soil coverage with plant residue is less than 30% at planting. Does not control fall panicum or smooth crabgrass. May be tank mixed with metolachlor, alachlor, glyphosate, paraquat, bentazon, or simazine. Check label for directions.</td>
</tr>
<tr>
<td></td>
<td>dimethenamid-P, MOA 15 + atrazine, MOA 5 (Guardsman Max) 5 F (Guardians) 10.36 L</td>
<td>2.4 to 4.6 pt</td>
<td>0.5 to 1 + 1 to 1.9</td>
<td>Apply to soil surface immediately after planting. Does not control Texas panicum, seedling johnsongrass, or shattercane adequately. Adjust rate for soil texture and organic matter according to label. See label for reduced rate if soil coverage with plant residue is less than 30% at planting. See labels for comments on rotational crops. See label for additional instructions.</td>
</tr>
<tr>
<td></td>
<td>S-metolachlor, MOA 15 + atrazine, MOA 5 (Bicep II Magnum) 5.5 F (Bicep II) 7.64 EC</td>
<td>1.3 to 2.6 qt</td>
<td>0.78 to 1.56 + 1 to 2</td>
<td>Apply to soil surface immediately after planting. Does not adequately control Texas panicum, seedling johnsongrass, or shattercane. May not adequately control cocklebur, morningglory, or sicklepod. Cultivation or other herbicides may be needed. See label for rates based on soil texture and organic matter and for information on setback requirements from streams and lakes. See label for reduced rate if soil coverage with plant residue is less than 30% at planting and for comments on rotational crops.</td>
</tr>
<tr>
<td>Small-seeded broadleaf weeds and some annual grass weeds</td>
<td>saflufenacil, MOA 14 + dimethenamid-P, MOA 15 (Verdict) 5.57 EC</td>
<td>10 to 18 oz</td>
<td>0.43 to 0.78</td>
<td>Registered for processing sweet corn only. Apply preplant surface, preplant incorporated or preemergence after seeding. Do not apply to emerged sweet corn.</td>
</tr>
<tr>
<td>Broadleaf weeds, including large-seeded weeds such as cocklebur and annual grass and partial control of yellow nutsedge</td>
<td>bicyclopyrone, MOA 27 + mesotrione, MOA 27 + S-metolachlor, MOA 15 (AcuronFlexi) 2.86 L (Acuron) 5 L</td>
<td>2 to 2.25 qt</td>
<td>1.6 to 1.8</td>
<td>Apply preplant or preemergence to sweet corn. Severe injury will occur if applied to emerged sweet corn.</td>
</tr>
<tr>
<td></td>
<td>S-metolachlor, MOA 15 + atrazine, MOA 5 + mesotrione, MOA 27 + bicyclopyrone, MOA 27 (Acuron) 3.44 L</td>
<td>2.5 to 3 qt</td>
<td>1.34 to 1.61 + 0.625 to 0.75 + 0.15 to 0.18 + 0.038 to 0.045</td>
<td>Apply preplant or preemergence to sweet corn. Severe injury will occur if applied to emerged sweet corn.</td>
</tr>
<tr>
<td>Grass and broadleaf weeds</td>
<td>pendimethalin, MOA 3 (Prowl H2O) 3.8 AS</td>
<td>2 to 4 pt</td>
<td>1 to 2</td>
<td>Apply preemergence before crop germinates or postemergence until sweet corn is 20 to 24 in. tall or in the V8 growth stage whichever is more restrictive. Do not apply in reduced, minimum, or no-till sweet corn. Rate is dependent on organic matter content. See label for additional information. See label for tank mix options.</td>
</tr>
<tr>
<td>Broadleaf and grass weeds</td>
<td>simazine, MOA 5 (Princep) 4L</td>
<td>1.6 to 2 qt</td>
<td>1.6 to 2</td>
<td>Apply preemergence before weeds and crop emerge. See label for tank mix options. PHI = 45 days.</td>
</tr>
</tbody>
</table>

*Mode of action (MOA) code developed by the Weed Science Society of America.
TABLE 4-9. CHEMICAL WEED CONTROL IN CORN, SWEET (cont’d)

<table>
<thead>
<tr>
<th>Weed, Mode of Action Code* and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Pounds Active Ingredient Per Acre</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>CORN, SWEET, Postemergence</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Most annual broadleaf and grass weeds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>atrazine, MOA 5</td>
<td>2 qt</td>
<td>2</td>
<td>Atrazine cannot exceed 2.5 lb a.i., per acre per calendar year. Apply overtop before weeds exceed 1.5 in. in height. See label for additional information in controlling larger weeds. See label for amount of oil concentrate to add to spray mix. See label on setback requirements from streams and lakes.</td>
</tr>
<tr>
<td>(various brands) 4 L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(various brands) 90 WDG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual grasses and broadleaf weeds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dimethenamid-P, MOA 15</td>
<td>8 to 21 oz</td>
<td>0.375 to 1</td>
<td>Apply overtop corn before crop reaches 12 in. tall and before weeds exceed the two-leaf stage. Larger weeds will not be controlled. Good residual control of annual grass and broadleaf weeds. Do not apply within 50 days of sweet corn ear harvest. Do not apply to corn 12 in. or taller. Also available as the commercial products Guardsman or LeadOff.</td>
</tr>
<tr>
<td>(Outlook) 6.0 EC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>atrazine, MOA 5</td>
<td>1 to 2 oz</td>
<td>0.95 to 1.58</td>
<td>Apply overtop corn (5 in. or less) before weeds exceed the two-leaf stage. Larger weeds will not be controlled. Do not apply within 30 days of sweet corn ear harvest. Good residual control of annual grass and broadleaf weeds. Also available as Bicep II or Bicep II Magnum.</td>
</tr>
<tr>
<td>(AAtrax) 4 F or 90 WDG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-metolachlor, MOA 15</td>
<td>1 to 1.67 pt</td>
<td>1 to 2</td>
<td>Apply early postemergence overtop when weeds are small, and corn has one to five leaves. See label for rates according to weed size and special directions for annual morningglory and yellow nutsedge control. Use a crop oil at a rate of 1 qt per acre.</td>
</tr>
<tr>
<td>(Dual II Magnum) 7.64 EC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>atrazine, MOA 5</td>
<td>1 to 2 qt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(AAtrax) 4 F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(AAtrax) 90 WDG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cocklebur, common ragweed, jimsonweed</td>
<td>1 to 2 pt</td>
<td>0.5 to 1</td>
<td></td>
</tr>
<tr>
<td>Pennsylvania smartweed, velvetleaf, yellow nutsedge, and morningglory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bentazon, MOA 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Basagran) 4 SL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Many broadleaf weeds</td>
<td>3 oz</td>
<td>0.094</td>
<td>Apply overtop corn 30 in. or less or 8 leaves or less to control emerged broadleaf weeds. Use nonionic surfactant at 2 pt per 100-gal of spray solution. DO NOT add VAN or AMS when making post application in sweet corn or severe injury will occur. Most effective on small weeds, however, if weeds are greater than 5 in. or for improved control of certain weeds, certain atrazine formulations may be mixed with this herbicide. See label for further information. PHI = 45 days.</td>
</tr>
<tr>
<td>mesotrione, MOA 27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Callisto) 4 EC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual broadleaf weeds and some grasses</td>
<td>3 oz</td>
<td>0.082</td>
<td>Can be applied overtop or with drop nozzles to sweet corn from emergence up to V7 stage. Controls most broadleaf weeds. Does not control sicklepod or prickly sida and only suppresses morningglory. Controls or suppresses some grasses. See label for weeds controlled and recommended size for treatment. Herbicide sensitivity in alll hybrids and inbreds of sweet corn has not been tested. See label for information on adjuvant use. May be tank mixed with atrazine to increase weed spectrum and consistency of control. If tank mixed with atrazine, do not apply if corn is 12 in. tall or greater. See label for further restrictions and instructions.</td>
</tr>
<tr>
<td>tembotrione, MOA 27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Laudis) 3.5 L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>topramezone, MOA 27</td>
<td>0.75 oz</td>
<td>0.016</td>
<td>Can be applied overtop or with drop nozzles to sweet corn from emergence up to 45 days prior to harvest. Does not control sicklepod and only suppresses morningglory. Controls or suppresses some grasses. See label for weeds controlled and recommended size for treatment. Herbicide sensitivity in all hybrids and inbreds of sweet corn has not been tested. See label for information on adjuvant use. See label for further restrictions and instructions. PHI = 45 days.</td>
</tr>
<tr>
<td>(Laudis) 2.8 L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>topramezone, MOA 27</td>
<td></td>
<td></td>
<td>Do not apply to sand textured soils with less than 3% organic matter.</td>
</tr>
<tr>
<td>+ dimethenamid-P, MOA 15</td>
<td>14 to 24 oz</td>
<td>0.6 to 1</td>
<td></td>
</tr>
<tr>
<td>Velvetleaf, spreading dayflower, morningglory species, and redroot pigweed. Will not control grasses.</td>
<td>0.6 to 0.9 oz</td>
<td>0.0042 to 0.06</td>
<td>Processing sweet corn only. Apply to small weeds, generally about 2 in. tall. Will control large velvetleaf up to 36 in. See label for information on adjuvant use. See label for further restrictions and instructions.</td>
</tr>
<tr>
<td>fluthiacet-methyl, MOA 14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Cadet) 0.91 L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual broadleaf weeds</td>
<td>0.04 to 0.0053</td>
<td>0.074 to 0.0931</td>
<td>Apply up to the V8 growth stage (or 30 in. tall). See label for crop rotation restrictions. Do not include nitrogen-based adjuvants (UAN or AMS) when making postemergence application or severe injury will occur. Use nonionic surfactant at 1 qt per 100-gallons of spray. PHI = 40 days. See label for further instructions.</td>
</tr>
<tr>
<td>+ mesotrione, MOA 27</td>
<td>2.5 to 3.15 oz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Solstice) 5.0 L</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Mode of action (MOA) code developed by the Weed Science Society of America.
TABLE 4-9. CHEMICAL WEED CONTROL IN CORN, SWEET (cont’d)

<table>
<thead>
<tr>
<th>Weed</th>
<th>Herbicide, Mode of Action Code* and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Pounds Active Ingredient Per Acre</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>CORN, SWEET, Postemergence (cont’d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Velvetleaf, pigweed, nightshade, morning glory, common lambsquarters</td>
<td>carfentrazone-ethyl, MOA 14 (Aim) 2.0 EC</td>
<td>0.5 oz</td>
<td>0.008</td>
<td>Apply postemergence to actively growing weeds less than 4 in. high (rosettes less than 3 in. across) up to the 14-leaf collar stage of corn. Rates above 0.5 oz will aid in controlling larger weeds and certain weeds (see label for specific rate). Direct sprays will lessen the chance of crop injury and allow later application. Coverage of weeds is essential for control. Use nonionic surfactant (2 pt per 100-gal of spray) with all applications. Under dry conditions, the use of crop oil concentrate may improve weed control. Mix with atrazine to improve control of many broadleaf weeds. Limited information is available concerning the use of this product in sweet corn. Do not apply more than 2 oz per acre per season. PHI = 3 days.</td>
</tr>
<tr>
<td>Broadleaf weeds including sowthistle, clover, cocklebur, jimsonweed, ragweed, Jerusalem artichoke and thistle</td>
<td>clopyralid, MOA 4 (Stinger) 3 EC</td>
<td>0.25 to 0.67 pt</td>
<td>0.095 to 0.25</td>
<td>Processing sweet corn only. Apply to sweet corn when weeds are small (less than 5-leaf stage) and actively growing. Addition of surfactants, crop oils, or other adjuvants is not usually necessary when using Stinger. Use of adjuvants may reduce selectivity to the crop. Do not apply to sweet corn over 18 in. tall. Will control most legumes. PHI = 30 days.</td>
</tr>
<tr>
<td>Cocklebur, passionflower (maypop), pigweed, pokeweed, ragweed, smartweed (Pennsylvania), velvetleaf</td>
<td>halosulfuron-methyl, MOA 2 (Profine 75, Sandea) 75 WDG</td>
<td>0.67 oz</td>
<td>0.032</td>
<td>Apply over the top or with drop nozzles to sweet corn from spike to lay-by for control of emerged weeds. Add nonionic surfactant at 1 to 2 qt per 100-gal of spray solution. See label for all instructions and restrictions. PHI = 45 days.</td>
</tr>
<tr>
<td>Cocklebur, pigweed, lambquarters, morning glory, sicklepod, and many other annual broadleaf weeds</td>
<td>2,4-D amine, MOA 4 (various brands) 3.8 SL</td>
<td>0.5 to 1 pt</td>
<td>0.24 to 0.48</td>
<td>Use 0.5 pt of 2, 4-D overtop when corn is 4 to 5 in. tall, and weeds are small. Increase rate to 1 pt as corn reaches 8 in. Use drop nozzles and direct spray toward base if corn is over 8 in. tall. Do not cultivate for about 10 days after spraying, as corn may be brittle. Reduce rate of 2, 4-D if extremely hot and soil is wet. For better sicklepod and horsenettle control, add a nonionic surfactant when using a directed spray at a rate of 1 qt per 100-gal spray solution. PHI = 45 days.</td>
</tr>
<tr>
<td>Annual grasses and broadleaf weeds</td>
<td>paraquat, MOA 22 (Parazine) 3 SL (Gramoxone SL) 2 SL</td>
<td>0.7 to 1.3 pt 1 to 2 pt</td>
<td>0.25 to 0.5</td>
<td>DO NOT SPRAY OVER THE TOP OF CORN OR SEVERE INJURY WILL OCCUR. Make a postdirected application in a minimum of 20-gal spray mix per acre to emerged weeds when the smallest corn is at least 10 in. tall. Use nonionic surfactant at a rate of 16 to 32 oz per 100-gal spray mix or 1-gal approved crop oil concentrate per 100-gal spray mix. Use of a hooded or shielded sprayer will reduce crop injury. Paraquat product labels require applicators to take an EPA-approved training every 3 years to mix, load, and apply paraquat.</td>
</tr>
<tr>
<td>Certain grasses, including barnyardgrass, foxtails, Texas panicum, and johnsongrass; and broadleaf weeds, including bur cucumber, jimsonweed, pigweed, pokeweed, and smartweeds</td>
<td>nicosulfuron, MOA 2 (Accent) 75 WDG</td>
<td>0.67 oz</td>
<td>0.031</td>
<td>Apply to sweet corn up to 12 in. tall or up to and including 5 leaf collars. For corn 12 to 18 in. tall, apply only with drop nozzles. Sweet corn hybrids vary in their sensitivity to Accent. Do not apply to Merit sweet corn. Contact company representative for information on other local hybrids that have been evaluated with Accent. Accent may be applied to corn previously treated with Fortress, Aztec, or Force, or non-organophosphate soil insecticides regardless of soil type. See label for more information on use of soil insecticides with Accent. Label prohibits application of Accent to corn previously treated with Counter insecticide and indicates that applying Accent to corn previously treated with Counter 20 CR, Lorsban, or Thimet may result in unacceptable crop injury, especially on soils with less than 4% organic matter. See label for information on use.</td>
</tr>
<tr>
<td></td>
<td>nicosulfuron, MOA 2 75 WDG + mesotrione, MOA 27 (Revulin Q) 51.2 WDG</td>
<td>3.44 to 4 oz</td>
<td>0.031 to 0.036 + 0.078 to 0.092</td>
<td>Apply to sweet corn up to 12 in. tall or up to and including 5 leaf collars. For corn 12 to 18 in. tall, apply only with drop nozzles. Sweet corn hybrids vary in their sensitivity to Accent. Do not apply to Merit sweet corn. Contact company representative for information on other local hybrids that have been evaluated with Accent. Accent may be applied to corn previously treated with Fortress, Aztec, or Force, or non-organophosphate soil insecticides regardless of soil type. See label for more information on use of soil insecticides with Accent. Label prohibits application of Accent to corn previously treated with Counter insecticide and indicates that applying Accent to corn previously treated with Counter 20 CR, Lorsban, or Thimet may result in unacceptable crop injury, especially on soils with less than 4% organic matter. Postemergence applications of Revulin Q may cause crop bleaching in some sweet corn hybrids. Crop bleaching is usually transient. See label for further information.</td>
</tr>
</tbody>
</table>

*Mode of action (MOA) code developed by the Weed Science Society of America.
TABLE 4-10. CHEMICAL WEED CONTROL IN CUCUMBER

<table>
<thead>
<tr>
<th>Weed</th>
<th>Herbicide, Mode of Action Code* and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Pounds Active Ingredient Per Acre</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suppression or control of most annual grasses and broadleaf weeds, full rate required for nutsedge control</td>
<td>metam sodium (Vapam HL) 42%</td>
<td>37.5 to 75 gal</td>
<td>15.7 to 31.5</td>
<td>Rates are dependent on soil type and weeds present. Apply when soil moisture is at field capacity (100 to 125%). Apply through soil injection using a rotary tiller or inject with knives no more than 4 in. apart; follow immediately with a roller to smooth and compact the soil surface or with mulch. May apply through drip irrigation prior to planting a second crop on mulch. Plant back interval is often 14 to 21 days and can be 30 days in some environments. See label for all restrictions and additional information.</td>
</tr>
<tr>
<td>Emerging broadleaf and grass weeds</td>
<td>pelargonic acid, MOA 26 (Scythe) 4.2 EC</td>
<td>See label</td>
<td>See label</td>
<td>Apply before crop emergence and control emerged weeds. There is no residual activity. May be tank mixed with soil residual compounds. See label for further instructions. May also be used as a bandded spray between row middles. Use shielded sprayer directed to the row middles to reduce drift to the crop.</td>
</tr>
<tr>
<td>Broadleaf weeds and some annual grasses</td>
<td>caprylic acid, MOA 26 (Homeplate)</td>
<td>See label</td>
<td>See label</td>
<td>May be applied prior to planting as a burn-down treatment for emerged weeds, as a preemergence application after seeding but before emergence, as a directed or shielded application between rows or as a postharvest application. Use higher spray volumes for high weed density and weeds larger than 5 in. Coverage is important for acceptable weed control. May be tank mixed with other herbicides. See label for further instructions.</td>
</tr>
<tr>
<td>Most broadleaf weeds less than 4 in. tall or rosettes less than 3 in. in diameter, does not control grasses</td>
<td>carfentrazone-ethyl, MOA 14 (Aim) 1.9 EW or 2 EC</td>
<td>Up to 2 oz</td>
<td>Up to 0.031</td>
<td>Aim 1.9 EW is registered for application in transplant production systems only. Aim 2 EC is registered in seeded and transplant production systems. Apply no later than one day before transplanting or no later than 7 days before seeding crop. See label for information about application timing. Use a crop oil at up to 1-gal per 100-gal of spray solution or a nonionic surfactant at 2 pt per 100-gal of spray solution. Coverage is essential for good weed control. Can be tank mixed with other registered burndown herbicides.</td>
</tr>
<tr>
<td>Contact kill of all green foliage, stale bed application</td>
<td>paraquat, MOA 22 (Parazone) 3 SL (Gramoxone SL) 2 SL</td>
<td>1.3 to 2.7 pt 2 to 4 pt</td>
<td>0.5 to 1</td>
<td>Apply in a minimum of 10-gal spray mix per acre to emerged weeds before crop emergence as a broadcast or band treatment over a preformed row. Use sufficient water to give thorough coverage. Row should be formed several days ahead of planting and treat to allow maximum weed emergence. Use a nonionic surfactant at a rate of 16 to 32 oz per 100-gal spray mix or 1-gal approved crop oil concentrate per 100-gal spray mix. Paraquat product labels require applicators to take an EPA-approved training every 3 years to mix, load, and apply paraquat.</td>
</tr>
<tr>
<td>Annual and perennial grass and broadleaf weeds, stale bed application</td>
<td>glyphosate, MOA 9 (numerous brands and formulations)</td>
<td>See labels</td>
<td>See labels</td>
<td>Apply to emerged weeds at least 3 days before seeding or transplanting. Perennial weeds may require higher rates of glyphosate. Consult the manufacturer’s label for rates for specific weeds. When applying Roundup before transplanting crops into plastic mulch, care must be taken to remove residues of this product from the plastic prior to transplanting. To prevent crop injury, residues can be removed by 0.5 in. rainfall or by applying water via a sprinkler system. Certain glyphosate formulations require the addition of surfactant. Adding nonionic surfactant to glyphosate formulated with nonionic surfactant may result in reduced weed control.</td>
</tr>
<tr>
<td>Annual grasses and small-seeded broadleaf weeds, small bed application</td>
<td>bensulide, MOA 8 (Prefar) 4 EC</td>
<td>5 to 6 qt</td>
<td>5 to 6</td>
<td>Registered for cucubit vegetable group (Crop grouping 9). Apply preplant and incorporate into the soil 1 to 2 in. (1 in. incorporation is optimum) with a rototiller or tandem disk or apply to the soil surface after seeding and follow with irrigation within 36 hours after application. Check replenishment rates for small grains on label.</td>
</tr>
<tr>
<td>Annual grasses and some small-seeded broadleaf weeds; weak on pigweed</td>
<td>clomazone, MOA 13 (Command) 3 ME</td>
<td>0.4 to 1 pt</td>
<td>0.15 to 0.375</td>
<td>Apply immediately after seeding. See label for further information.</td>
</tr>
<tr>
<td>Annual grasses and some small-seeded broadleaf weeds</td>
<td>ethalfluralin, MOA 3 (Curbit) 3 EC</td>
<td>3 to 4.5 pt</td>
<td>1.1 to 1.7</td>
<td>Apply post plant to seeded crop prior to crop emergence, or as a banded spray between rows after crop emergence or transplanting. See label for timing. Shallow cultivation, irrigation, or rainfall within 5 days is needed for good weed control. Do not use under mulches, row covers, or hot caps. Under conditions of unusually cold or wet soil and air temperatures, crop stunting or injury may occur. Crop injury can occur if seeding depth is too shallow.</td>
</tr>
<tr>
<td>Annual grasses and broadleaf weeds</td>
<td>ethalfluralin, MOA 3 + clomazone, MOA 13 (Strategy) 2.1 L</td>
<td>2 to 6 pt</td>
<td>0.4 to 1.2 + 0.125 to 0.375</td>
<td>Apply to the soil surface immediately after crop seeding for preemergence control of weeds. DO NOT APPLY PRIOR TO PLANTING CROP. DO NOT SOIL INCORPORATE. May also be used as a banded treatment between rows after crop emergence or transplanting. Do not apply over or under plastic mulch.</td>
</tr>
<tr>
<td>Yellow and purple nutsedge and broadleaf weeds</td>
<td>halosulfuron-methyl, MOA 2 (Profline 75, Sandea) 75 DG</td>
<td>0.5 to 0.75 oz</td>
<td>0.024 to 0.036</td>
<td>Apply after seeding or prior to transplanting crop. For transplanting, do not trans-plant until 7 days after application. For seeded or transplanting cucumbers in plasticulture, do not plant within 7 days of Sandea application. Rate can be increased to 1 ounce of product per acre to middles between rows. PHI = 21 days.</td>
</tr>
</tbody>
</table>

*Mode of action (MOA) code developed by the Weed Science Society of America.
TABLE 4-10. CHEMICAL WEED CONTROL IN CUCUMBER (cont’d)

<table>
<thead>
<tr>
<th>Weed</th>
<th>Herbicide, Mode of Action Code* and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Pounds Active Ingredient Per Acre</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual grasses and small-seeded broadleaf</td>
<td>trifluralin, MOA 3 (Treflan HFP, Trifluralin,</td>
<td>1 to 2 pt</td>
<td>0.5 to 0.75</td>
<td>Will not control emerged weeds. Row middles only. To improve preemergence control of late emerging weeds apply as a directed spray to soil between rows after crop emergence when crop plants have reached three to four true leaf stage of growth. Avoid contacting crop foliage as slight crop injury may occur. Set incorporation equipment to move treated soil around base of crop plants. PHI = 30 days.</td>
</tr>
<tr>
<td>weeds</td>
<td>Trifluralin HF) 4EC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yellow and purple nutfedge and broadleaf</td>
<td>halosulfuron-methyl, MOA 2 (Profine 75, Sandea)</td>
<td>0.5 to 0.75 oz</td>
<td>0.024 to 0.036</td>
<td>Apply postemergence only after the crop has reached 3 to 5 true leaves but before first female flowers appear. Do not apply sooner than 14 days after transplanting. Use nonionic surfactant at 1 qt per 100-gal of spray solution with all postemergence applications. PHI = 14 days.</td>
</tr>
<tr>
<td>weeds including cocklebur, galinsoga,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>smartweed, ragweed, wild radish, and pigweed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Most broadleaf weeds less than 4 in. tall</td>
<td>carfentrazone-ethyl, MOA 14 (Aim) 1.9 EW or 2 EC</td>
<td>Up to 2 oz</td>
<td>Up to 0.031</td>
<td>Apply post-directed using hooded sprayers for control of emerged weeds. If crop is contacted, burning of contacted area will occur. Use crop oil concentrate at up to 1-gal per 100-gal solution or a nonionic surfactant at 2 pt per 100-gal of spray solution. Coverage is essential for good weed control. Can be tank mixed with other registered herbicides.</td>
</tr>
<tr>
<td>or rosettes less than 3 in. in diameter;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>does not control grasses</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Most emerged weeds</td>
<td>glyphosate, MOA 9 (numerous brands and</td>
<td>See labels</td>
<td>See labels</td>
<td>Row middles only. Apply as a hooded spray in row middles, as shielded spray in row middles, as wiper applications in row middles, or postharvest. To avoid severe injury to crop, do not allow herbicide to contact foliage, green shoots, stems, exposed, roots, or fruit of crop. PHI = 14 days.</td>
</tr>
<tr>
<td></td>
<td>formulations)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>sethoxydim, MOA 1 (Poast) 1.5 EC</td>
<td>1 to 1.5 pt</td>
<td>0.2 to 0.3</td>
<td>Apply to emerged grasses. Consult manufacturer’s label for specific rates and best times to treat and adjuvant and rate. Adding crop oil to Poast may increase the likelihood of crop injury at high air temperatures and high humidity. PHI = 14 days.</td>
</tr>
<tr>
<td></td>
<td>clodhodim, MOA 1 (Arrow, Cloethodim, Intensity,</td>
<td>6 to 8 oz</td>
<td>0.094 to 0.125</td>
<td>Control of emerged grasses. See label for adjuvant and rate. Adding crop oil may increase the likelihood of crop injury at high air temperatures and high humidity. Very effective in controlling annual bluegrass. Apply to actively growing grasses not under drought stress. PHI = 14 days.</td>
</tr>
<tr>
<td></td>
<td>Select) 2 EC</td>
<td>9 to 16 oz</td>
<td>0.07 to 0.125</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Select Max, Intensity One) EC</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Mode of action (MOA) code developed by the Weed Science Society of America.

TABLE 4-11. CHEMICAL WEED CONTROL IN EGGPLANT

<table>
<thead>
<tr>
<th>Weed</th>
<th>Herbicide, Mode of Action Code* and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Pounds Active Ingredient Per Acre</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGGPLANT, Preplant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suppression or control of most annual</td>
<td>metam sodium (Vapam HL) 42%</td>
<td>37.5 to 75 gal</td>
<td>15.7 to 31.5</td>
<td>Rates are dependent on soil type and weeds present. Apply when soil moisture is at field capacity (100 to 125%). Apply through soil injection using a rotary tiller or inject with knives no more than 4 in. apart; follow immediately with a roller to smooth and compact the soil surface or with mulch. May apply through drip irrigation prior to planting a second crop on mulch. Plant back interval is often 14 to 21 days and can be 30 days in some environments. See label for all restrictions and additional information. Chloropicrin (150 lb per acre broadcast) will also be needed when laying first crop mulch to control nutfedge.</td>
</tr>
<tr>
<td>grasses and broadleaf weeds, full rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>required for nutfedge control</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact kill of all green foliage, stale</td>
<td>paraquat, MOA 22 (Parazone) 3 SL (Gramoxone SL)</td>
<td>1.3 to 2.7 pt</td>
<td>0.5 to 1</td>
<td>Apply in a minimum of 10-gal spray mix per acre to emerged weeds before transplanting as a broadcast or band treatment over a preformed row. Use sufficient water to give thorough coverage. Row should be formed several days ahead of planting and treating to allow maximum weed emergence. Use a nonionic surfactant at a rate of 16 to 32 oz per 100-gal spray mix or 1-gal approved crop oil concentrate per 100-gal spray mix. Paraquat product labels require applicators to take an EPA-approved training every 3 years to mix, load, and apply paraquat.</td>
</tr>
<tr>
<td>bed application</td>
<td>2 SL</td>
<td>2 to 4 pt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Most broadleaf weeds less than 4 in. tall</td>
<td>carfentrazone-ethyl, MOA 14 (Aim) 1.9 EW or 2 EC</td>
<td>Up to 2 oz</td>
<td>Up to 0.031</td>
<td>Aim 1.9 EW is registered for application in transplant production systems only. Aim 2 EC is registered in seeded and transplant production systems. Apply no later than one day before transplanting crop (Aim 1.9 EW or Aim 2 EC) or no later than 7 days before seeding crop (Aim 2 EC only). See label for information about application timing. Use a crop oil at up to 1-gal per 100-gal of spray solution or a nonionic surfactant at 2 pt per 100-gal of spray solution. Coverage is essential for good weed control. Can be tank mixed with other registered burndown herbicides.</td>
</tr>
<tr>
<td>or rosettes less than 3 in. in diameter;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>does not control grasses</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Mode of action (MOA) code developed by the Weed Science Society of America.
TABLE 4-11. CHEMICAL WEED CONTROL IN EGGPLANT (cont’d)

<table>
<thead>
<tr>
<th>Weed</th>
<th>Herbicide, Mode of Action Code* and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Pounds Active Ingredient Per Acre</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGGPLANT, Preplant (cont’d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual and perennial grass and broadleaf</td>
<td>glyphosate, MOA 9 (numerous brands and formulations)</td>
<td>See labels</td>
<td>See labels</td>
<td>Apply to emerged weeds at least 3 days before seeding or transplanting. Perennial weeds may require higher rates of glyphosate. Consult the manufacturer’s label for rates for specific weeds. When applying Roundup before transplanting crops into plastic mulch, care must be taken to remove residues of this product from the plastic prior to transplanting. To prevent crop injury, residues can be removed by 0.5 in. rainfall or by applying water via a sprinkler system. Certain glyphosate formulations require the addition of surfactant. Adding nonionic surfactant to glyphosate formulated with nonionic surfactant may result in reduced weed control.</td>
</tr>
<tr>
<td>and some broadleaf weeds</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brodlaf leaves and some annual grasses</td>
<td>caprylic acid, MOA 26 (Homeplate)</td>
<td>See label</td>
<td>See label</td>
<td>May be applied prior to planting as a burndown treatment for emerged weeds, as a preemergence application after seeding but before emergence, as a directed or shielded application between rows or as a postharvest application. Use higher spray volumes for high weed density and weeds larger than 5 in. Coverage is important for acceptable weed control. May be tank mixed with other herbicides. See label for further instructions.</td>
</tr>
<tr>
<td>EGGPLANT, Preemergence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual grasses and small-seeded broadleaf</td>
<td>bensulide, MOA 8 (Prefar) 4 EC</td>
<td>5 to 6 qt</td>
<td>5 to 6</td>
<td>Apply preplant incorporated (1 in. incorporation is optimum) or preemergence after planting. With preemergence application, irrigate immediately after application. See label for more directions.</td>
</tr>
<tr>
<td>and some broadleaf weeds</td>
<td>napropamide, MOA 15 (Devrinol, Devrinol DF-DX) 50 DF (Devrinol-2-XT) 2 EC</td>
<td>2 to 4 lb</td>
<td>1 to 2</td>
<td>Transplanted eggplant only. Apply preplant and incorporate into soil 1 to 2 in. using a rototill or tandem disk. Shallow cultivations or irrigation will improve control. See label for small grains replanting restrictions. May also be applied in the row middles between plastic covered beds. See label for more information. See XT labels for information regarding delay in irrigation event.</td>
</tr>
<tr>
<td>EGGPLANT, Postemergence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual grasses and small-seeded broadleaf</td>
<td>DCPA, MOA 3 (Dacthal) W-75 (Dacthal) 6 F</td>
<td>6 to 10 lb</td>
<td>4.5 to 7.5</td>
<td>Application confined to a period of 4 to 6 weeks after transplanting. To improve preemergence control of late emerging weeds. Apply to weed-free soil over the top of transplants.</td>
</tr>
<tr>
<td>and some broadleaf weeds</td>
<td>sethoxydim, MOA 1 (Poast) 1.5 EC</td>
<td>1 to 1.5 pt</td>
<td>0.2 to 0.3</td>
<td>Apply to emerged grasses. Consult manufacturer’s label for specific rates and best times to treat and adjuvant and rate. Adding crop oil to Poast may increase the likelihood of crop injury at high air temperatures and high humidity. PHI = 20 days.</td>
</tr>
<tr>
<td>and some broadleaf weeds</td>
<td>clethodim, MOA 1 (Arrow, Clethodim, Intensity, Select) 2 EC (Select Max, Intensity One) 1 EC</td>
<td>6 to 8 oz</td>
<td>0.094 to 0.125</td>
<td>Apply postemergence for control of grasses. See label for adjuvant and rate. Adding crop oil may increase the likelihood of crop injury at high air temperature and high humidity. Very effective in controlling annual bluegrass. Apply to actively growing grasses not under drought stress. PHI = 20 days.</td>
</tr>
<tr>
<td>EGGPLANT, Row Middles</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Most broadleaf weeds less than 4 in. tall</td>
<td>carfentrazine-ethyl, MOA 14 (Aim) 1.9 EW or 2 EC</td>
<td>Up to 2 oz</td>
<td>Up to 0.031</td>
<td>Apply post-directed using hooded sprayers for control of emerged weeds. If crop is contacted, burning of contacted area will occur. Use crop oil concentrate at up to 1-gal per 100-gal solution or a nonionic surfactant at 2 pt per 100-gal of spray solution. Coverage is essential for good weed control. Can be tank mixed with other registered herbicides.</td>
</tr>
<tr>
<td>or rosettes less than 3 in. in diameter;</td>
<td>glyphosate, MOA 9 (numerous brands and formulations)</td>
<td>See labels</td>
<td>See labels</td>
<td>Apply as a hooded spray in row middles, as shielded spray in row middles, as wiper applications in row middles, or postharvest. To avoid severe injury to crop, do not allow herbicide to contact foliage, green shoots or stems, exposed roots, or fruit of crop. PHI = 14 days.</td>
</tr>
<tr>
<td>does not control grasses</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Most emerged weeds</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yellow and purple nutsedge and broadleaf</td>
<td>halosulfuron-methyl, MOA 2 (Profiren 75, Sandea) 75 DG</td>
<td>0.5 to 1 oz</td>
<td>0.024 to 0.048</td>
<td>Apply between rows as a postemergence spray. Do not allow spray to contact crop or plastic mulch. Early season application will give postemergence and preemergence control. For postemergence applications, use nonionic surfactant at 1 qt per 100-gal of spray solution. PHI = 30 days.</td>
</tr>
<tr>
<td>weeds</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact kill of all green foliage</td>
<td>paraquat, MOA 22 (Parazone) 3 SL (Gramoxone SL) 2 SL</td>
<td>1.3 pt</td>
<td>0.5</td>
<td>Apply in 10-gal spray mix as a shielded spray to emerged weeds between rows of eggplant. Use a nonionic surfactant at a rate of 16 to 32 oz per 100-gal spray mix or 1-gal approved crop oil concentrate per 100-gal spray mix. Do not allow spray to contact crop or injury will result. Paraquat product labels require applicators to take an EPA-approved training every 3 years to mix, load, and apply paraquat.</td>
</tr>
</tbody>
</table>

*Mode of action (MOA) code developed by the Weed Science Society of America.
TABLE 4-12. CHEMICAL WEED CONTROL IN GARLIC

<table>
<thead>
<tr>
<th>Weed</th>
<th>Herbicide, Mode of Action Code* and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Pounds Active Ingredient Per Acre</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>GARLIC, Preplant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual and perennial grass and broadleaf weeds</td>
<td>glyphosate, MOA 9 (numerous brands and formulations)</td>
<td>See labels</td>
<td>See labels</td>
<td>Stale bed application. Apply to emerged weeds at least 3 days before planting. Perennial weeds may require higher rates of glyphosate. Consult the manufacturer’s label for rates for specific weeds. Certain glyphosate formulations require the addition of surfactant. Adding nonionic surfactant to glyphosate formulated with nonionic surfactant may result in reduced weed control.</td>
</tr>
<tr>
<td></td>
<td>paraquat, MOA 22 (Parazine) 3SL (Gramoxone SL) 2 SL</td>
<td>1.7 to 2.7 pt 2.5 to 4 pt</td>
<td>0.6 to 1</td>
<td>Apply in a minimum of 20-gal spray mix per acre to emerged weeds before crop emergence as a broadcast or band treatment over a preformed row. Row should be formed several days ahead of planting and treating to allow maximum weed emergence. Use a nonionic surfactant at a rate of 16 to 30 oz per 100-gal spray mix or 1-gal approved crop oil concentrate per 100-gal spray mix. PHI = 60 days. Parataquat product labels require applicators to take an EPA-approved training every 3 years to mix, load, and apply paraquat.</td>
</tr>
<tr>
<td></td>
<td>Most broadleaf weeds less than 4 in. tall or rosettes less than 3 in. in diameter; does not control grasses</td>
<td>carfentrazone-ethyl, MOA 14 (Aim) 2.0 EC</td>
<td>Up to 2 oz</td>
<td>Apply no later than 30 days before planting. See label for specific Aim rate relating to weed species and proper adjuvant and rate. Coverage is essential for good weed control. Can be tank mixed with other registered burndown herbicides.</td>
</tr>
<tr>
<td></td>
<td>Emerged broadleaf weeds</td>
<td>pyraluf, MOA 14 (ET Herbicide) 0.208 EC</td>
<td>0.5 to 2 oz</td>
<td>0.0008 to 0.003</td>
</tr>
<tr>
<td></td>
<td>Emerged broadleaf and grass weeds</td>
<td>pelargonic acid, MOA 26 (Scythe) 4.2 EC</td>
<td>See label</td>
<td>See label</td>
</tr>
<tr>
<td></td>
<td>Emerged broadleaf weeds and some annual grasses</td>
<td>caprylic acid, MOA 26 (Homeplate)</td>
<td>See label</td>
<td>See label</td>
</tr>
<tr>
<td>GARLIC, Preplant incorporated or Preemergence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual grasses and small-seeded broadleaf weeds</td>
<td>bensulide, MOA 8 (Prefar) 4 EC</td>
<td>5 to 6 qt</td>
<td>5 to 6</td>
<td>Apply preplant incorporated (1 in. incorporation is optimum) or preemergence after planting. With preemergence application, irrigate immediately after application. See label for more directions.</td>
</tr>
<tr>
<td>GARLIC, Preemergence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residual control of annual grasses and small-seeded broadleaf weeds</td>
<td>dimethenamid-P, MOA 15 (Outlook) 6 EC</td>
<td>12 to 21 oz</td>
<td>0.6 to 1</td>
<td>For preemergence, weed control. Apply after crop has reached 2 true leaves until a minimum of 30 days before harvest. If applications are made to transplanted crop, DO NOT apply until transplants are in the ground and soil has settled around transplants with several days to recover.</td>
</tr>
<tr>
<td></td>
<td>flumioxazin, MOA 14 (Chateau) 51 SW</td>
<td>6 oz</td>
<td>0.188</td>
<td>For preemergence, weed control. Apply prior to garlic and weed emergence. Application should be made within 3 days after planting garlic.</td>
</tr>
<tr>
<td></td>
<td>pendimethalin, MOA 3 (Prowl) 3.3 EC (Prowl H2O) 3.8 AS</td>
<td>1.2 to 3.6 pt 1.5 to 3 pt</td>
<td>0.5 to 1.5</td>
<td>For preemergence, weed control. Apply preemergence after planting but prior to weed and crop emergence or postemergence to garlic in the 1 to 5 true leaf stage. Prowl can be applied sequentially by applying preemergence followed by a postemergence application. Does not control emerged weeds. PHI = 45 days.</td>
</tr>
<tr>
<td>GARLIC, Postemergence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residual control of herbil, purslane, pigweed, primrose, smartweed, and many others; controls small, emerged weeds as well</td>
<td>oxyfluorfen, MOA 14 (Galigan) 2 E (Goal 2 XL) 2 EC (GoalTender) 4F</td>
<td>0.5 pt 0.5 pt 0.25 pt</td>
<td>0.125 to 0.5</td>
<td>Transplanted dry bulb only. May be used as a postemergence spray to both the weeds and crop after the garlic has at least two fully developed true leaves. Some injury to garlic may result. Injury will be more severe if the chemical is applied during cool, wet weather. Weeds should be in the 2- to 4-leaf stage for best results. PHI = 60 days.</td>
</tr>
<tr>
<td>Annual and perennial grasses only</td>
<td>clethodim, MOA 1 (Arrow, Clethodim, Intensity, Select) 2 EC (Select Max, Intensity One) 1 EC</td>
<td>6 to 16 oz 9 to 32 oz</td>
<td>0.09 to 0.25 0.07 to 0.25</td>
<td>Apply to emerged grasses. Consult manufacturer's label for specific rates and best times to treat and adjudant and rate. Adding crop oil may increase the likelihood of crop injury at high air temperatures and high humidity. Very effective in controlling annual bluegrass. PHI = 45 days.</td>
</tr>
<tr>
<td></td>
<td>fluazifop, MOA 1 (Fusilade DX) 2 EC</td>
<td>6 to 16 oz</td>
<td>0.1 to 0.25</td>
<td>Apply to emerged grasses. Consult manufacturer's label for specific rates and best times to treat and adjudant and rate. Do not apply on days that are unusually hot and humid. PHI = 45 days.</td>
</tr>
<tr>
<td></td>
<td>sethoxydim, MOA 1 (Poast) 1.5 EC</td>
<td>1 pt</td>
<td>0.2</td>
<td>Apply to emerged grasses. Consult manufacturer's label for specific rates and best times to treat and adjudant and rate. Adding crop oil to Poast may increase the likelihood of crop injury at high air temperatures and high humidity. PHI = 30 days.</td>
</tr>
<tr>
<td>GARLIC, Row Middles</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Most emerged weeds</td>
<td>glyphosate, MOA 9 (numerous brands and formulations)</td>
<td>See labels</td>
<td>See labels</td>
<td>Row middles only. Apply as a hooded spray in row middles, as shielded spray in row middles, as wiper applications in row middles, or postharvest. To avoid severe injury to crop, do not allow herbicide to contact foliage, green shoots, stems, exposed, roots, or fruit of crop. PHI = 14 days.</td>
</tr>
<tr>
<td>Most broadleaf weeds less than 4 in. tall or rosettes less than 3 in. in diameter; does not control grasses</td>
<td>carfentrazone-ethyl, MOA 14 (Aim) 1.9 EW or 2 EC</td>
<td>Up to 2 oz</td>
<td>0.031</td>
<td>Apply post-directed using hooded sprayers for control of emerged weeds. If crop is contacted, burning of contacted area will occur. Use a nonionic surfactant or crop oil with Aim. See label for rate. Coverage is essential for good weed control. Can be tank mixed with other registered herbicides.</td>
</tr>
</tbody>
</table>
TABLE 4-13. CHEMICAL WEED CONTROL IN GREENS

<table>
<thead>
<tr>
<th>Weed</th>
<th>Herbicide, Mode of Action Code* and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Pounds Active Ingredient Per Acre</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>GREENS (Collard, Kale, Mustard Greens, and Turnip), Preplant and preemergence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emerged broadleaf and grass weeds</td>
<td>pelargonic acid, MOA 26 (Scythe) 4.2 EC</td>
<td>See label</td>
<td>See label</td>
<td>Apply as preplant burndown to emerged weeds. See label for instruction. May also be used as a banded spray between row middles. Use a shielded sprayer directed to the row middles to reduce drift to the crop.</td>
</tr>
<tr>
<td>Broadleaf weeds and some annual grasses</td>
<td>caprylic acid, MOA 26 (Homeplate)</td>
<td>See label</td>
<td>See label</td>
<td>May be applied prior to planting as a burndown treatment for emerged weeds, as a preemergence application after seeding but before emergence, as a directed or shielded application between rows or as a postharvest application. Use higher spray volumes for high weed density and weeds larger than 5 in. Coverage is important for acceptable weed control. See label for further instructions.</td>
</tr>
<tr>
<td>Contact kill of all green foliage, stale bed application</td>
<td>paraquat, MOA 22 (Parazone) 3 SL (Gramoxone SL) 2 SL</td>
<td>1.3 to 2.7 pt 2 to 4 pt</td>
<td>0.5 to 1</td>
<td>Collard and turnip only. Apply in a minimum of 10-gal spray mix per acre to emerged weeds before crop emergence or transplanting as a broadcast or band treatment over a preformed row. Use sufficient water to give thorough coverage. Row should be formed several days ahead of planting and treating to allow maximum weed emergence. Use a nonionic surfactant at a rate of 16 to 32 oz per 100-gal spray mix or 1-gal approved crop oil concentrate per 100-gal spray mix. Paraquat product labels require applicators to take an EPA-approved training every 3 years to mix, load, and apply paraquat.</td>
</tr>
<tr>
<td>Annual and perennial grass and broadleaf weeds, stale bed application</td>
<td>glyphosate, MOA 9 (numerous brands and formulations)</td>
<td>See labels</td>
<td>See labels</td>
<td>Apply to emerged weeds before crop emergence. Do not feed crop residue to livestock for 8 weeks following treatment. Perennial weeds may require higher rates of glyphosate. Consult the manufacturer’s label for rates for specific weeds. Certain glyphosate formulations require the addition of surfactant. Adding nonionic surfactant to glyphosate formulated with nonionic surfactant may result in reduced weed control.</td>
</tr>
<tr>
<td>Annual grasses and small-seeded broadleaf weeds</td>
<td>trifluralin, MOA 3 (Treflan, Treflan HFP) 4 EC</td>
<td>1 to 1.5 pt</td>
<td>0.5 to 0.75</td>
<td>Greens: collard, kale, mustard, and turnip (fresh or processing). Apply preplant and incorporate into the soil 2 to 3 in. within 8 hr using a rototiller or tandem disk. Do not use if turnip roots are to be consumed. Georgia, North Carolina, and South Carolina have a Section 24(c) Special Local Need Label for Treflan application in turnip roots.</td>
</tr>
<tr>
<td>Annual grasses and broadleaf weeds, yellow nutsedge suppression</td>
<td>S-metolachlor, MOA 15 (Dual Magnum) 7.62 EC</td>
<td>8 to 16 oz</td>
<td>0.47 to 0.96</td>
<td>Collards and Kale ONLY. This is a Section 24(c) Special Local Need Label. Growers must obtain the label prior to making Dual Magnum application. Irrigation following the application of Dual Magnum will increase the risk of crop injury. Use lower rates on coarse-textured soils and higher rates on fine-textured soils. See label for more information.</td>
</tr>
<tr>
<td>GREENS (Collard, Kale, Mustard Greens, and Turnip Greens or roots), Postemergence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Broadleaf weeds including sowthistle, clover, cocklebur, jimsonweed, and ragweed</td>
<td>clopyralid, MOA 4 (Slinger) 3 EC</td>
<td>0.3 to 0.5 pt</td>
<td>0.11 to 0.187</td>
<td>Kale, collards, mustard, turnip, mizuna, mustard spinach, and rape. See label to determine if other Brassica (Cole) leafy vegetables are registered. Apply to crop when weeds are small and actively growing. Will control most legumes. For kale, collards, mustard, and turnip (roots) PHI = 30 days. For turnip tops PHI = 15 days. Mustard green injury has been observed in some research trials.</td>
</tr>
</tbody>
</table>

*Mode of action (MOA) code developed by the Weed Science Society of America.
TABLE 4-13. CHEMICAL WEED CONTROL IN GREENS (cont’d)

<table>
<thead>
<tr>
<th>Weed</th>
<th>Herbicide, Mode of Action Code* and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Pounds Active Ingredient Per Acre</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>GREENS (Collard, Kale, Mustard Greens, and Turnip Greens or roots), Postemergence (cont’d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual and perennial grasses only</td>
<td>clethodim, MOA 1 (Arrow, Clethodim, Intensity, Select) 2 EC (Select Max) 1 EC</td>
<td>6 to 8 oz 9 to 16 oz</td>
<td>0.094 to 0.125 0.07 to 0.125</td>
<td>Apply postemergence for control of grasses. See label for adjuvant and rate. Adding crop oil may increase the likelihood of crop injury at high air temperatures and high humidity. Very effective in controlling annual bluegrass. Apply to actively growing grasses not under drought stress. PHI for green crops is 14 days. PHI for turnips grown for roots is 30 days.</td>
</tr>
<tr>
<td></td>
<td>sethoxydim, MOA 1 (Poast) 1.5 EC</td>
<td>1 to 1.5 pt</td>
<td>0.2 to 0.3</td>
<td>ALSO LABELED FOR RAPE GREENS. PHI for turnip is 14 days. PHI for other greens = 14 days. Apply to emerged grasses. Consult manufacturer’s label for specific rates and best times to treat. See label for adjuvant and rate. Adding crop oil to Poast may increase the likelihood of crop injury at high air temperatures and high humidity.</td>
</tr>
<tr>
<td>Most broadleaf weeds</td>
<td>glyphosate, MOA 9 (numerous brands and formulations)</td>
<td>See labels</td>
<td>See labels</td>
<td>Not labeled for turnip greens. Apply as a hooded spray in row middles, as shielded spray in row middles, as wiper applications in row middles, or postharvest. To avoid severe injury to crop, do not allow herbicide to contact foliage, green shoots or stems, exposed roots, or fruit of crop. PHI = 14 days.</td>
</tr>
</tbody>
</table>

*Mode of action (MOA) code developed by the Weed Science Society of America.

TABLE 4-14. CHEMICAL WEED CONTROL IN HOPS

<table>
<thead>
<tr>
<th>Weed</th>
<th>Herbicide, Mode of Action Code* and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Pounds Active Ingredient Per Acre</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOPS, Preplant and Preemergence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Broadleaf weeds including chickweed, wild radish, and henbit. Limited control of annual grasses such as barnyard grass and large crabgrass</td>
<td>flumioxazin, MOA 14 (Chateau) 51 SW</td>
<td>6 oz</td>
<td>0.188</td>
<td>Apply to dormant hops November through February.</td>
</tr>
<tr>
<td>Broadleaf weeds and annual grasses</td>
<td>norflurazon, MOA 12 (Solicham) 80 DF</td>
<td>2.5 to 5 lb</td>
<td>2 to 4</td>
<td>Apply as a directed treatment a minimum of 6 months after planting hops. Rate is soil texture dependent.</td>
</tr>
<tr>
<td>Annual grasses and small-seeded broadleaf weeds</td>
<td>trifluralin, MOA 3 (Trellan) 4 L or 4 EC</td>
<td>1 to 1.5 pt</td>
<td>0.5 to 0.75</td>
<td>See label for rate information. Shallow incorporate to established, dormant crop. Use equipment that will ensure thorough soil mixing with minimal damage to crop.</td>
</tr>
<tr>
<td>Annual grasses and small-seeded broadleaf weeds</td>
<td>pendimethalin, MOA 3 (Prowl H₂O₃) 3.8 AS</td>
<td>1.1 to 4.2 qt</td>
<td>1.1 to 4.0</td>
<td>See label for instructions.</td>
</tr>
<tr>
<td>HOPS, Postemergence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada thistle</td>
<td>clyprylid, MOA 4 (Solix 3, Spur)</td>
<td>0.3 to 0.67</td>
<td>0.125 to 0.25</td>
<td>Some transient minor leaf cupping may occur to lower leaves and suckers if spray is exposed to plant. PHI = 30 days.</td>
</tr>
<tr>
<td>Broadleaf weeds</td>
<td>2,4-D, MOA 4 (amine 4 and various other brands) 3.8 SL</td>
<td>See labels</td>
<td>See labels</td>
<td>Apply with a hooded sprayer for row middles. Hop foliage is susceptible to this product. PHI = 28 days.</td>
</tr>
<tr>
<td>Annual and perennial grasses</td>
<td>clethodim, MOA 1 (Select Max) 1 EC</td>
<td>9 to 16 oz</td>
<td>0.07 to 0.125</td>
<td>For repeat applications make on a minimum of a 14-day interval. PHI = 21 days.</td>
</tr>
<tr>
<td>Emerged broadleaf and grass weeds</td>
<td>pelargonic acid, MOA 26 (Scythe) 4.2 EC</td>
<td>See label</td>
<td>See label</td>
<td>Apply before crop emergence to control emerged weeds. There is no residual activity. Avoid contact with foliage and green bark. See label for further instructions. May be used to control basal sucker growth.</td>
</tr>
<tr>
<td>Most broadleaf weeds less than 4 in. tall or rosettes less than 3 in. in diameter, does not control grasses</td>
<td>carfentrazone-ethyl, MOA 14 (Aim) 2 EC</td>
<td>Up to 2 oz</td>
<td>Up to 0.031</td>
<td>Directed hooded spray for row middles. Most effective on broadleaf weeds less than 4 in. in height. PHI = 7 days.</td>
</tr>
<tr>
<td>Annual and perennial grass and broadleaf weeds</td>
<td>glyphosate, MOA 9 (numerous brands and formulations)</td>
<td>See labels</td>
<td>See labels</td>
<td>Directed hooded spray for row middles. Avoid contact with green shoots and foliage.</td>
</tr>
</tbody>
</table>

*Mode of action (MOA) code developed by the Weed Science Society of America.
TABLE 4-15. CHEMICAL WEED CONTROL IN LETTUCE

<table>
<thead>
<tr>
<th>Weed Description</th>
<th>Herbicide, Mode of Action Code* and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Pounds Active Ingredient Per Acre</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>LETTUCE, Preplant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suppression or control of most annual grasses and broadleaf weeds, full rate required for nutseed control</td>
<td>metam sodium (Vapam HL) 42%</td>
<td>37.5 to 75 gal</td>
<td>15.7 to 31.5</td>
<td>Rates are dependent on soil type and weeds present. Apply when soil moisture is at field capacity (100 to 125%). Apply through soil injection using a rotary tiller or inject with knives no more than 4 in. apart, follow immediately with a roller to smooth and compact the soil surface or with mulch. May apply through drip irrigation prior to planting a second crop on mulch. Plant back interval is often 14 to 21 days and can be 30 days in some environments. See label for all restrictions and additional information.</td>
</tr>
<tr>
<td>Contact kill of all green foliage, stale bed application</td>
<td>paraquat, MOA 22 (Parazine) 3 SL (Gramoxone SL) 2 SL</td>
<td>1.3 to 2.7 pt 2 to 4 pt</td>
<td>0.5 to 1</td>
<td>Apply in a minimum of 10-gal spray mix per acre to emerged weeds before crop emerges as a broadcast or band treatment over a preformed row. Row should be formed several days ahead of planting and treating to allow maximum weed emergence. Use a nonionic surfactant at a rate of 16 to 32 oz per 100-gal spray solution or 1-gal approved crop oil concentrate per 100-gal spray mix. Paraquat product labels require applicators to take an EPA-approved training every 3 years to mix, load, and apply paraquat.</td>
</tr>
<tr>
<td>Annual and perennial grass and broadleaf weeds, stale bed application</td>
<td>glyphosate, MOA 9 (numerous brands and formulations)</td>
<td>See labels</td>
<td>See labels</td>
<td>Apply to emerged weeds before crop emergence. Do not feed crop residue to livestock for 8 weeks following treatment. Perennial weeds may require higher rates of glyphosate. Consult the manufacturer’s label for rates for specific weeds. Certain glyphosate formulations require the addition of surfactant. Adding nonionic surfactant to glyphosate formulated with nonionic surfactant may result in reduced weed control.</td>
</tr>
<tr>
<td>Broadleaf weeds and some annual grasses</td>
<td>caprylic acid, MOA 26 (Homeplate)</td>
<td>See label</td>
<td>See label</td>
<td>May be applied prior to planting as a burndown treatment for emerged weeds, as a preemergence application after seeding but before emergence, as a directed or shielded application between rows or as a postharvest application. Use higher spray volumes for high weed density and weeds larger than 5 in. Coverage is important for acceptable weed control. May be tank mixed with other herbicides. See label for further instructions.</td>
</tr>
<tr>
<td>LETTUCE, Preplant or Preemergence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual grasses and small-seeded broadleaf</td>
<td>benefin, MOA 3 (Balan) 60 WDG</td>
<td>2 to 2.5 lb</td>
<td>1.2 to 1.5</td>
<td>Apply preplant and incorporate 2 to 3 in. deep with a rototiller or tandem disk before seeding or transplanting.</td>
</tr>
<tr>
<td></td>
<td>bensulide, MOA 8 (Prefar) 4 EC</td>
<td>5 to 6 qt</td>
<td>5 to 6</td>
<td>Apply preplant incorporated (1 in. incorporation is optimum) or preemergence after planting. With preemergence application, irrigate immediately after application. See label for more directions.</td>
</tr>
<tr>
<td>Most annual grasses and broadleaf weeds</td>
<td>pronamide, MOA 3 (Kerb) 3.3 SC</td>
<td>1.25 to 5 pt</td>
<td>0.5 to 2</td>
<td>Kerb 3.3 SC has a supplemental label allowing application on leaf and head lettuce. Also labeled in endive, escarole, or radicchio greens. Can be applied preplant, post plant, or postemergence in banded, bed-topped or broadcast applications or a split application can be made. See label for more information. Consult label for planting restrictions for rotational crops. PHI = 55 days.</td>
</tr>
<tr>
<td>LETTUCE, Postemergence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual and perennial grasses</td>
<td>sethoxydim, MOA 1 (Poast) 1.5 EC</td>
<td>1 to 1.5 pt</td>
<td>0.2 to 0.3</td>
<td>Arrow, Clethodim, and Select are only registered for leaf lettuce. Consult manufacturer’s label for specific rates and best times to treat and adjuvant and rate. Use of Poast or clethodim with crop oil may increase the likelihood of crop injury at high air. Temperatures and high humidity. Do not apply sethoxydim within 30 days of harvest on head lettuce or within 15 days of harvest on leaf lettuce. For clethodim, do not apply within 14 days of harvest.</td>
</tr>
<tr>
<td></td>
<td>clethodim, MOA 1 (Arrow, Clethodim, Intensity, Select) 2 EC (Select Max, Intensity One) 1 EC</td>
<td>6 to 8 oz 9 to 16 oz</td>
<td>0.09 to 0.125 0.07 to 0.125</td>
<td>Kerb 3.3 SC has a supplemental label allowing use on leaf lettuce as well as head lettuce. Apply before weed germination in possible, no later than weeds in the 2-leaf stage. See label for restrictions and use patterns. Consult label for rotational restrictions and other restrictions.</td>
</tr>
<tr>
<td>Annual and perennial grasses</td>
<td>fluazifop, MOA 1 (Fusilade DX) 2 EC</td>
<td>6 to 16 oz</td>
<td>0.1 to 0.25</td>
<td>Registered in leaf and head lettuce. PHI = 14 days.</td>
</tr>
<tr>
<td>Most annual grasses and broadleaf weeds</td>
<td>pronamide, MOA 3 (Kerb) 3.3 SC</td>
<td>1.25 to 5 pt</td>
<td>0.5 to 2</td>
<td>Kerb 3.3 SC has supplemental label now allowing use on leaf lettuce as well as head lettuce. Apply before weed germination in possible, no later than weeds in the 2-leaf stage. See label for restrictions and use patterns. Consult label for rotational restrictions and other restrictions.</td>
</tr>
<tr>
<td>Most emerged weeds</td>
<td>glyphosate, MOA 9 (numerous brands and formulations)</td>
<td>See labels</td>
<td>See labels</td>
<td>Row middles only. Apply as a hooded spray in row middles, as shielded spray in row middles, as wiper applications in row middles, or postharvest. To avoid severe injury to crop, do not allow herbicide to contact foliage, green shoots, stems, exposed, roots, or fruit of crop. PHI = 14 days.</td>
</tr>
<tr>
<td>Most broadleaf weeds less than 4 in. tall or rosettes less than 3 in. in diameter; does not control grasses</td>
<td>carfentrazone-ethyl, MOA 14 (Aim) 1.9 EW or 2 EC</td>
<td>Up to 2 oz</td>
<td>Up to 0.031</td>
<td>Apply post-directed using hooded sprayers for control of emerged weeds. If crop is contacted, burning of contacted area will occur. Use a nonionic surfactant or crop oil with Aim. See label for rate. Coverage is essential for good weed control. Can be tank mixed with other registered herbicides.</td>
</tr>
</tbody>
</table>

*Mode of action (MOA) code developed by the Weed Science Society of America.
TABLE 4-16. CHEMICAL WEED CONTROL IN OKRA

<table>
<thead>
<tr>
<th>Weed</th>
<th>Herbicide, Mode of Action Code* and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Pounds Active Ingredient Per Acre</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>OKRA, Preplant and Preemergence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual and perennial grass and broadleaf weeds, stale bed application</td>
<td>glyphosate, MOA 9 (numerous brands and formulations)</td>
<td>See labels</td>
<td>See labels</td>
<td>Apply to emerged weeds before crop emergence. Perennial weeds may require higher rates. Consult the manufacturer’s label for rates for specific weeds. Certain glyphosate formulations require the addition of surfactant. Adding nonionic surfactant to glyphosate formulated with nonionic surfactant may result in reduced weed control.</td>
</tr>
<tr>
<td>Most broadleaf weeds less than 4 in. tall or rosettes less than 3 in. in diameter; does not control grasses</td>
<td>carfentrazone-ethyl, MOA 14 (Aim) 1.9 EW or 2 EC</td>
<td>Up to 2 oz</td>
<td>Up to 0.031</td>
<td>Apply no later than 1 day before transplanting crop. Use a nonionic surfactant or crop oil with Aim. See label for rate. Coverage is essential for good weed control. Can be tank mixed with other registered burndown herbicides.</td>
</tr>
<tr>
<td>Emeralded broadleaf weeds and some annual grasses</td>
<td>caprylic acid, MOA 26 (Homeplate)</td>
<td>See label</td>
<td>See label</td>
<td>May be applied prior to planting as a burndown treatment for emerged weeds, as a preemergence application after seeding but before emergence, as a directed or shielded application between rows or as a postharvest application. Use higher spray volumes for high weed density and weeds larger than 5 in. Coverage is important for acceptable weed control. May be tank mixed with other herbicides. See label for further instructions.</td>
</tr>
<tr>
<td>Annual grasses and small-seeded broadleaf weeds</td>
<td>trifluralin, MOA 3 (Treflan, Treflan HFP, Trifluralin) 4 EC</td>
<td>1 to 2 pt</td>
<td>0.5 to 1</td>
<td>Apply preplant and incorporate into the soil 2 to 3 in. within 8 hours using a rototiller or tandem disk.</td>
</tr>
<tr>
<td>Broadleaf and grass weeds</td>
<td>prometryn, MOA 5 (Caparol) 4L</td>
<td>1.5 to 3 pt</td>
<td>1 to 2</td>
<td>Apply preemergence and or post-directed application. Make a single preemergence application of Caparol at 3 pt per acre after planting and before crop emergence or a sequential application (see label for further details). Do not exceed 3 pt per acre of Caparol per season. See label for crop rotation restrictions. PHI = 14 days.</td>
</tr>
<tr>
<td>Annual broadleaf weeds including pigweed spp.</td>
<td>mesotrione, MOA 27 (Callisto) 4 L</td>
<td>6 oz</td>
<td>0.19</td>
<td>May be applied as a row middle or hooded POST-directed application but not both. For preemergence row middle application, apply as a banded application to the row middles prior to weed emergence. Leave 1 ft. of untreated area over the okra row or 6 in. on each side of the planted row. Do not apply Callisto directly over the planted row or severe injury may occur. Injury risk is greatest on coarse textured soils (sand, sandy loam, or loamy sand).</td>
</tr>
<tr>
<td>OKRA, Postemergence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual and perennial grasses</td>
<td>sethoxydim, MOA 1 (Poast) 1.5 EC</td>
<td>1 to 1.5 pt</td>
<td>0.2 to 0.3</td>
<td>Apply to actively growing grasses not under drought stress. Do not apply on days that are unusually hot and humid. PHI = 14 days.</td>
</tr>
<tr>
<td>Most broadleaf weeds less than 4 in. tall or rosettes less than 3 in. in diameter; does not control grasses</td>
<td>carfentrazone-ethyl, MOA 14 (Aim) 1.9 EW or 2 EC</td>
<td>Up to 2 oz</td>
<td>Up to 0.031</td>
<td>Emerged broadleaf weeds. Apply to row middles only with a hooded sprayer. Use crop oil concentrate or nonionic surfactant at recommended rates. PHI = 5 days.</td>
</tr>
<tr>
<td>Annual and perennial grass and broadleaf weeds</td>
<td>glyphosate, MOA 9 (numerous brands and formulations)</td>
<td>See labels</td>
<td>See labels</td>
<td>Row middles only. Apply as a hooded spray in row middles, as shielded spray in row middles, as wiper applications in row middles, or postharvest. To avoid severe injury to crop, do not allow herbicide to contact foliage, green shoots or stems, exposed roots, or fruit of crop. PHI = 14 days.</td>
</tr>
<tr>
<td>Annual broadleaf weeds including pigweed 3 in. or less</td>
<td>mesotrione, MOA 27 (Callisto) 4 L</td>
<td>See label</td>
<td>See label</td>
<td>May be applied as a row middle or hooded POST-directed application but not both. For postemergence hooded application, okra must be at least 3 in. tall. Minimize amount of Callisto that contacts okra foliage or crop injury will occur. PHI = 28 days.</td>
</tr>
<tr>
<td>Yellow and purple nutsedge and broadleaf weeds</td>
<td>halosulfuron-methyl, MOA 2 (Sandea) 75 DG</td>
<td>0.5 to 1 oz</td>
<td>0.024 to 0.048</td>
<td>Apply to row middles as a postemergence shielded or hooded spray to avoid contact of herbicide with planted crop. In plasticulture, do not allow spray to contact plastic. Do not apply more than 2 oz per acre per 12-month period. PHI = 30 days.</td>
</tr>
</tbody>
</table>

*Mode of action (MOA) code developed by the Weed Science Society of America.
<table>
<thead>
<tr>
<th>Weed</th>
<th>Herbicide, Mode of Action Code* and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Pounds Active Ingredient Per Acre</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ONIONS, Preplant and Preemergence</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Suppression or control of most annual grasses</td>
<td>metam sodium (Vapam HL) 42%</td>
<td>37.5 to 75 gal</td>
<td>Dry bulb and green onion. Rates are dependent on soil type and weeds present. For nutsedge control, use 75-gal per acre. Apply when soil moisture is at field capacity (100 to 125%). Apply through soil injection using a rotary tiller or inject with knives no more than 4 in. apart; follow immediately with a roller to smooth and compact the soil surface or with mulch. May apply through drip irrigation prior to planting a second crop on mulch. Plant back interval is often 14 to 21 days and can be 30 days in some environments. See label for all restrictions and additional information.</td>
</tr>
<tr>
<td></td>
<td>and broadleaf weeds, full rate required for nutsedge control</td>
<td>15.7 to 31.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contact kill of all green foliage, stale bed</td>
<td>paraquat, MOA 22 (Parazine) 3 S (Gramoxone SL) 2 SL</td>
<td>1.7 to 2.7 pt 2.5 to 4 pt</td>
<td>Seeded onion only. Apply in a minimum of 20-gal spray mix per acre to emerged weeds before crop emergence or transplanting as a broadcast or band treatment over a preformed row. Row should be formed several days ahead of planting and treating to allow maximum weed emergence. Use a nonionic surfactant at a rate of 16 to 32 oz per 100-gal spray mix or 1-gal approved crop oil concentrate per 100-gal spray mix. Paraquat product labels require applicators to take an EPA-approved training every 3 years to mix, load, and apply paraquat.</td>
</tr>
<tr>
<td></td>
<td>application</td>
<td>0.65 to 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Annual and perennial grass and broadleaf weeds</td>
<td>glyphosate, MOA 9 (numerous brands and formulations)</td>
<td>See labels</td>
<td>Apply to emerged weeds before crop emergence. Perennial weeds may require higher rates of glyphosate. Consult the manufacturer’s label for rates for specific weeds. Use on direct seeded onions only. Certain glyphosate formulations require the addition of surfactant. Adding nonionic surfactant to glyphosate formulated with nonionic surfactant may result in reduced weed control.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>See labels</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Most broadleaf weeds less than 4 in. tall or rosettes less than 3 in. in diameter; does not control grasses</td>
<td>carfentrazone-ethyl, MOA 14 (Aim) 2.0 EC</td>
<td>Up to 2 oz</td>
<td>Apply no later than 30 days before planting. See label for specific Aim rate relating to weed species and proper adjuvant and rate. Coverage is essential for good weed control. Can be tank mixed with other registered burndown herbicides.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Up to 0.031</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Emerged broadleaf weeds and some annual grasses</td>
<td>caprylic acid, MOA 26 (Homeplate)</td>
<td>See label</td>
<td>May be applied prior to planting as a burndown treatment for emerged weeds, as a preemergence application after seeding but before emergence, as a directed or shielded application between rows or as a postharvest application. Use higher spray volumes for high weed density and weeds larger than 5 in. Coverage is important for acceptable weed control. May be tank mixed with other herbicides. See label for further instructions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Annual grasses and small-seeded broadleaf weeds</td>
<td>bensulide, MOA 8 (Prepar) 4 E</td>
<td>5 to 6 qt</td>
<td>Dry bulb only. Apply preplant incorporated (1 in. incorporation is optimum) or preemergence after planting. With preemergence application, irrigate immediately after application. See label for more directions and rotation restrictions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 to 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Mode of action (MOA) code developed by the Weed Science Society of America.
TABLE 4-17. CHEMICAL WEED CONTROL IN ONION (cont’d)

<table>
<thead>
<tr>
<th>Weed</th>
<th>Herbicide, Mode of Action Code* and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Pounds Active Ingredient Per Acre</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ONIONS, Preplant and Preemergence (cont’d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual grasses and broadleaf weeds, yellow nutsedge suppression</td>
<td>S-metolachlor, MOA 15 (Dual Magnum) 7.62 EC</td>
<td>8 to 16 oz</td>
<td>0.47 to 0.96</td>
<td>Dry bulb onion and green onion. This is a Section 24(c) Special Local Needs Label. Growers must obtain a label. Irrigation following the application of Dual Magnum will increase the risk of crop injury. Use lower rates on coarse-textured soils and higher rates on fine-textured soils. See label for more information. Seeded Application. Do not apply before 4-leaf stage. Once onion has reached the 4-leaf stage, apply 8 oz per acre. When onions reach 6-leaf stage, rate can be increased to 12 oz per acre. Transplant Dry Bulb. Transplant and then irrigate to seal soil around the root ball. Apply within 48 hours of planting. Heavy irrigation following the application of Dual Magnum will increase the risk of crop injury.</td>
</tr>
<tr>
<td>ONIONS, Postemergence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Most annual broadleaf weeds</td>
<td>oxyfluorfen, MOA 14 (Galigan) 2 E (Goal 2 XL) 2 EC (Goaltender) 4 E</td>
<td>0.5 pt</td>
<td>0.12</td>
<td>Dry bulb only. May be used as a postemergence spray to both the weeds and crop after the onions have at least two fully developed true leaves. Some injury to onions may result. Injury will be more severe if the chemical is applied during cool, wet weather. Weeds should be in the 2- to 4-leaf stage for best results. Do not make more than four applications per year. PHI = 45 days.</td>
</tr>
<tr>
<td>Common lambsquarters, common chickweed, common purslane, black nightshade, ladysthumb, Pennsylvania smartweed, redroot pigweed, and some annual grasses</td>
<td>ethofumesate, MOA 8 (Norton) 4 SC</td>
<td>16 to 32 oz</td>
<td>0.5 to 1</td>
<td>Apply at planting or just after planting prior to weed emergence. Can be used postemergence at 16 oz per acre. See label for more information. Rainfall of at least 0.5 in. is needed for activation.</td>
</tr>
<tr>
<td>Most broadleaf weeds less than 4 in. tall or rosettes less than 3 in. diameter; does not control grasses</td>
<td>carfentrazone-ethyl, MOA 14 (Am) 1.9 EW or 2 EC</td>
<td>Up to 2 oz</td>
<td>Up to 0.031</td>
<td>Apply post-directed using hooded sprayers for control of emerged weeds. If crop is contacted, burning of contacted area will occur. Use a nonionic surfactant or crop oil with Aim. See label for rate. Coverage is essential for good weed control. Can be tank mixed with other registered herbicides.</td>
</tr>
<tr>
<td>Most emerged weeds</td>
<td>glyphosate, MOA 9 (numerous brands and formulations)</td>
<td>See labels</td>
<td>See labels</td>
<td>Row middles only. Apply as a hooded spray in row middles, as shielded spray in row middles, as wiper applications in row middles, or postharvest. To avoid severe injury to crop, do not allow herbicide to contact foliage, green shoots, stems, exposed, roots, or fruit of crop. PHI = 14 days.</td>
</tr>
<tr>
<td>Annual and perennial grasses only</td>
<td>flazifop, MOA 1 (Fusilade DX) 2 EC</td>
<td>6 to 16 oz</td>
<td>0.1 to 0.25</td>
<td>Dry bulb and green onion. Apply to emerged grasses. Consult manufacturer’s label for specific rates and best times to treat. Do not apply on days that are unusually hot and humid. PHI = 45 days.</td>
</tr>
<tr>
<td></td>
<td>sethoxydim, MOA 1 (Poast) 1.5 EC</td>
<td>1 to 1.5 pt</td>
<td>0.2 to 0.3</td>
<td>Dry bulb and green. Apply to emerged grasses. Consult manufacturer’s label for specific rates and best times to treat and adjuvant and rate. Adding crop oil to Poast may increase the likelihood of crop injury at high air temperatures. Do not apply Poast on days that are unusually hot and humid. PHI = 30 days.</td>
</tr>
<tr>
<td></td>
<td>clethodim, MOA 1 (Arrow, Clethodim, Intensity, Select) 2 EC (Intensity One, Select Max) 1 EC</td>
<td>6 to 16 oz, 9 to 32 oz</td>
<td>0.09 to 0.25, 0.07 to 0.25</td>
<td>Dry bulb only. Apply to emerged grasses. Consult the manufacturer’s label for specific rates and best times to treat. Adding crop oil may increase the likelihood of crop injury at high air temperatures and high humidity. Do not apply Select on unusually hot and humid days. PHI = 45 days for dry bulb onion. Intensity One may be applied to dry bulb onions or green onions (leeks, scallions or spring onions, Japanese bunching onion, shallots or eschalots). Do not exceed 16 ounces of Intensity One per acre on green onions. For green onions, PHI = 14 days.</td>
</tr>
</tbody>
</table>

*Mode of action (MOA) code developed by the Weed Science Society of America.
TABLE 4-18. CHEMICAL WEED CONTROL IN PEAS

<table>
<thead>
<tr>
<th>Weed, Mode of Action Code* and Formulation</th>
<th>Herbicide, Ingredient Active Per Acre</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEAS, GREEN/ENGLISH, Preplant and Preemergence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact kill of all green foliage, stale bed application</td>
<td>paraquat, MOA 22 (Parazine) 35L (Gramoxone SL) 2 SL 1.3 to 2.7 pt 2 to 4 pt</td>
<td>0.5 to 1 Apply in a minimum of 10-gal spray mix per acre to emerged weeds before crop emergence as a broadcast or band treatment over a preformed row. Use sufficient water to give thorough coverage. Row should be formed several days ahead of planting and treating to allow maximum weed emergence. Use a nonionic surfactant at a rate of 16 to 32 oz per 100-gal spray mix or 1-gal approved crop oil concentrate per 100-gal spray mix. Paraquat product labels require applicators to take an EPA-approved training every 3 years to mix, load, and apply paraquat.</td>
</tr>
<tr>
<td>Most broadleaf weeds less than 4 in. tall or rosettes less than 3 in. in diameter; does not control grasses</td>
<td>carfentrazone-ethyl, MOA 14 (Aim) 1.9 EW or 2 EC Up to 2 oz</td>
<td>Up to 0.031 Apply prior to planting or emergence of crop. Use a nonionic surfactant or crop oil with Aim. See label for rate. Coverage is essential for good weed control. Can be tank mixed with other registered burndown herbicides.</td>
</tr>
<tr>
<td>Annual and perennial grass and broadleaf weeds</td>
<td>glyphosate, MOA 9 (numerous brands and formulations) See labels</td>
<td>See labels Apply to emerged weeds before crop emergence. Do not feed crop residue to livestock for 8 weeks following treatment. Perennial weeds may require higher rates of glyphosate. Consult the manufacturer’s label for rates for specific weeds. Certain glyphosate formulations require the addition of a surfactant. Adding nonionic surfactant to glyphosate formulated with nonionic surfactant may result in reduced weed control.</td>
</tr>
<tr>
<td>Broadleaf weeds and some annual grasses</td>
<td>caprylyl acid, MOA 26 (Homplate) See label</td>
<td>See label May be applied prior to planting as a burndown treatment for emerged weeds, as a preemergence application after seeding but before emergence, as a directed or shielded application between rows. Use higher spray volumes for high weed density and weeds larger than 5 in. Coverage is important for acceptable weed control. May be tank mixed with other herbicides. See label for further instructions.</td>
</tr>
<tr>
<td>Broadleaf weeds</td>
<td>saflufenacil, MOA 14 (Sharpen) 3.42 SL 1 oz</td>
<td>0.027 Dry field pea edible pea (sugar snap, English pea, garden pea, green pea, marrow fat pea) and chickpea only. Apply as a preplant/preemergence burndown of small actively growing broadleaf weeds. Can also be used preplant incorporated or preemergence in edible pea. See label for directions. Do not apply more than 2 ounces per acre per season. Apply as a preplant/preemergence burndown. Do not apply more than 2 oz per acre per season.</td>
</tr>
<tr>
<td>Annual grasses and small-seeded broadleaf weeds</td>
<td>pendimethalin, MOA 3 (Prowl H₂O) 3.8 AS 1.5 to 3 pt</td>
<td>0.75 to 1.5 Southernpeas (cowpeas) and snap beans only. Apply preplant and incorporate into the soil 2 to 3 in. using a power-driven rototiller or by cross diskking. DO NOT APPLY AFTER SEEDING. Do not apply when air temperature is below 45°F.</td>
</tr>
<tr>
<td>Annual grasses and broadleaf weeds; weak on pigweed</td>
<td>clomazone, MOA 13 (Command) 3ME 1.3 pt</td>
<td>0.5 Apply to the soil surface immediately after seeding. See label for further instruction.</td>
</tr>
<tr>
<td>Annual grasses, small-seeded broadleaf weeds, and suppression of yellow nutsedge</td>
<td>S-metolachlor, MOA 15 (Brawl, Dual Magnum, Medal) 7.62 EC (Brawl II, Dual II Magnum, Medal II) 7.64 EC 1 to 2 pt</td>
<td>0.95 to 1.91 Apply to soil surface immediately after seeding. Shallow cultivations will improve control. See label for specific rate.</td>
</tr>
<tr>
<td>Annual broadleaf weeds including morningglory, pigweed, smartweed, and purslane</td>
<td>imazethapyr, MOA 2 (Pursuit) 2 EC Up to 3 oz</td>
<td>Up to 0.047 English peas only. Apply preplant incorporated or to soil surface immediately after planting. See label for more details.</td>
</tr>
<tr>
<td>PEAS, GREEN, Postemergence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual broadleaf weeds and yellow nutsedge</td>
<td>bentazon, MOA 6 (Basagran) 4 SL 1 to 2 pt</td>
<td>0.5 to 1 Apply overtop of peas when weeds are small, and peas have at least three pairs of leaves (four nodes). DO NOT ADD CROP OIL CONCENTRATE TO SPRAY MIX. Do not apply when peas are in bloom. PHI = 10 days.</td>
</tr>
<tr>
<td>Most broadleaf weeds less than 4 in. tall or rosettes less than 3 in. in diameter; does not control grasses</td>
<td>carfentrazone-ethyl, MOA 14 (Aim) 1.9 EW or 2 EC Up to 2 oz</td>
<td>Up to 0.031 Apply post-directed using hooded sprayers for control of emerged weeds. If crop is contacted, burning of contacted area will occur. Use a nonionic surfactant or crop oil with Aim. See Label for rate. Coverage is essential for good weed control. Can be tank mixed with other registered herbicides.</td>
</tr>
<tr>
<td>Most emerged weeds</td>
<td>glyphosate, MOA 9 (numerous brands and formulations) See labels</td>
<td>See labels Row middles only. Apply as a hooded spray in row middles, as shielded spray in row middles, as wiper applications in row middles, or postharvest. To avoid severe injury to crop, do not allow herbicide to contact foliage, green shoots or stems, exposed roots, or fruit of crop. PHI = 14 days.</td>
</tr>
</tbody>
</table>

*Mode of action (MOA) code developed by the Weed Science Society of America.
TABLE 4-18. CHEMICAL WEED CONTROL IN PEAS (cont’d)

<table>
<thead>
<tr>
<th>Weed</th>
<th>Herbicide, Mode of Action Code* and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Pounds Active Ingredient Per Acre</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEAS, GREEN, Postemergence (cont’d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual and perennial grasses</td>
<td>sethoxydim, MOA 1 (Poast) 1.5 EC</td>
<td>1 to 1.5 pt</td>
<td>0.2 to 0.3</td>
<td>Apply to emerged grasses. Consult manufacturer’s label for specific rates and best times to treat and adjuvant and rate. Adding crop oil may increase the likelihood of crop injury at high air temperatures and high humidity. Do not apply sethoxydim within 15 days or Assure within 30 days of harvest.</td>
</tr>
<tr>
<td></td>
<td>quinclorop p-ethyl, MOA 1 (Assure II) 0.88 EC (Targa) 0.88 EC</td>
<td>6 to 12 oz</td>
<td>0.04 to 0.08</td>
<td></td>
</tr>
<tr>
<td>Annual broadleaf weeds including morning glory, pigweed, smartweed, and purslane</td>
<td>imazethapyr, MOA 2 (Pursuit) 2 EC</td>
<td>Up to 3 oz</td>
<td>Up to 0.047</td>
<td>See label for pea type. Apply postemergence to 1- to 3-in. weeds (one to four leaves) when peas are at least 3 in. high but prior to five nodes and before flowering. Add nonionic surfactant at 2 pt per 100-gal of spray mix. See label for crop rotation restrictions. PHI = 30 days.</td>
</tr>
<tr>
<td>Broadleaf and grass weeds</td>
<td>imazamox, MOA 2 (Raptor) 1 SL</td>
<td>4 oz</td>
<td>0.31</td>
<td>Dry peas only. Apply postemergence before bloom stage but after dry peas have at least 3 pairs of leaves. See label for further information.</td>
</tr>
<tr>
<td>PEAS, SOUTHERN (Cowpeas, Blackeyed peas, Field peas), Preplant or Preemergence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact kill of all green foliage, stale bed application</td>
<td>paraquat, MOA 22 (Parazone) 3 SL (Gramoxone SL) 2 SL</td>
<td>1.3 to 2.7 pt</td>
<td>0.5 to 1</td>
<td>Apply in a minimum of 20-gal spray solution to emerged weeds before crop emergence as a broadcast or band treatment over a preformed row. Use sufficient water to give thorough coverage. Row should be formed several days ahead of planting and treating to allow maximum weed emergence. Use a nonionic surfactant at a rate of 16 to 32 oz per 100-gal spray mix or 1-gal approved crop oil concentrate per 100-gal spray mix. Paraquat product labels require applicators to take an EPA-approved training every 3 years to mix, load, and apply paraquat.</td>
</tr>
<tr>
<td>Most broadleaf weeds less than 4 in. tall or rosettes less than 3 in. in diameter; does not control grasses</td>
<td>carfentrazone-ethyl, MOA 14 (Aim) 1.9 EW or 2 EC</td>
<td>Up to 2 oz</td>
<td>Up to 0.031</td>
<td>Apply prior to planting or emergence of crop. Use a nonionic surfactant or crop oil with Aim. See Label for rate. Coverage is essential for good weed control. Can be tank mixed with other registered burndown herbicides.</td>
</tr>
<tr>
<td>Annual and perennial grass and broadleaf weeds, stale bed application.</td>
<td>glyphosate, MOA 9 (numerous brands and formulations)</td>
<td>See labels</td>
<td>See labels</td>
<td>Apply to emerged weeds before crop emergence. Do not feed crop residue to livestock for 8 weeks following treatment. Perennial weeds may require higher rates of glyphosate. Consult the manufacturer’s label for rates for specific weeds. Certain glyphosate formulations require the addition of a surfactant. Adding nonionic surfactant to glyphosate formulated with nonionic surfactant may result in reduced weed control.</td>
</tr>
<tr>
<td>Annual grasses and small-seeded broadleaf weeds</td>
<td>pendimethalin, MOA 3 (Prowl H2O) 3.8 AS</td>
<td>1.5 to 3 pt</td>
<td>0.75 to 1.5</td>
<td>NOT LABELED IN BLACKEYED PEAS. Apply preplant and incorporate into the soil 2 to 3 in. using a power-driven rototiller or by cross disking. DO NOT APPLY AFTER SEEDING.</td>
</tr>
<tr>
<td></td>
<td>trifluralin, MOA 3 (Treflan, Treflan, Trefluralin, Trefluralin HP) 4 EC</td>
<td>1 to 2 pt</td>
<td>0.5 to 1</td>
<td>Apply preplant and incorporate into the soil 2 to 3 in. deep within 8 hr with a rototiller or tandem disk.</td>
</tr>
<tr>
<td>Annual grasses and broadleaf weeds</td>
<td>clomazone, MOA 13 (Command) 3ME</td>
<td>0.4 to 0.67 pt</td>
<td>0.15 to 0.25</td>
<td>Succulent Southernpeas only. Apply to the soil surface immediately after seeding. Offers weak control of pigweed. See label for further instruction.</td>
</tr>
<tr>
<td>Annual grasses, small-seeded broadleaf weeds, and suppression of yellow nutsedge</td>
<td>S-metolachlor, MOA 15 (Brawl, Dual Magnum, Medal) 7.62 EC (Brawl II, Dual II Magnum, Medal II) 7.64 EC</td>
<td>1 to 2 pt</td>
<td>0.95 to 1.91</td>
<td>Apply to soil surface immediately after planting. Shallow cultivations will improve control. May also be soil incorporated before planting.</td>
</tr>
<tr>
<td>Annual grasses and broadleaf weeds including morning glory, pigweed, smartweed, and purslane</td>
<td>imazethapyr, MOA 2 (Pursuit) 2 EC</td>
<td>Up to 4 oz</td>
<td>Up to 0.063</td>
<td>Apply preemergence or preplant incorporated. See label for rate for specific pea species.</td>
</tr>
<tr>
<td>PEAS, SOUTHERN, Postemergence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual broadleaf weeds and yellow nutsedge</td>
<td>bentazon, MOA 6 (Basagran) 4 SL</td>
<td>1 to 2 pt</td>
<td>0.5 to 1</td>
<td>Apply overtop of peas when weeds are small, and peas have at least three pairs of leaves (four nodes). DO NOT ADD CROP OIL CONCENTRATE TO SPRAY MIX. See label for weeds controlled with Basagran. Do not apply when peas are in bloom. PHI = 30 days.</td>
</tr>
<tr>
<td>Annual broadleaf weeds including morning glory, pigweed, smartweed, and purslane</td>
<td>imazethapyr, MOA 2 (Pursuit) 2 EC</td>
<td>Up to 4 oz</td>
<td>Up to 0.063</td>
<td>Southern peas and certain dry peas. Apply postemergence to 1- to 3-in. weeds (one to four leaves) when peas are at least 3 in. high but prior to five nodes and flowering. Add nonionic surfactant at 2 pt per 100-gal of spray mixture with all postemergence applications. Do not apply within 30 days of harvest. See label for rate for specific pea species.</td>
</tr>
</tbody>
</table>

Mode of action (MOA) code developed by the Weed Science Society of America.
TABLE 4-18. CHEMICAL WEED CONTROL IN PEAS (cont’d)

<table>
<thead>
<tr>
<th>Weed</th>
<th>Herbicide, Mode of Action Code* and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Pounds Active Ingredient Per Acre</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEAS, SOUTHERN, Postemergence (cont’d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Most broadleaf weeds less than 4 in. tall or rosettes less than 3 in. in diameter; does not control grasses</td>
<td>carfentrazone-ethyl, MOA 14 (Aim) 1.9 EW or 2 EC</td>
<td>Up to 2 oz</td>
<td>Up to 0.031</td>
<td>Apply post-directed using hooded sprayers for control of emerged weeds. If crop is contacted, burning of contacted area will occur. Use a nonionic surfactant or crop oil with Aim. See label for rate. Coverage is essential for good weed control. Can be tank mixed with other registered herbicides.</td>
</tr>
<tr>
<td>Most emerged weeds</td>
<td>glyphosate, MOA 9 (numerous brands and formulations)</td>
<td>See labels</td>
<td>See labels</td>
<td>Row middles only. Apply as a hooded spray in row middles, as shielded spray in row middles, as wiper applications in row middles, or postharvest. To avoid severe injury to crop, do not allow herbicide to contact foliage, green shoots, stems, exposed, roots, or fruit of crop. PHI = 14 days.</td>
</tr>
<tr>
<td>Annual and perennial grasses</td>
<td>quizalofop p-ethyl, MOA 1 (Assure II, Targa) 0.88 EC</td>
<td>6 to 12 oz</td>
<td>0.04 to 0.08</td>
<td>Apply to emerged grasses. Consult manufacturer’s label for specific rates and best times to treat. With sethoxydim, add 1 qt of crop oil concentrate per acre. With quizalofop, add 1-gal oil concentrate or 1 qt nonionic surfactant per 100-gal spray. Adding crop oil to Assure II or Poast may increase the likelihood of crop injury at high air temperatures. Do not apply Assure II or Poast on days that are unusually hot and humid. With sethoxydim, do not apply within 15 days and 60 days of harvest succulent and dry peas, respectively. With quizalofop, do not apply within 60 days of harvest of dry Southern peas, or within 30 days of harvest of succulent Southern peas.</td>
</tr>
<tr>
<td></td>
<td>sethoxydim, MOA 1 (Poast) 1.5 EC</td>
<td>1 to 1.5 pt</td>
<td>0.2 to 0.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>clethodim, MOA 1 (Intensity One, Seeded Max) 1 EC</td>
<td>9 to 16 oz</td>
<td>0.07 to 0.125</td>
<td></td>
</tr>
</tbody>
</table>

*Mode of action (MOA) code developed by the Weed Science Society of America.

TABLE 4-19. CHEMICAL WEED CONTROL IN PEPPERS

<table>
<thead>
<tr>
<th>Weed</th>
<th>Herbicide, Mode of Action Code* and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Pounds Active Ingredient Per Acre</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEPPERS, Preplant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suppression or control of most annual grasses and broadleaf weeds, full rate required for nutsedge control</td>
<td>metam sodium (Vapam HL) 42%</td>
<td>37.5 to 75 gal</td>
<td>15.7 to 31.5</td>
<td>Rates are dependent on soil type and weeds present. For nutsedge control, apply 75-gal per acre. Apply when soil moisture is at field capacity (100 to 125%). Apply through soil injection using a rotary tiller or inject with knives no more than 4 in. apart. Follow immediately with a roller to smooth and compact the soil surface or with mulch. May apply through drip irrigation just prior to planting a second crop on mulch however adhere to label guidelines on crop plant-back interval. Plant back interval is often 14 to 21 days and can be 30 days in some environments. See label for all restrictions and additional information.</td>
</tr>
<tr>
<td>Contact kill of all green foliage, stale bed application</td>
<td>parquat, MOA 22 (Parazoite) 3 SL (Gramoxone SL) 2 SL</td>
<td>1.3 to 2.7 pt 2 to 4 pt</td>
<td>0.5 to 1</td>
<td>Apply in a minimum of 10-gal of spray mix per acre to emerged weeds before transplanting as a broadcast or band treatment over a preformed row. Row should be formed several days ahead of planting and treating to allow maximum weed emergence. Use a nonionic surfactant at a rate of 16 to 32 oz per 100-gal spray mix or 1-gal approved crop oil concentrate per 100-gal spray mix. Paraquat product labels require applicators to take an EPA-approved training every 3 years to mix, load, and apply paraquat.</td>
</tr>
<tr>
<td>Most broadleaf weeds less than 4 in. tall or rosettes less than 3 in. in diameter; does not control grasses</td>
<td>carfentrazone-ethyl, MOA 14 (Aim) 1.9 EW or 2 EC</td>
<td>Up to 2 oz</td>
<td>Up to 0.031</td>
<td>Transplanted crop. Apply no later than 1 day before transplanting crop. Seedling crop. Apply no later than 7 days before planting seedling crop. Use a nonionic surfactant or crop oil. See label for rate. Coverage of weed is essential for good weed control. Can be tank mixed with other registered burndown herbicides.</td>
</tr>
<tr>
<td>Annual and perennial grass and broadleaf weeds, stale bed application</td>
<td>glyphosate, MOA 9 (numerous brands and formulations)</td>
<td>See labels</td>
<td>See labels</td>
<td>Apply to emerged weeds at least 3 days before seedling or transplanting. When applying Roundup before transplanting crops into plastic mulch, care must be taken to remove residues of this product from the plastic prior to transplanting. To prevent crop injury, residues can be removed by 0.5 in. rainfall or by applying water via a sprinkler system. Perennial weeds may require higher rates of glyphosate. Consult the manufacturer’s label for specific weeds. Certain glyphosate formulations require the addition of a surfactant. Adding nonionic surfactant to glyphosate formulated with nonionic surfactant may result in reduced weed control.</td>
</tr>
<tr>
<td>Emerged broadleaf weeds and some annual grasses</td>
<td>caprylic acid, MOA 25 (Homeplate)</td>
<td>See label</td>
<td>See label</td>
<td>May be applied prior to planting as a burndown treatment for emerged weeds, as a preemergence application after seeding but before emergence, as a directed or shielded application between rows or as a postharvest application. Use higher spray volumes for high weed density and weeds larger than 5 in. Coverage is important for acceptable weed control. May be tank mixed with other herbicides. See label for further instructions.</td>
</tr>
</tbody>
</table>

*Mode of action (MOA) code developed by the Weed Science Society of America.
TABLE 4-19. CHEMICAL WEED CONTROL IN PEPPERS (cont’d)

<table>
<thead>
<tr>
<th>Weed</th>
<th>Herbicide, Mode of Action Code* and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Pounds Active Ingredient Per Acre</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEPPERS, Preplant (cont’d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Broadleaf weeds including Carolina geranium and cutleaf evening primrose and a few annual grasses</td>
<td>oxyfluorfen, MOA 14 (Goal) 2XL (GoalTender) 4 F</td>
<td>Up to 2 pt</td>
<td>0.5</td>
<td>Plasticulture only. Apply to soil surface of pre-formed beds at least 30 days prior to transplanting crop. While incorporation is not necessary, it may result in less crop injury. Plastic mulch can be applied any time after application, but best results are likely if applied soon after application.</td>
</tr>
<tr>
<td>Palmer amaranth, red-root pigweed, smooth pigweed, Galinsoga spp., black nightshade, Eastern black nightshade, common purslane, partial control of yellow nutsedge</td>
<td>fomesafen, MOA 14 (Reflex) 2 EC</td>
<td>1 to 1.5 pt</td>
<td>0.25 to 0.375</td>
<td>This is a Section 24(c) Special Local Need Label for transplanted pepper. Growers must obtain the label prior to applications. See label for further instructions. Plasticulture In-row Application for Transplanted Pepper. Apply after final bed formation and the drip tape is laid but prior to laying plastic mulch. Avoid soil disturbance after application. Unless restricted by other products such as fumigants, pepper may be transplanted immediately following the application of Reflex and the application of the mulch.</td>
</tr>
<tr>
<td>PEPPERS, Preplant and Preemergence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual grasses and small-seeded broadleaf</td>
<td>clomazone, MOA 13 (Command) 3 ME</td>
<td>0.67 to 2.67 pt</td>
<td>0.25 to 1</td>
<td>Not labeled for banana pepper. Apply preplant before transplanting. Weak on pigweed. See label for instructions on use.</td>
</tr>
<tr>
<td></td>
<td>napropamide, MOA 15 (Devrinol, Devrinol DF-XT) 50 DF (Devrinol, Devrinol 2-XT) 2 EC</td>
<td>2 to 4 lb</td>
<td>1 to 2</td>
<td>Bareground: Apply preplant and incorporate into the soil 1 to 2 in. as soon as possible with a rototiller or tandem disk. Can be used on direct-seeded or transplanted peppers. See label for instructions on use. Plasticulture: Apply to a weed-free soil before laying plastic mulch. Soil should be well worked yet moist enough to permit a thorough incorporation to a depth of 2 in. Mechanically incorporate or irrigate within 24 hours after application. If weed pressure is from small-seeded annuals, apply to the surface of the bed immediately in front of the laying of plastic mulch. If soil is dry, water or sprinkle irrigate with sufficient water to wet to a depth of 2 to 4 in. before covering with plastic mulch.</td>
</tr>
<tr>
<td></td>
<td>pendimethalin, MOA 3 (Prowl H2O) 3.8 AS</td>
<td>1 to 3 pt</td>
<td>0.5 to 1.5</td>
<td>May be applied in chili pepper, cooking pepper, pimento, Jalapeno, and sweet pepper. Do not apply more than 3 pt per acre per season. See label for specific use rate for your soil type. Avoid direct contact with pepper foliage or stems. PHI = 70 days. See label for further instructions and precautions.</td>
</tr>
<tr>
<td></td>
<td>trifluralin, MOA 3 (Treflan, Treflan HFP, Treflan HF) 4 EC</td>
<td>1 to 2 pt</td>
<td>0.5 to 1</td>
<td>Apply pre-transplant and incorporate to a depth of 2 to 3 in. within 8 hr with a rototiller or tandem disk.</td>
</tr>
<tr>
<td></td>
<td>bensulide, MOA 8 (Prefar) 4 EC</td>
<td>5 to 6 qt</td>
<td>5 to 6</td>
<td>Apply preplant incorporated (1 in. incorporation is optimum) or preemergence. With preemergence application, irrigate immediately after application. See label for directions.</td>
</tr>
</tbody>
</table>

*Mode of action (MOA) code developed by the Weed Science Society of America.
TABLE 4-19. CHEMICAL WEED CONTROL IN PEPPERS (cont’d)

<table>
<thead>
<tr>
<th>Weed</th>
<th>Herbicide, Mode of Action Code* and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Pounds ActiveIngredient Per Acre</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEPPERS, Preplant and Preemergence (cont’d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual grass and broadleaf weeds, yellow nutfedge suppression</td>
<td>S-metolachlor, MOA 15 (Dual Magnum) 7.62 EC</td>
<td>8 to 12 oz</td>
<td>0.47 to 0.7</td>
<td>Bell pepper transplants only. This is a Section 24(c) Special Local Need Label. Growers must obtain label prior to making Dual Magnum applications. Growers must obtain label. Option 1: Apply 8 to 12 oz per acre to the soil surface of pre-formed beds prior to laying plastic. Ensure the plastic laying process does not incorporate or disturb the treated bed. Option 2: Apply 12 oz per acre overtop of bell pepper between 1 and 3 weeks after planting. Does not control emerged weeds. Limited data available for NC. Do not apply more than 12 oz per acre as it is likely that injury will occur including decreased crop vigor. Read label for further instructions.</td>
</tr>
<tr>
<td>PEPPERS, Postemergence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Broadleaf, grass (suppression only), and yellow nutfedge</td>
<td>imazosulfuron, MOA 2 (League) 0.5 DF</td>
<td>4 to 6.4 oz</td>
<td>0.19 to 0.3</td>
<td>Pepper (Bell and non-bell). Apply to pepper plants that are well established and at least 10 in. tall. Apply directed to the base of the plants stem, no higher than 2 in. from the soil surface and do not contact fruit. Consult label for approved surfactants and crop rotation restrictions. PHI = 21 days.</td>
</tr>
<tr>
<td>Annual and perennial grasses only</td>
<td>sethoxydim, MOA 1 (Poast) 1.5 EC</td>
<td>1 to 1.5 pt</td>
<td>0.2 to 0.3</td>
<td>Apply to emerged grasses. Consult manufacturer’s label for specific rates and best times to treat and adjuvant and rate. Adding crop oil to Poast may increase the likelihood of crop injury at high air temperatures and high humidity. PHI = 7 days.</td>
</tr>
<tr>
<td></td>
<td>clethodim, MOA 1 (Arrow, Clethodim, Intensity, Select) 2 EC (Select Max, Intensity One) 1 EC</td>
<td>6 to 8 oz</td>
<td>0.094 to 0.125</td>
<td>Apply postemergence to control grasses. See label for adjuvant and rate. Adding crop oil may increase the likelihood of crop injury at high air temperatures and high humidity. Very effective in controlling annual bluegrass. Apply to actively growing grasses not under drought stress. PHI = 20 days.</td>
</tr>
<tr>
<td>PEPPERS, Row Middles</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Most broadleaf weeds less than 4 in. tall or rosettes less than 3 in. in diameter; does not control grasses</td>
<td>carfentrazone-ethyl, MOA 14 (Aim) 1.9 EW or 2 EC</td>
<td>Up to 2 oz</td>
<td>Up to 0.031</td>
<td>Apply post-directed using hooded sprayer for control of emerged weeds. If crop is contacted, burning of contacted area will occur. Use a nonionic surfactant or crop oil with Aim. See label for rate. Coverage is essential for good weed control. Can be tank mixed with other registered herbicides. PHI = 90 days.</td>
</tr>
<tr>
<td>Most emerged weeds</td>
<td>glyphosate, MOA 9 (numerous brands and formulations)</td>
<td>See labels</td>
<td>See labels</td>
<td>Apply as a hooded spray in row middles, as shielded spray in row middles, as wiper applications in row middles, or postharvest. To avoid severe injury to crop, do not allow herbicide to contact foliage, green shoots, stems, exposed, roots, or fruit of crop. PHI = 14 days.</td>
</tr>
<tr>
<td>Yellow and purple nutfedge and broadleaf weeds</td>
<td>halosulfuron-methyl, MOA 2 (Profline 75, Sandea) 75 DG</td>
<td>0.5 to 1 oz</td>
<td>0.024 to 0.048</td>
<td>Apply to row middles as a postemergence spray. In plasticulture, do not allow spray to contact plastic. Early season application will give postemergence and preemergence control. Do not apply within 30 days of harvest. For postemergence applications, use nonionic surfactant at 1 qt per 100-gal of spray solution.</td>
</tr>
<tr>
<td>Contact kill of all green foliage</td>
<td>paraquat, MOA 22 (Parazone) 3 SL (Gramoxone SL) 2 SL</td>
<td>1.3 pt 2 pt</td>
<td>0.5</td>
<td>Apply in a minimum of 20-gal spray mix per acre as a shielded spray to emerged weeds between rows of peppers. Use a nonionic surfactant at a rate of 16 oz per 100-gal spray mix. Do not apply more than 3 applications per season. Paraquat product labels require applicators to take an EPA-approved training every 3 years to mix, load, and apply paraquat.</td>
</tr>
</tbody>
</table>

*Mode of action (MOA) code developed by the Weed Science Society of America.
<table>
<thead>
<tr>
<th>Weed</th>
<th>Herbicide, Mode of Action Code* and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Pounds Active Ingredient Per Acre</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>POTATOES, IRISH, Preplant and Preemergence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact kill of all green foliage, stale bed application</td>
<td>paraquat, MOA 22 (Parazoan) 3 SL (Gramoxone SL) 2 SL</td>
<td>0.7 to 1.3 pt 1 to 2 pt</td>
<td>0.25 to 0.5</td>
<td>Apply in a minimum of 20-gal spray mix per acre to emerged weeds up to ground cracking before crop emergence. May be used instead of the drag-off operation to kill emerged weeds before the application of preemergence herbicides. Use a nonionic surfactant at a rate of 16 to 32 oz per 100-gal spray mix or 1-gal approved crop oil concentrate per 100-gal spray mix. Paraquat product labels require applicators to take an EPA-approved training every 3 years to mix, load, and apply paraquat.</td>
</tr>
<tr>
<td>Most broadleaf weeds less than 4 in. tall or rosettes less than 3 in. in diameter; does not control grasses</td>
<td>carfentrazone-ethyl, MOA 14 (Am) 1.9 EW or 2 EC</td>
<td>Up to 2 oz</td>
<td>Up to 0.031</td>
<td>Apply prior to planting, or within 1 day after planting crop. Use a nonionic surfactant or crop oil with Aim. See label for rate. Coverage of weed is essential for good weed control. Can be tank mixed with other registered burndown herbicides.</td>
</tr>
<tr>
<td>Emerged broadleaf weeds and some annual grasses</td>
<td>caprylic acid, MOA 26 (Homeplate)</td>
<td>See label</td>
<td>See label</td>
<td>May be applied prior to planting as a burn-down treatment for emerged weeds, as a preemergence application after seeding but before emergence, as a directed or shielded application between rows, as a harvest aid and desiccant, or as a post-harvest application. Use higher spray volumes for high weed density and weeds larger than 5 in. Coverage is important for acceptable weed control. May be tank mixed with other herbicides. See label for further instructions.</td>
</tr>
<tr>
<td>Annual and perennial grass and broadleaf weeds, stale bed application</td>
<td>glyphosate, MOA 9 (numerous brands and formulations)</td>
<td>See labels</td>
<td>See labels</td>
<td>Apply to emerged weeds before crop emergence. Do not feed crop residue to live-stock for 8 weeks following treatment. Perennial weeds may require higher rates of glyphosate. Consult the manufacturer’s label for rates for specific weeds. Certain glyphosate formulations require the addition of a surfactant. Adding nonionic surfactant to glyphosate formulated with nonionic surfactant may result in reduced weed control.</td>
</tr>
<tr>
<td>Annual grasses and small-seeded broadleaf weeds</td>
<td>pendimethalin, MOA 3 (Prowl) 3.3 EC</td>
<td>1.8 to 3.6 pt</td>
<td>0.75 to 1.5</td>
<td>Apply just after planting or drag-off to weed-free soil before crop emerges or from emergence until crop reaches 6 in. tall.</td>
</tr>
<tr>
<td>Annual grasses and small-seeded broadleaf weeds, plus yellow nutsedge suppression</td>
<td>S-metolachlor, MOA 15 (Brawl, Dual Magnum, Medall) 7.62 EC (Brawl II, Dual II Magnum, Medall II) 7.64 EC</td>
<td>1 to 2 pt</td>
<td>0.95 to 1.91</td>
<td>Apply just after planting or drag-off to weed-free soil before crop emerges. Dual Magnum can also be applied at lay-by for control of late season weeds. Do not apply within 60 days after the at-planting to drag-off application, or within 40 days after a lay-by application. See label for further instruction.</td>
</tr>
<tr>
<td>Annual grasses, most broadleaf weeds, plus yellow and purple nutsedge suppression</td>
<td>dimethenamid-P, MOA 15 (Outlook) 6 EC</td>
<td>12 to 21 oz</td>
<td>0.6 to 1</td>
<td>Apply just after planting or drag-off to weed-free soil before crop emerges. See label for further instructions. PHI = 40 days.</td>
</tr>
<tr>
<td>Most annual broadleaf weeds and some annual grasses</td>
<td>EPTC, MOA 8 (Eptam) 7 EC</td>
<td>3.5 pt</td>
<td>3</td>
<td>Apply preplant and incorporate into the soil 2 to 3 in. with a rototiller or tandem disk. The variety Superior has been shown to be sensitive to Eptam. See label for specific methods of incorporation. For late season preemergence nutsedge control, apply and incorporate as a directed spray to the soil on both sides of the crop row. See label for more detail.</td>
</tr>
<tr>
<td>Most annual broadleaf weeds and some annual grasses</td>
<td>flumioxazin, MOA 14 (Chateau) 51 SW</td>
<td>1.5 oz</td>
<td>0.047</td>
<td>Apply immediately after hilking. A minimum of 2 in. of soil must cover the vegetative portion of the potato plant at the time of application of Chateau. DO NOT apply to emerged potatoes. DO NOT incorporate Chateau or weed control will be reduced. Can be tank mixed with burndown herbicides if weeds are present at application. See label for further instructions.</td>
</tr>
<tr>
<td>Most annual broadleaf weeds and some annual grasses</td>
<td>linuron, MOA 7 (Lorox DF) 50 WDG (Linex) 4L</td>
<td>1.5 to 3 lb 1.5 to 3 pt</td>
<td>0.75 to 1.5</td>
<td>Apply just after planting or drag-off or hilking but before crop emerges. If emerged weeds are present, add 1 pt surfactant for each 25-gal spray mixture. Weeds may be up to 3 in. tall at time of application.</td>
</tr>
<tr>
<td>Most annual broadleaf weeds and some annual grasses</td>
<td>metribuzin, MOA 5 (TriCor DF, Dimetric DF, and other trade names) 75 WDG</td>
<td>0.33 to 1.33 lb</td>
<td>0.23 to 1</td>
<td>Apply just after planting or drag-off or hilking but before crop emerges. Weeds may be emerging at time of application. On sand soils or sensitive varieties, do not exceed 0.67 lb per acre. See label for list of sensitive varieties.</td>
</tr>
<tr>
<td>Most annual broadleaf weeds and some annual grasses</td>
<td>rimsulfuron, MOA 2 (Matrix, Pruvon) 25 WDG</td>
<td>1 to 1.5 oz</td>
<td>0.016 to 0.023</td>
<td>Apply after drag-off or hilking but before potatoes and weeds emerge. If emerged weeds are present, add surfactant. See label for rate. Can be tank mixed with Eptam, Prowl, Sencor, Lorox, or Dual Magnum. See label for further instructions.</td>
</tr>
<tr>
<td>Broadleaf, grass and nutsedge weeds</td>
<td>fomesafen, MOA 14 (Reflex) 2 EC</td>
<td>1 pt</td>
<td>0.25</td>
<td>Apply preemergence after planting but prior to potato emergence. Do not apply as a preplant incorporated application or to emerged potato or severe crop injury may occur. Do not exceed rate of 1 pt per acre per season. PHI = 70 days.</td>
</tr>
<tr>
<td>Broadleaf, grass (suppression) and yellow nutsedge</td>
<td>imazosulfuron, MOA 2 (League) 0.5 DF</td>
<td>4 to 6.4 oz</td>
<td>0.19 to 0.3</td>
<td>Apply as a preemergence application after crop has been planted but prior to emergence or immediately after hilking. Postemergence application (3.2 to 4 oz per acre) may be made after crop has emerged if weeds are less than 3 in. in height. Do not apply more than 6.4 oz per acre per season. Consult label for sequential application program and crop rotation restrictions. PHI = 45 days.</td>
</tr>
</tbody>
</table>

*Mode of action (MOA) code developed by the Weed Science Society of America.
WHERE DO VEGETABLE GROWERS SOURCE PRODUCTS FOR THEIR BUSINESS?

Growers rely on Vegetable Growers News to provide the resources they need for a successful operation. In the 2022 Buyers’ Guide, you will find the latest products in biologicals, irrigation, postharvest and much more!

The 2022 Buyers’ Guide
Growers rely on Vegetable Growers News to provide the resources they need for a successful operation. In the 2022 Buyers’ Guide, you will find the latest products in biologicals, irrigation, postharvest and much more!

Visit VegetableGrowersNews.com/BuyersGuide
TABLE 4-20. CHEMICAL WEED CONTROL IN POTATOES, IRISH (cont’d)

<table>
<thead>
<tr>
<th>Weed</th>
<th>Herbicide, Mode of Action Code* and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Pounds Active Ingredient Per Acre</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>POTATOES, IRISH, Postemergence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Most annual broadleaf weeds and some annual grasses</td>
<td>metribuzin, MOA 5 (TriCor DF and other trade names) 75 WDG</td>
<td>0.33 to 0.67 lb</td>
<td>0.25 to 0.5</td>
<td>Do not use on early maturing smooth-skinned white or red-skinned varieties. Apply only if there have been at least three successive days of sunny weather before application. Treat before weeds are 1 in. tall. Treatment may cause some chlorosis or minor necrosis. PHI = 60 days.</td>
</tr>
<tr>
<td></td>
<td>rimsulfuron, MOA 2 (Matrix, Pruvin) 25 WDG</td>
<td>1 to 1.5 oz</td>
<td>0.016 to 0.023</td>
<td>Apply to young actively growing weeds after crop emergence. More effective on small weeds. Add nonionic surfactant at 1 to 2 pt per 100-gal water. Can be tank mixed with Eptam or Sencor or some foliar fungicides. See label for further instructions. PHI = 60 days.</td>
</tr>
<tr>
<td>Most broadleaf weeds less than 4 in. tall or rosettes less than 3 in. in diameter; does not control grasses</td>
<td>carfentrazone-ethyl, MOA 14 (Aim) 1.9 EW or 2 EC</td>
<td>Up to 2 oz</td>
<td>Up to 0.031</td>
<td>Apply post-directed using hooded sprayers for control of emerged weeds. If crop is contacted, burning of contacted area will occur. Use a nonionic surfactant or crop oil with Aim. See label for rate. Coverage of weed is essential for good weed control. Can be tank mixed with other registered herbicides. PHI = 7 days.</td>
</tr>
<tr>
<td>Most emerged weeds</td>
<td>glyphosate, MOA 9 (numerous brands and formulations)</td>
<td>See labels</td>
<td>See labels</td>
<td>Row middles only. Apply as a hooded spray in row middles, as shielded spray in row middles, as wiper applications in row middles, or postharvest. To avoid severe injury to crop, do not allow herbicide to contact foliage, green shoots, stems, exposed, roots, or fruit of crop. PHI = 14 days.</td>
</tr>
<tr>
<td>Annual and perennial grasses only</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>clethodim, MOA 1 (Arrow, Clethodim, Intensity, Select 2 EC (Intensity One, Select Max) 1 EC</td>
<td>6 to 8 oz</td>
<td>0.094 to 0.125</td>
<td>Apply postemergence for control of grasses. See label for adjuvant and rate. Adding crop oil may increase the likelihood of crop injury at high air temperatures and high humidity. Very effective in controlling annual bluegrass. Apply to actively growing grasses not under drought stress. PHI = 30 days.</td>
</tr>
<tr>
<td></td>
<td>sethoxydim, MOA 1 (Poast) 1.5 EC</td>
<td>9 to 32 oz</td>
<td>0.07 to 0.25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>rimsulfuron, MOA 2 (Eptam, Sencor) 25 WDG</td>
<td>1 to 1.5 pt</td>
<td>0.2 to 0.3</td>
<td>Apply to emerged grasses. Consult manufacturer’s label for specific rates and best times to treat and adjuvant and rate. Adding crop oil to Poast may increase the likelihood of crop injury at high air temperatures and high humidity. PHI = 30 days.</td>
</tr>
<tr>
<td>Annual broadleaf, grass and yellow nutsedge</td>
<td>S-metolachlor, MOA 15 (Brawl, Dual Magnum)</td>
<td>1 to 1.33 pt</td>
<td>0.95 to 1.26</td>
<td>Apply as interrow or interhill application. Leave a 1 ft. untreated area over the seeded row (6 in. on either side of the row). Application made as a broadcast spray over the planted row or hill or directly to crop foliage will increase the risk of injury to the crop. Apply before weeds emerge. See label for further instructions.</td>
</tr>
</tbody>
</table>

*Mode of action (MOA) code developed by the Weed Science Society of America.

TABLE 4-21. CHEMICAL WEED CONTROL IN PUMPKINS

<table>
<thead>
<tr>
<th>Weed</th>
<th>Herbicide, Mode of Action Code* and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Pounds Active Ingredient Per Acre</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUMPKINS, Preplant and Preemergence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact kill of all green foliage, stale bed application</td>
<td>paraquat, MOA 22 (Parazine) 3SL (Gramoxone SL) 2 SL</td>
<td>1.3 to 2.7 pt</td>
<td>0.5 to 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 to 4 pt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Most broadleaf weeds less than 4 in. tall or rosettes less than 3 in. in diameter; does not control grasses</td>
<td>carfentrazone-ethyl, MOA 14 (Aim) 1.9 EW or 2 EC</td>
<td>Up to 2 oz</td>
<td>Up to 0.031</td>
<td>Not registered for use on seeded crop. Apply prior to transplanting crop. Use a nonionic surfactant or crop oil with Aim. See label for rate. Coverage is essential for good weed control. Can be tank mixed with other registered burndown herbicides.</td>
</tr>
<tr>
<td>Annual and perennial grass and broadleaf weeds, stale bed application</td>
<td>glyphosate, MOA 9 (numerous brands and formulations)</td>
<td>See labels</td>
<td>See labels</td>
<td>Apply to emerged weeds at least 3 days before seeding or transplanting. Perennial weeds may require higher rates of glyphosate. Consult the manufacturer’s label for rates for specific weeds. Certain glyphosate formulations require the addition of a surfactant. Adding nonionic surfactant to glyphosate formulated with nonionic surfactant may result in reduced weed control.</td>
</tr>
</tbody>
</table>

*Mode of action (MOA) code developed by the Weed Science Society of America.
TABLE 4-21. CHEMICAL WEED CONTROL IN PUMPKINS (cont’d)

<table>
<thead>
<tr>
<th>Weed</th>
<th>Herbicide, Mode of Action Code* and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Pounds Active Ingredient Per Acre</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUMPKINS, Preplant and Preemergence (cont’d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Palmer amaranth, red-root pigweed, smooth pigweed, galinsoga sp., black nightshade, Eastern black nightshade, common purslane, partial control of yellow nutsedge</td>
<td>fomesafen, MOA 14 (Reflex) 2 EC</td>
<td>8 to 10 oz</td>
<td>0.13 to 0.16</td>
<td>A Section 24(c) Local Need Label must be obtained prior to this use. Bareground transplants. Prepare land for planting; apply Reflex; lightly irrigate to activate herbicide and move it into soil; and then prepare plant holes and plant.</td>
</tr>
<tr>
<td>Annual grasses and some small-seeded broadleaf weeds</td>
<td>bensulide, MOA 8 (Prefar) 4 EC</td>
<td>5 to 6 qt</td>
<td>5 to 6</td>
<td>Registered for cucurbit vegetable group (Crop grouping 9). Apply preplant and incorporate into the soil 1 to 2 in. (1 in. incorporation is optimum) with a rototiller or tandem disk or apply to the soil surface after seeding and follow with irrigation. Check re-plant restrictions for small grains on label. See label for use rate if Prefar 4 EC is used.</td>
</tr>
<tr>
<td></td>
<td>ethalfluralin, MOA 3 (Curbit) 3 EC</td>
<td>3 to 4.5 pt</td>
<td>1.1 to 1.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ethalfluralin, MOA 3 + clomazone, MOA 13 (Strategy) 2.1 L</td>
<td>2 to 6 pt</td>
<td>0.4 to 1.2 + 0.125 to 0.375</td>
<td>Apply to the soil surface immediately after crop seeding for preemergence control of weeds. DO NOT APPLY PRIOR TO PLANTING THE CROP. DO NOT SOIL INCORPORATE. May also be used as a banded treatment between rows after crop emergence or transplanting.</td>
</tr>
<tr>
<td>Yellow and purple nutsedge suppression, non-ALS resistant pigweed, wild radish, and ragweed</td>
<td>halosulfuron-methyl, MOA 2 (Profine 75, Sandea) 75 DG</td>
<td>0.5 to 0.75 oz</td>
<td>0.024 to 0.038 lb</td>
<td>Direct-seeded pumpkin or winter squash. Apply after seeding but prior to soil cracking. Transplanted pumpkin and winter squash. Apply 7 days prior to transplanting. See label for specific rate. See label for crop rotational restrictions and other information.</td>
</tr>
<tr>
<td>Annual broadleaf, grass and yellow nutsedge</td>
<td>S-metolachlor, MOA 15 (Brawl, Dual Magnum)</td>
<td>1 to 1.33 pt</td>
<td>0.95 to 1.26</td>
<td>Apply as interrow or interhill application. Leave a 1-foot untreated area over the seeded row (6 in. on either side of the row). Application made as a broadcast spray over the planted row or hill or directly to crop foliage will increase the risk of injury to the crop. Apply before weeds emerge. See label for further instructions.</td>
</tr>
<tr>
<td>PUMPKINS, Postemergence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yellow and purple nutsedge suppression, non-ALS resistant pigweed, wild radish, and ragweed</td>
<td>halosulfuron-methyl, MOA 2 (Profine 75, Sandea) 75 DG</td>
<td>0.5 to 0.75 oz</td>
<td>0.024 to 0.038 lb</td>
<td>Direct-seeded pumpkin and winter squash. Apply after crop has reached the 2 to 5 true leaf stage, preferably 4 to 5 true leaves, but before first female flowers appear. PHI = 30 days. Post-transplant in pumpkin and winter squash. Can be applied as an over-the-top application, a directed spray application, or with crop shields. Apply to transplants that are established, actively growing and in the 3 to 5 true leaf stages or no sooner than 14 days after transplanting unless local conditions demonstrate safety at an earlier interval, but before first female flowers appear. Row middle/ furrow applications in direct-seeded and transplant pumpkin and winter squash. Apply between rows of direct-seeded or transplanted crop while avoiding contact of the herbicide with the planted crop. If plastic is used on the planted row, adjust equipment’s to keep the application off the plastic. Reduce rate and spray volume in proportion to area sprayed. Rate can be increased to 1 oz per acre if needed for row middle/furrow applications.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Row middle/furrow applications in direct-seeded and transplant pumpkin or winter squash. Apply between rows of direct-seeded or transplanted crop while avoiding contact of the herbicide with the planted crop. If plastic is used on the planted row, adjust equipment’s to keep the application off the plastic. Reduce rate and spray volume in proportion to area sprayed. Rate can be increased to 1 oz per acre if needed for row middle/furrow applications. PHI =30 days.</td>
</tr>
</tbody>
</table>

*Mode of action (MOA) code developed by the Weed Science Society of America.
TABLE 4-21. CHEMICAL WEED CONTROL IN PUMPKINS (cont’d)

<table>
<thead>
<tr>
<th>Weed</th>
<th>Herbicide, Mode of Action Code* and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Pounds Active Ingredient Per Acre</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUMPKINS, Row Middles</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual and perennial grasses only</td>
<td>clethodim, MOA 1 (Arrow, Clethodim Intensity, Select) 2 EC (Intensity One, Select Max) 1 EC</td>
<td>6 to 8 oz</td>
<td>0.094 to 0.125</td>
<td>Apply postemergence control for grasses. See label for adjuvant and rate. Adding crop oil concentrate may increase the likelihood of crop injury at high air temperatures and high humidity. Very effective in controlling annual bluegrass. Apply to actively growing grasses not under drought stress. PHI = 14 days.</td>
</tr>
<tr>
<td></td>
<td>sethoxydim, MOA 1 (Poast) 1.5 EC</td>
<td>1 to 1.5 pt</td>
<td>0.2 to 0.3</td>
<td>Apply to emerged grasses. Consult manufacturer’s label for specific rates and best times to treat and adjuvant and rate. Crop oil may increase the likelihood of crop injury at high temperatures and high humidity. PHI = 14 days.</td>
</tr>
<tr>
<td>Annual grasses and some small-seeded broadleaf weeds</td>
<td>trifluralin, MOA 3 (Treflan) 4 EC (Treflan HFP) 4 EC</td>
<td>1 to 1.5 pt</td>
<td>0.5 to 0.75</td>
<td>Row middles only. To improve preemergence control of late emerging weeds. Apply after emergence when crop plants have reached the three to four true leaf stage of growth. Apply as a directed spray to soil between the rows. Avoid contacting foliage as slight crop injury may occur. Set incorporation equipment to move treated soil around base of crop plants. PHI = 30 days.</td>
</tr>
<tr>
<td>Most broadleaf weeds less than 4 in. tall or rosettes less than 3 in. in diameter; does not control grasses</td>
<td>carfentrazone-ethyl, MOA 14 (Aim) 1.9 EW or 2 EC</td>
<td>Up to 2 oz</td>
<td>Up to 0.031</td>
<td>Apply post-directed using hooded sprayers for control of emerged weeds. If crop is contacted, burning of contacted area will occur. Use a nonionic surfactant or crop oil with Aim. See label for rate. Coverage is essential for good weed control. Can be tank mixed with other registered herbicides. PHI = 0 days.</td>
</tr>
<tr>
<td>Most emerged weeds</td>
<td>glyphosate, MOA 9 (numerous brands and formulations)</td>
<td>See labels</td>
<td>See labels</td>
<td>Row middles only. Apply as a hooded spray in row middles, as released spray in row middles, as wiper applications in row middles, or postharvest. To avoid severe injury to crop, do not allow herbicide to contact foliage, green shoots, stems, exposed, roots, or fruit of crop. PHI = 14 days.</td>
</tr>
<tr>
<td>Yellow and purple nutsedge and broadleaf weeds</td>
<td>halosulfuron-methyl, MOA 2 (Profine 75, Sandea) 75 DG</td>
<td>0.5 to 1 oz</td>
<td>0.024 to 0.048</td>
<td>Row middles only. Apply to row middles as a postemergence spray. In plasticiculture, do not allow spray to contact plastic. Early season application will give postemergence and preemergence control. Do not apply within 30 days of harvest. For postemergence applications, use nonionic surfactant at 1 qt per 100-gal of spray solution.</td>
</tr>
</tbody>
</table>

*Mode of action (MOA) code developed by the Weed Science Society of America.

TABLE 4-22. CHEMICAL WEED CONTROL IN RADISH

<table>
<thead>
<tr>
<th>Weed</th>
<th>Herbicide, Mode of Action Code* and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Pounds Active Ingredient Per Acre</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>RADISH, Preplant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual and perennial grass and broadleaf weeds</td>
<td>glyphosate, MOA 9 (numerous brands and formulations)</td>
<td>See labels</td>
<td>See labels</td>
<td>Apply to emerged weeds before planting. Perennial weeds may require higher rates of glyphosate. Consult the manufacturer’s label for rates for specific weeds. Certain glyphosate formulations may require addition of a surfactant. Adding nonionic surfactant to glyphosate formulated with nonionic surfactant may result in reduced weed control.</td>
</tr>
<tr>
<td>Emerged broadleaf weeds and some annual grasses</td>
<td>caprylic acid, MOA 26 (Homestead)</td>
<td>See label</td>
<td>See label</td>
<td>May be applied prior to planting as a burndown treatment for emerged weeds, as a preemergence application after seeding but before emergence, as a directed or shielded application between rows, as a harvest aid or desiccant, or as a postharvest application. Use higher spray volumes for high weed density and weeds larger than 5 in. May be tank mixed with other herbicides. See label for further instructions.</td>
</tr>
<tr>
<td>Annual grasses and broadleaf weeds</td>
<td>trifluralin, MOA 3 (Treflan, Treflan HFP, Trifluralin, Trifluralin HF) 4 EC</td>
<td>1 to 1.5 pt</td>
<td>0.5 to 0.75</td>
<td>Apply preplant and incorporate immediately after application for preemergence weed control. Low rate should be used on coarse-textured soil.</td>
</tr>
</tbody>
</table>

RADISH, Postemergence				
Most broadleaf weeds less than 4 in. tall or rosettes less than 3 in. in diameter; does not control grasses	carfentrazone-ethyl, MOA 14 (Aim) 1.9 EW or 2 EC	Up to 2 oz	Up to 0.031	Apply post-directed using hooded sprayers for control of emerged weeds. If crop is contacted, burning of contacted area will occur. Use a nonionic surfactant or crop oil with Aim. See label for rate. Coverage is essential for good weed control. Can be tank mixed with other registered herbicides.
Annual and perennial grasses	clethodim, MOA 1 (Arrow, Clethodim, Intensity, Select) 2 EC (Intensity One, Select Max) EC	6 to 8 oz	0.94 to 0.125	Apply postemergence to emerged grasses. Consult label for rates for specific grasses. See label for adjuvant and rate. PHI = 15 days.

*Mode of action (MOA) code developed by the Weed Science Society of America.
TABLE 4-23. CHEMICAL WEED CONTROL IN SPINACH

<table>
<thead>
<tr>
<th>Weed</th>
<th>Herbicide, Mode of Action Code* and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Pounds Active Ingredient Per Acre</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPINACH, Preemergence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual and perennial grass and broadleaf weeds, stale bed application</td>
<td>glyphosate, MOA 9 (numerous brands and formulations)</td>
<td>See labels</td>
<td>See labels</td>
<td>Apply to emerged weeds before crop emergence. Do not feed residue to livestock for 8 weeks. Perennial weeds may require higher rates of glyphosate. Consult the manufacturer’s label for rates for specific weeds. Certain glyphosate formulations require the addition of a surfactant. Adding nonionic surfactant to glyphosate formulated with nonionic surfactant may result in reduced weed control.</td>
</tr>
<tr>
<td>Annual grasses (crabgrass spp., foxtail spp., barnyardgrass, annual ryegrass, annual bluegrass) and broadleaf weeds (Lamium spp., lambsquarters, common purslane, redroot pigweed, shepherd’s purse)</td>
<td>cycloate, MOA 8 (Ro-Neet) 6 EC</td>
<td>2 qt</td>
<td>3</td>
<td>Use on sandy mineral soils only. Read label for further instructions.</td>
</tr>
<tr>
<td>Annual grass and broadleaf weeds, Palmer amaranth, yellow nutsedge suppression</td>
<td>S-metolachlor, MOA 15 (Dual Magnum) 7.62 EC</td>
<td>0.33 to 0.67 pt</td>
<td>0.32 to 0.65</td>
<td>This is a section 24(c) Special Local Need Label. Growers must obtain label prior to application. Do not apply preplant. Do not incorporate after application. Injury potential is greatest when applied to sands or loamy sands especially if a heavy rainfall event occurs following application. See label for further information.</td>
</tr>
<tr>
<td>SPINACH, Postemergence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Broadleaf weeds including sowthistle clover, cocklebur, jimsonweed, and ragweed</td>
<td>clopyralid, MOA 4 (Stinger) 3 EC</td>
<td>0.17 to 0.33 pt</td>
<td>0.0625 to 0.125</td>
<td>Apply to spinach in the 2- to 5-leaf stage when weeds are small and actively growing. Will control most legumes. See label for more precautions. PHI = 21 days.</td>
</tr>
<tr>
<td>Broadleaf weeds</td>
<td>phenmedipham, MOA 6 (Spin-aid) 1.3 EC</td>
<td>3 to 6 pt</td>
<td>0.5 to 1</td>
<td>For processing spinach only. Do not use when expected high temperatures will be above 75 degrees F. For best results, spray when weeds are in the two-leaf stage. Use the 6 pt rate only on well-established crops that are not under stress. Spinach plants must have more than six true leaves. PHI = 21 days.</td>
</tr>
<tr>
<td>Most broadleaf weeds less than 4 in. tall or rosettes less than 3 in. in diameter; does not control grasses</td>
<td>carfentrazone-ethyl, MOA 14 (Aim) 1.9 EW or 2 EC</td>
<td>Up to 2 oz</td>
<td>Up to 0.031</td>
<td>Apply post-directed using hooded sprayers for control of emerged weeds. If crop is contacted, burning of contacted area will occur. Use a nonionic surfactant or crop oil with Aim. See label for rate. Coverage is essential for good weed control. Can be tank mixed with other registered herbicides.</td>
</tr>
<tr>
<td>Most emerged weeds</td>
<td>glyphosate, MOA 9 (numerous brands and formulations)</td>
<td>See labels</td>
<td>See labels</td>
<td>Row middles only. Apply as a hooded spray in row middles, as shielded spray in row middles, as wiper applications in row middles, or postharvest. To avoid severe injury to crop, do not allow herbicide to contact foliage, green shoots, stems, exposed, roots, or fruit of crop. PHI = 14 days.</td>
</tr>
<tr>
<td>Annual and perennial grasses only</td>
<td>sethoxydim, MOA 1 (Poast) 1.5 EC</td>
<td>1 to 1.5 pt</td>
<td>0.2 to 0.3</td>
<td>Apply to emerged grasses. Consult manufacturer’s label for specific rates and best times to treat. See label for adjuvant and rate. Adding crop oil to Poast or Select may increase the likelihood of crop injury at high air temperatures and high humidity. Do not apply sethoxydim within 15 days of harvest or clethodim within 14 days of harvest.</td>
</tr>
<tr>
<td>clethodim, MOA 1 (Arrow, Clethodim, Intensity, Select) 2 EC (Intensity One, Select Max) 1 EC</td>
<td>6 to 8 oz</td>
<td>0.094 to 0.125</td>
<td>0.07 to 0.125</td>
<td></td>
</tr>
</tbody>
</table>

*Mode of action (MOA) code developed by the Weed Science Society of America.
TABLE 4-24. CHEMICAL WEED CONTROL IN SQUASH

<table>
<thead>
<tr>
<th>Weed</th>
<th>Herbicide, Mode of Action Code* and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Pounds Active Ingredient Per Acre</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SQUASH, Preplant and Preemergence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suppression or control of most annual grasses and broadleaf weeds, full rate required for nutsedge control</td>
<td>metam sodium (Vapam HL) 42%</td>
<td>37.5 to 75 gal</td>
<td>15.7 to 31.5</td>
<td>Rates are dependent on soil type and weeds present. For nutsedge control, use 75-gal per acre. Apply when soil moisture is at field capacity (100 to 125%). Apply through soil injection using a rotary tiller or inject with knives no more than 4 in. apart; follow immediately with a roller to smooth and compact the soil surface or with mulch. May apply through drip irrigation prior to planting a second crop on mulch. Plant back interval is often 14 to 21 days and can be 30 days in some environments. See label for all restrictions and additional information.</td>
</tr>
<tr>
<td>Emerged broadleaf and grass weeds</td>
<td>pelargonic acid, MOA 26 (Scythe) 4.2 EC</td>
<td>See label</td>
<td>See label</td>
<td>Apply before crop emergence to control emerged weeds. There is no residual activity. May be tank mixed with soil residual herbicides. See label for more instructions. May also be used as a banded spray between row middles. Use a shielded sprayer directed to the row middles to reduce drift to the crop.</td>
</tr>
<tr>
<td>Contact kill of all green foliage, stale bed application</td>
<td>paraquat, MOA 22 (Parazone) 3 SL (Gramoxone SL) 2 SL</td>
<td>1.3 to 2.7 pt 2 to 4 pt</td>
<td>0.5 to 1</td>
<td>Apply in a minimum of 10-gal spray mix per acre to emerged weeds before transplanting or crop emergence as a band or broadcast treatment over a prepared row. Use sufficient water to give thorough coverage. Row should be formed several days ahead of planting or treating to allow maximum weed emergence. Use a nonionic surfactant at a rate of 16 to 32 oz per 100-gal spray mix or 1-gal approved crop oil concentrate per 100-gal spray mix. Paraquat product labels require applicators to take an EPA-approved training every 3 years to mix, load, and apply paraquat.</td>
</tr>
<tr>
<td>Most broadleaf weeds less than 4 in. tall or rosettes less than 3 in. in diameter; does not control grasses</td>
<td>carfentrazone-ethyl, MOA 14 (Aim) 1.9 EW or 2 EC</td>
<td>Up to 2 oz</td>
<td>Up to 0.031</td>
<td>Not registered for seeded crop. Apply prior to transplanting crop. Use a nonionic surfactant or crop oil with Aim. See label for rate. Coverage is essential for good weed control. Can be tank mixed with other registered burndown herbicides. PHI = 0 days.</td>
</tr>
<tr>
<td>Annual and perennial grass and broadleaf weeds, stale bed application</td>
<td>glyphosate, MOA 9 (numerous brands and formulations)</td>
<td>See labels</td>
<td>See labels</td>
<td>Apply to emerged weeds at least 3 days before seeding or transplanting. When applying Roundup before transplanting crops into plastic mulch, care must be taken to remove residues of this product from the plastic prior to transplanting. To prevent crop injury, residues can be removed by 0.5 in. rainfall or by applying water via a sprinkler system. Perennial weeds may require higher rates of glyphosate. Consult the manufacturer’s label for rates for specific weeds. Certain glyphosate formulations require the addition of a surfactant. Adding nonionic surfactant to glyphosate formulated with nonionic surfactant may result in reduced weed control.</td>
</tr>
<tr>
<td>Emerged broadleaf weeds and some annual grasses</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>caprylic acid, MOA 26 (Homeplate)</td>
<td>See label</td>
<td>See label</td>
<td>May be applied prior to planting as a burndown treatment for emerged weeds, as a preemergence application after seeding but before emergence, as a directed or shielded application between rows or as a postharvest application. Use higher spray volumes for high weed density and weeds larger than 5 in. Coverage is important for acceptable weed control. May be tank mixed with other herbicides. See label for further instructions.</td>
<td></td>
</tr>
<tr>
<td>Annual grasses and small-seeded broadleaf weeds</td>
<td>bensulide, MOA 8 (Prepar) 4 EC</td>
<td>5 to 6 qt</td>
<td>5 to 6</td>
<td>Registered for cucurbit vegetable group (Crop grouping 9). Apply preplant and incorporate into the soil 1 to 2 in. (1 in. incorporation is optimum) with a rototiller or tandem disk, or apply to the soil surface after seeding and follow by irrigation. Check re-plant restrictions for small grains on label.</td>
</tr>
<tr>
<td>Bareground</td>
<td>ethalfuralin, MOA 3 (Curbit) 3 EC</td>
<td>1.5 to 2 pt</td>
<td>0.56 to .75</td>
<td>For squash grown on bareground only. Apply to the soil surface immediately after seeding. Seed must be covered with soil to prevent crop injury. For coarse-textured soils, use lowest rate of rate range. Shallow cultivation, irrigation, or rainfall within 5 days is needed for good weed control. If weather is unusually cold or soil wet and cold, crop stunting or injury may occur. Crop injury can also occur if seedling depth is too shallow. See label for further precautions and instruction.</td>
</tr>
<tr>
<td>Plasticulture</td>
<td>ethalfuralin, MOA 3 (Curbit) 3 EC</td>
<td>3 to 4.5 pt</td>
<td>1.1 to 1.7</td>
<td>For squash grown on plastic only. Apply to soil surface between the rows of black plastic immediately after seeding or transplanting. Do not use under mulches, row covers, or hot caps. Do not apply prior to planting or over plastic. See label for further instruction.</td>
</tr>
<tr>
<td>Annual grasses and broadleaf weeds</td>
<td>ethalfuralin, MOA 3 + clomazone, MOA 13 (Strategy) 2.1 L</td>
<td>2 to 6 pt</td>
<td>0.4 to 1.2 + 0.125 to 0.375</td>
<td>Apply to the soil surface immediately after crop seeding for preemergence control of weeds. DO NOT APPLY PRIOR TO PLANTING CROP. DO NOT SOIL INCORPORATE. May also be used as a banded treatment between rows after crop emergence or transplanting.</td>
</tr>
<tr>
<td>Suppression of annual grasses and broadleaf weeds; weak on pigweed and morningglory</td>
<td>clomazone, MOA 13 (Command) 3 ME</td>
<td>0.67 to 1.3 pt</td>
<td>0.25 to 0.48</td>
<td>Apply immediately after seeding or prior to transplanting. Seeds and roots of transplants must be below the chemical barriers when planting. Command should only be applied between rows when squash is grown on plastic. Some cultivars may be sensitive to Command (see label). Use lower rates on coarse soils. Higher rates can be used on winter squashes. See label about rotation restrictions.</td>
</tr>
<tr>
<td>Yellow and purple nutsedge, non-ALS-resistant pigweed, broadleaf weeds</td>
<td>halosulfuron-methyl, MOA 2 (Sandeau, Profine 75) 75 DG</td>
<td>0.5 to 1 oz</td>
<td>0.024 to 0.048</td>
<td>Row middles only. Apply to row middles as preemergence spray. In plasticulture, do not allow spray to contact plastic. Early season application will give postemergence and preemergence control. PHI = 30 days. For postemergence applications, use nonionic surfactant at 1 qt per 100-gal of spray solution.</td>
</tr>
</tbody>
</table>

*Mode of action (MOA) code developed by the Weed Science Society of America.
TABLE 4-24. CHEMICAL WEED CONTROL IN SQUASH (cont’d)

<table>
<thead>
<tr>
<th>Weed</th>
<th>Herbicide, Mode of Action Code* and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Pounds Active Ingredient Per Acre</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SQUASH, Postemergence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Most emerged weeds</td>
<td>glyphosate, MOA 9 (numerous brands and formulations)</td>
<td>See labels</td>
<td>See labels</td>
<td>Row middles only. Apply as a hooded spray in row middles, as shielded spray in row middles, as wiper applications in row middles, or postharvest. To avoid severe injury to crop, do not allow herbicide to contact foliage, green shoots, stems, exposed, roots, or fruit of crop. PHI = 14 days.</td>
</tr>
<tr>
<td></td>
<td>halosulfuron-methyl, MOA 2 (Sandea, Profine 75) 75 DG</td>
<td>0.5 to 1 oz</td>
<td>0.024 to 0.048</td>
<td>Row middles only. Apply to row middles as postemergence spray. In plasticiculture, do not allow spray to contact plastic. Early season application will give postemergence and preemergence control. Do not apply within 30 days of harvest. For postemergence applications, use nonionic surfactant at 1 qt per 100-gal of spray solution.</td>
</tr>
<tr>
<td>Annual and perennial grasses only</td>
<td>clethodim, MOA 1 (Arrow, Clethodim, Intensity, Select) 2 EC (Intensity One, Select Max) 1 EC</td>
<td>6 to 8 oz</td>
<td>0.094 to 0.125</td>
<td>Apply postemergence for control of grasses. Adding crop oil may increase likelihood of crop injury at high air temperatures and high humidity. Very effective control of annual bluegrass. Apply to actively growing grasses not under drought stress. PHI = 14 days.</td>
</tr>
<tr>
<td></td>
<td>Sethoxydim, MOA 1 (Poast) 1.5 EC</td>
<td>1 to 1.5 pt</td>
<td>0.2 to 0.3</td>
<td>Apply to emerged grasses. Consult manufacturer’s label for specific rates and best times to treat and adjuvant and rate. Adding crop oil to Poast may increase the likelihood of crop injury at high air temperatures and high humidity. PHI = 14 days.</td>
</tr>
</tbody>
</table>

*Mode of action (MOA) code developed by the Weed Science Society of America.

TABLE 4-25. CHEMICAL WEED CONTROL IN SWEETPOTATOES

<table>
<thead>
<tr>
<th>Weed</th>
<th>Herbicide, Mode of Action Code* and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Pounds Active Ingredient Per Acre</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWEETPOTATO, Preplant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual and perennial grass and broadleaf weeds, stale seed bed application</td>
<td>glyphosate, MOA 9 (numerous brands and formulations)</td>
<td>See labels</td>
<td>See labels</td>
<td>Apply to emerged weeds before transplanting. Perennial weeds may require higher glyphosate rates. Consult label for rates for specific weeds. Certain glyphosate formulations may require the addition of a surfactant. Adding nonionic surfactant to glyphosate formulated with nonionic surfactant may result in reduced weed control.</td>
</tr>
<tr>
<td>Broadleaf weeds and some annual grasses</td>
<td>caprylic acid, MOA 26 (Homeplate)</td>
<td>See label</td>
<td>See label</td>
<td>May be applied prior to planting as a burndown treatment for emerged weeds, as a preemergence application after seeding but before emergence, as a directed or shielded application between rows, as a harvest aid or desiccant, or as a post-harvest application. Use higher spray volumes for high weed density and weeds larger than 5 in. Coverage is important for acceptable weed control. May be tank mixed with other herbicides. See label for further instructions.</td>
</tr>
<tr>
<td>Contact kill of all green foliage, stale bed application</td>
<td>paraquat MOA 22 (Gramoxone SL 2.0) 2 SL</td>
<td>1 to 2 pt</td>
<td>0.25 to 0.75</td>
<td>Apply to emerged weeds prior to transplanting sweetpotato. Paraquat product labels require applicators to take an EPA-approved training every 3 years to mix, load, and apply paraquat.</td>
</tr>
<tr>
<td>Suppression or control of most annual grasses and broadleaf weeds, full rate required for nutsedge control</td>
<td>metam sodium (Vapam HL) 42%</td>
<td>37.5 to 75 gal</td>
<td>15.7 to 31.5</td>
<td>Rates are dependent on soil type and weeds present. For nutsedge, use 75-gal per acre. Plant back interval is often 14 to 21 days and can be 30 days in some environments. See label for all restrictions and additional information.</td>
</tr>
<tr>
<td>Palmer amaranth, redroot pigweed, smooth pigweed, Galinsoga spp., black nightshade, Eastern black nightshade, common purslane, partial control of yellow nutsedge</td>
<td>fomesafen, MOA 14 (Reflex) 2 EC</td>
<td>1 pt</td>
<td>0.25</td>
<td>This is a Section 24(c) special local needs label for sweetpotato. Check to make sure reflex is registered for use in your state prior to making an application. See label for further instructions. See label for potential carryover to rotational crops. Apply prior to transplanting for preemergence control. May be tank-mixed with other herbicides registered for preplant application however do not tank mix with fumioxizom.</td>
</tr>
<tr>
<td>Annual broadleaf weeds including Palmer amaranth and other pigweeds, smartweed, morningglory, wild mustard, wild radish, purslane spp., eclipta, common lambsquarters</td>
<td>flumioxazin, MOA 14 (Valor SX) 51 WDG</td>
<td>3 oz</td>
<td>0.094</td>
<td>Apply prior to transplanting crop. Movement of soil during transplanting should not occur or reduced weed control may result. Do not use on greenhouse-grown transplants. Do not apply postemergence or serious crop injury will occur. Do not use on transplant propagation beds. See label for further instructions.</td>
</tr>
</tbody>
</table>

*Mode of action (MOA) code developed by the Weed Science Society of America.
TABLE 4-25. CHEMICAL WEED CONTROL IN SWEETPOTATOES (cont’d)

<table>
<thead>
<tr>
<th>Weed</th>
<th>Herbicide, Mode of Action Code* and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Pounds Active Ingredient Per Acre</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWEETPOTATO, Preemergence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual grass and broadleaf weeds, Palm-</td>
<td>S-metolachlor, MOA 15 (Dual Magnum) 7.62 EC</td>
<td>0.75 pt</td>
<td>1.0</td>
<td>This is a Section 24(c) Special Local Need Label. Check to make sure Dual Magnum is</td>
</tr>
<tr>
<td>er amaranth, yellow nutseed suppression</td>
<td></td>
<td></td>
<td></td>
<td>registered for use in your state. Apply over top of sweetpotatoes after transplanting</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>but prior to weed emergence. Do not apply preplant. Do not incorporate after application.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>See label for further information.</td>
</tr>
<tr>
<td>Annual grasses such as large crabgrass</td>
<td>clomazone, MOA 13 (Command) 3 ME</td>
<td>Up to 2 pt</td>
<td>Up to 0.75</td>
<td>Apply preplant or after transplanting prior to weed emergence for preemergence control.</td>
</tr>
<tr>
<td>and broadleaf weeds including</td>
<td></td>
<td></td>
<td></td>
<td>Weak on pigweed. The label allows up to 4 pt per acre. See label for other</td>
</tr>
<tr>
<td>velvetleaf, purslane, prickly sida</td>
<td></td>
<td></td>
<td></td>
<td>instructions and precautions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual grasses including</td>
<td>DCPA, MOA 3 (Daclacht) W-75 (Daclacht) 6 F</td>
<td>8 to 10 lb</td>
<td>6 to 7.5</td>
<td>Apply to the soil surface immediately after transplanting. May also be applied at</td>
</tr>
<tr>
<td>large crabgrass and broadleaf weeds</td>
<td></td>
<td>8 to 10 pt</td>
<td></td>
<td>layby for preemergence weed control late in the growing season. Do not apply in</td>
</tr>
<tr>
<td>including purslane, Florida pusley,</td>
<td></td>
<td></td>
<td></td>
<td>plant beds or crop injury will occur.</td>
</tr>
<tr>
<td>common lambsquarters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual grasses including</td>
<td>napropamide, MOA 15 (Devrinol, Devrinol DF-XT)</td>
<td>2 to 4 lb</td>
<td>1 to 2</td>
<td>Plant beds. Apply to the soil surface after sweetpotato roots are covered with soil</td>
</tr>
<tr>
<td>including crabgrass, foxtail, goosegrass,</td>
<td></td>
<td>2 to 4 qt</td>
<td></td>
<td>but prior to soil cracking and sweetpotato plant emergence. Does not control</td>
</tr>
<tr>
<td>fall panicum and broadleaf weeds</td>
<td></td>
<td></td>
<td></td>
<td>emerged weeds. Check label for more information.</td>
</tr>
<tr>
<td>including pigweed, Florida pusley,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>purslane</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWEETPOTATO, Postemergence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual and perennial grasses only</td>
<td>clodethidim, MOA 1 (Arrow, Clethodim,</td>
<td>6 to 16 oz</td>
<td>0.094 to 0.25</td>
<td>Apply to actively growing grasses not under drought stress. See label for adjuvant</td>
</tr>
<tr>
<td></td>
<td>Intensity, Select) 2 EC (Select Max, Intensity One</td>
<td>9 to 32 oz</td>
<td>0.07 to 0.25</td>
<td>and rate. Adding crop oil may increase the likelihood of crop injury at high air</td>
</tr>
<tr>
<td></td>
<td>1 EC</td>
<td></td>
<td></td>
<td>temperatures and high humidity. Very effective in controlling annual bluegrass. PHI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>= 30 days.</td>
</tr>
<tr>
<td></td>
<td>fluziaprop, MOA 1 (Fusilade DX) 2 EC</td>
<td>6 to 16 oz</td>
<td>0.1 to 0.25</td>
<td>Apply to actively growing grasses not under drought stress. Consult manufacturer’s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>label for specific rates and best times to treat and adjuvant and rate. Do not</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>apply Fusilade on days that are unusually hot and humid. PHI = 55 days.</td>
</tr>
<tr>
<td></td>
<td>sethoxydim, MOA 1 (Poast) 1.5 EC</td>
<td>1 to 1.5 pt</td>
<td>0.2 to 0.3</td>
<td>Apply to actively growing grasses not under drought stress. Adding crop oil to Poast</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>may increase the likelihood of crop injury at high air temperatures and high humidity.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PHI = 30 days.</td>
</tr>
<tr>
<td>SWEETPOTATO, Row Middles</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Most broadleaf weeds less than 4 in.</td>
<td>carfentrazine-ethyl, MOA 14 (Aim) 1.9 EW or 2 EC</td>
<td>Up to 2 oz</td>
<td>Up to 0.031</td>
<td>Apply post-directed using hooded sprayers for control of emerged weeds. If crop is</td>
</tr>
<tr>
<td>tall or rosettes less than 3 in.</td>
<td></td>
<td></td>
<td></td>
<td>contacted, burning of contacted area will occur. Use a nonionic surfactant or crop oil</td>
</tr>
<tr>
<td>in diameter; does not control grasses</td>
<td></td>
<td></td>
<td></td>
<td>with Aim. Coverage is essential for good weed control. Can be tank mixed with other</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>registered herbicides.</td>
</tr>
<tr>
<td>Most emerged weeds</td>
<td>glyphosate, MOA 9 (numerous brands and</td>
<td>See labels</td>
<td>See labels</td>
<td>Apply as a hooded spray in row middles, as shielded spray in row middles, as wiper</td>
</tr>
<tr>
<td></td>
<td>formulations)</td>
<td></td>
<td></td>
<td>applications in row middles, or postharvest. To avoid severe injury to crop, do not</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>allow herbicide to contact foliage, green shoots, stems, exposed, roots, or fruit of</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>crop. May cause cracking of sweetpotato storage roots if spray solution is exposed to</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>sweetpotato foliage. PHI = 14 days.</td>
</tr>
</tbody>
</table>

*Mode of action (MOA) code developed by the Weed Science Society of America.
TABLE 4-26. CHEMICAL WEED CONTROL IN TOMATOES

<table>
<thead>
<tr>
<th>Weed</th>
<th>Herbicide, Mode of Action Code* and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Pounds Active Ingredient Per Acre</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOMATO, Preplant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suppression or control of most annual grasses and broadleaf weeds (full rate required for nutsedge control)</td>
<td>metam sodium (Vapam HL) 42%</td>
<td>37.5 to 75 gal</td>
<td>15.7 to 31.5</td>
<td>Rates are dependent on soil type and weeds present. For nutsedge, use 75-gal per acre. Apply when soil moisture is at field capacity (100 to 125%). Apply through soil injection using a rotary tiller or inject with knives no more than 4 in. apart; follow immediately with a roller to smooth and compact the soil surface or with mulch. May apply through drip irrigation prior to planting a second crop on mulch; however, adhere to label guidelines on crop plant back interval. Plant back interval is often 14 to 21 days and can be 30 days in some environments. See label for all restrictions and additional information. Chloropicrin (150 lb per acre broadcast) will also be needed when laying first crop mulch to control nutsedge.</td>
</tr>
<tr>
<td>Most broadleaf weeds less than 4 in. tall or rosettes less than 3 in. in diameter; does not control grasses</td>
<td>carfentrazone-ethyl, MOA 14 (Aim) 1.9 EW or 2 EC</td>
<td>Up to 2 oz</td>
<td>Up to 0.031</td>
<td>Transplanted crop. Apply no later than 1 day before transplanting.</td>
</tr>
<tr>
<td>Contact kill of all green foliage, stale bed application</td>
<td>paraquat, MOA 22 (Paragon) 3SL (Gramoxone SL) 2 SL</td>
<td>1.3 to 2.7 pt 2 to 4 pt</td>
<td>0.5 to 1</td>
<td>Applied to emerge weeds in a minimum of 20-gal spray mix per acre before crop emergence as a broadcast or band treatment over a preformed row. Row should be formed several days ahead of planting and treated to allow maximum weed emergence. Use a nonionic surfactant at a rate of 16 to 32 oz per 100-gal spray mix or 1-gal approved crop oil concentrate per 100-gal spray mix. Paraquat product labels require applicators to take an EPA-approved training every 3 years to mix, load, and apply paraquat.</td>
</tr>
<tr>
<td>Broadleaf weeds and some annual grasses</td>
<td>caprylic acid, MOA 26 (Homeplate)</td>
<td>See label</td>
<td>See label</td>
<td>May be applied prior to planting as a burndown treatment for emerged weeds, as a preemergence application after seeding but before emergence, as a directed or shielded application between rows or as a postharvest application. Use higher spray volumes for high weed density and weeds larger than 5 in. Coverage is important for acceptable weed control. May be tank mixed with other registered burndown herbicides. See label for further instructions.</td>
</tr>
<tr>
<td>Broadleaf weeds including Carolina geranium and cutleaf eveningprimrose and a few annual grasses</td>
<td>oxyfluorfen, MOA 14 (Goal) 2 XL</td>
<td>Up to 2 pt</td>
<td>0.5</td>
<td>Plasticulture only. Apply to soil surface of pre-formed beds at least 30 days prior to transplanting crop. While incorporation is not necessary, it may result in less crop injury. Plastic mulch can be applied any time after application, but best results are likely if applied soon after application.</td>
</tr>
<tr>
<td>Annual grasses and small-seeded broadleaf weeds including common lambsquarters, pigweed, carpetweed, and common purslane</td>
<td>napropamide, MOA 15 (Devrinol, Devrinol DF-XT) 50 DF (Devrinol, Devrinol 2-XT) 2 EC</td>
<td>2 to 4 lb 2 to 4 qt</td>
<td>1 to 2</td>
<td>Bareground: Apply preplant and incorporate into the soil 1 to 2 in. as soon as possible with a rototiller or tandem disk. Can be used on direct-seeded or transplant planted tomatoes. See label for instructions on use. Plasticulture: Apply to a weed-free soil before laying plastic mulch. Soil should be well worked yet moist enough to permit a thorough incorporation to a depth of 2 in. Mechanically incorporate or irrigate within 24 hours after application. If weed pressure is from small-seeded annuals, apply to the surface of the bed immediately in front of the laying of plastic mulch. If soil is dry, water or sprinkle irrigate with sufficient water to wet to a depth of 2 to 4 in. before covering with plastic mulch. Between rows: Apply to a weed free soil surface between the rows (bareground or plastic mulch). Mechanically incorporate or irrigate Devrinol into the soil to a depth of 1 to 2 in. within 24 hours of application. See XT labels for information regarding delay in irrigation event.</td>
</tr>
<tr>
<td></td>
<td>pendimethalin, MOA 3 (Prowl H₂O) 3.8 AS</td>
<td>1 to 3 pt</td>
<td>0.5 to 1.5</td>
<td>Plasticiculture In-row. May be applied as a preplant surface application or a preplant incorporated application prior to transplanting tomato. Bareground In-row. May be applied as a broadcast preplant surface application or preplant incorporated application prior to transplanting tomato. Post-directed spray. May be applied as a post-directed spray on the soil at the base of the plant, beneath plants, and between rows. Avoid direct contact with tomato foliage or stems. Do not apply over the top of tomato. PHI=21 days. Do not apply more than 3 pt per acre per season. See label for specific use rate for your soil type. Emerged weeds will not be controlled. See label for further instructions and precautions.</td>
</tr>
<tr>
<td></td>
<td>trifluralin, MOA 3 (Treflan HFP, Trifluralin, Trifluralin H; various other trade names) 4 EC</td>
<td>1 pt</td>
<td>0.5</td>
<td>Transplant tomato. Apply pretransplant and incorporate into the soil 2 to 3 in. within 8 hours using a rototiller or tandem disk. Can be applied postplanting as a directed spray to soil between the rows and beneath plants and then incorporated. Cold soil temperatures may exacerbate injury from trifluralin.</td>
</tr>
</tbody>
</table>

*Mode of action (MOA) code developed by the Weed Science Society of America.
TOMATO, Preplant (cont’d)

<table>
<thead>
<tr>
<th>Weed</th>
<th>Herbicide, Mode of Action Code* and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Pounds Active Ingredient Per Acre</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yellow and purple nutsedge and broadleaf weeds including pigweed, wild radish, common ragweed, suppression of purslane</td>
<td>halosulfuron-methyl, MOA 2 (Profine 75, Sandea) 75 DG</td>
<td>0.5 to 1 oz</td>
<td>0.24 to 0.048</td>
<td>For pretransplant application under plastic mulch, apply to pre-formed bed just prior to plastic mulch application and delay transplanting at least 7 days. Can be applied for pretransplant application in bare-ground tomato. Early season application will give postemergence and preemergence control. The 1 oz rate is for preemergence and postemergence control in row middles only. For postemergence applications, use nonionic surfactant at 1 qt per 100-gal of spray solution. PHI = 30 days.</td>
</tr>
<tr>
<td>Yellow nutsedge, annual grasses, and broadleaf weeds including pigweed, Palmer amaranth, Florida pursley, Hairy galinsoga, Eastern black nightshade, and carpetweed</td>
<td>S-metolachlor, MOA 15 (Brawi, Dual Magnum) 7.62 EC</td>
<td>1 to 2 pt</td>
<td>0.95 to 1.50 lb</td>
<td>Apply preplant or postdirected to transplants after the first settling rain or irrigation. In plastic culture, apply to preformed beds just prior to applying plastic mulch. Lower rates of rate range for S-metolachlor are safest to tomato. May also be used to treat row middles in bedded tomato. Minimize contact with crop. Also registered for use in row middles, and in seeded crop. See label for further instructions. PHI = 90 days.</td>
</tr>
<tr>
<td>Palmer amaranth, red-root pigweed, smooth pigweed, Galinsoga sp., black nightshade, Eastern black nightshade, common purslane, partial control of yellow nutsedge</td>
<td>fomesafen, MOA 14 (Reflex) 2 EC</td>
<td>1 to 1.5 pt</td>
<td>0.25 to 0.375</td>
<td>This is a Section 24(c) Special Local Need Label for transplanted tomato. Growers must obtain the label prior to making an application of Reflex. See label for further instructions. Carryover is a large concern.</td>
</tr>
</tbody>
</table>

TABLE 4-26. CHEMICAL WEED CONTROL IN TOMATOES (cont’d)

<table>
<thead>
<tr>
<th>Herbicide, Mode of Action Code* and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Pounds Active Ingredient Per Acre</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual grasses and broadleaf weeds including jimsonweed, common ragweed, smartweed, and velvetleaf</td>
<td>metribuzin, MOA 5 (TriCor DF, Metribuzin, Dimetric) 75 WDG (Dimetric) 3 F</td>
<td>0.33 to 0.67 lb</td>
<td>0.25 to 0.5</td>
</tr>
<tr>
<td>Broadleaf weeds including Carolina geranium and cutleaf eveningprimrose and a few annual grasses</td>
<td>oxyfluoren, MOA 14 (Goal) 2XL (GoalTender) 4 F</td>
<td>up to 2 pt</td>
<td>0.5 lb</td>
</tr>
<tr>
<td>Broadleaf, grass (suppression), yellow nutsedge (PRE or POST), purple nutsedge (POST only)</td>
<td>imazosulfuron, MOA 2 (League) 0.5 DF</td>
<td>4 to 6.4 oz</td>
<td>0.19 to 0.3</td>
</tr>
</tbody>
</table>

TOMATO, Postemergence

<table>
<thead>
<tr>
<th>Herbicide, Mode of Action Code* and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Pounds Active Ingredient Per Acre</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual grasses and small-seeded broadleaf weeds</td>
<td>DCPA, MOA 3 (Dacthal) W-75 (Dacthal) 6 F</td>
<td>6 to 10 lb</td>
<td>4.5 to 7.5</td>
</tr>
<tr>
<td>Yellow and purple nutsedge and broadleaf weeds</td>
<td>halosulfuron-methyl, MOA 2 (Profine 75, Sandea) 75 DG</td>
<td>0.5 to 1 oz</td>
<td>0.024 to 0.048</td>
</tr>
</tbody>
</table>

*Mode of action (MOA) code developed by the Weed Science Society of America.
TABLE 4-26. CHEMICAL WEED CONTROL IN TOMATOES (cont’d)

<table>
<thead>
<tr>
<th>Weed</th>
<th>Herbicide, Mode of Action Code* and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Pounds Active Ingredient Per Acre</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOMATO, Postemergence (cont’d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual grasses and broadleaf weeds, including cocklebur, common ragweed, smartweed, velvetleaf, jimsonweed, yellow nutsedge, and morningglory</td>
<td>metribuzin, MOA 5 (TriCor DF, Metribuzin) 75 WDG</td>
<td>0.33 to 1.33 lb</td>
<td>0.25 to 1</td>
<td>Use either as a broadcast or directed spray but do not exceed 0.5 lb a.i. with a broadcast spray. Do not apply within 7 days of harvest. Do not exceed 1 lb a.i. per year. Do not apply as a broadcast spray unless 3 sunny days precede application.</td>
</tr>
<tr>
<td>Most broadleaf weeds including wild radish, common purslane, redroot and smooth pigweed</td>
<td>rimsulfuron, MOA 2 (Matrix) 25 WDG (Pruvin) 25 WDG</td>
<td>1 to 2 oz</td>
<td>0.25 to 0.5</td>
<td>Apply in tomatoes after the crop has at least two true leaves and weeds are small (1 in. or less) and actively growing. Add nonionic surfactant at 1 qt per 100-gal of spray solution. Do not apply within 45 days of tomato harvest. See label for further instruction.</td>
</tr>
<tr>
<td>Yellow nutsedge, morningglory, common cocklebur, common lambsquarters, and other broadleaf weeds</td>
<td>trifloxysulfuron-sodium, MOA 2 (Envoke) 75 DG</td>
<td>0.1 to 0.2 oz</td>
<td>0.0047 to 0.0094</td>
<td>Apply post-directed to tomato grown on plastic for control of nutsedge and certain broadleaf weeds. Crop should be transplanted at least 14 days prior to application. The application should be made prior to fruit set and at least 45 days prior to harvest. Use nonionic surfactant at 1 qt per 100-gal spray solution with all applications.</td>
</tr>
<tr>
<td>TOMATO, Row Middles</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yellow nutsedge, morningglory, common cocklebur, common lambsquarters, and other broadleaf weeds</td>
<td>trifloxysulfuron-sodium, MOA 2 (Envoke) 75 DG</td>
<td>0.1 to 0.2 oz</td>
<td>0.0047 to 0.0094</td>
<td>Crop should be transplanted at least 14 days prior to application. Use nonionic surfactant at 1 qt per 100-gal spray solution with all applications. Apply prior to fruit set and at least 45 days prior to harvest. See label for information on registered tank mixes. Tank mixes with Select or Poast may reduce grass control. See label for more information.</td>
</tr>
<tr>
<td>Yellow and purple nutsedge and broadleaf weeds</td>
<td>halosulfuron-methyl, MOA 2 (Profine 75, Sandea) 75 DG</td>
<td>0.5 to 1 oz</td>
<td>0.024 to 0.048</td>
<td>For postemergence applications, use nonionic surfactant at 1 qt per 100-gal of spray solution. Some weeds, such as nutsedge, may require two applications of Sandea. If a second application is needed, spot-treat only weed-infested areas. PHI = 30 days. See label for further instructions.</td>
</tr>
<tr>
<td>Most broadleaf weeds less than 4 in. tall or rosettes less than 3 in. in diameter; does not control grasses</td>
<td>carfentrazone-ethyl, MOA 14 (Aim) 1.9 EW or 2 EC</td>
<td>Up to 2 oz</td>
<td>Up to 0.031</td>
<td>Apply post-directed using hooded sprayers for control of emerged weeds. If crop is contacted, burning of contacted area will occur. Use a nonionic surfactant or crop oil with Aim. See label for rate. Coverage is essential for good weed control. Can be tank mixed with other registered herbicides.</td>
</tr>
<tr>
<td>Annual grasses and small-seeded broadleaf weeds</td>
<td>napropamide, MOA 15 (Dervinol, Dervinol DF-XT) 50 DF (Dervinol, Dervinol 2-XT) 2 EC</td>
<td>2 to 4 lb</td>
<td>1 to 2</td>
<td>Plasticulture. Apply to a weed-free soil surface. Apply within 24 hours of rainfall, or mechanically incorporate or irrigate into the soil to a depth of 1 to 2 in.</td>
</tr>
<tr>
<td></td>
<td>pendimethalin, MOA 3 (Prowl H₂O) 3.8 AS</td>
<td>2 to 4 qt</td>
<td>0.5 to 1.5</td>
<td>Post-directed spray on the soil at the base of the plant, beneath plants and between rows. Avoid direct contact with tomato foliage or stems. Do not apply more than 3 pt per acre per season. See label for specific use rate for your soil type. Emerged weeds will not be controlled. Avoid direct contact with tomato foliage or stems. PHI = 21 days. See label for further instructions and precautions.</td>
</tr>
<tr>
<td>Contact kill of all green foliage</td>
<td>paraquat, MOA 22 (Parazone) 3 SL (Gramoxone SL) 2 SL</td>
<td>1.3 pt</td>
<td>0.5 to 1</td>
<td>Apply for control of emerged weeds between rows of tomatoes. Do not allow spray to contract crop or injury will occur. Do not make more than 3 applications per season. PHI = 30 days. Paraquat product labels require applicators to take an EPA-approved training every 3 years to mix, load, and apply paraquat.</td>
</tr>
</tbody>
</table>

*Mode of action (MOA) code developed by the Weed Science Society of America.
TABLE 4-27. CHEMICAL WEED CONTROL IN WATERMELONS

<table>
<thead>
<tr>
<th>Weed</th>
<th>Herbicide, Mode of Action Code* and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Pounds Active Ingredient Per Acre</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>WATERMELON, Preplant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suppression or control of most annual grasses and broadleaf weeds, full rate required for nutsedge control</td>
<td>metam sodium (Vapam HL) 42%</td>
<td>37.5 to 75 gal</td>
<td>15.7 to 31.5</td>
<td>Rates are dependent on soil type and weeds present. For nutsedge, apply 75-37.5 to 75 gal per acre. Apply when soil moisture is at field capacity (100 to 125%). Apply through soil injection using a rotary tiller or inject with knives no more than 4 in. apart; follow immediately with a roller to smooth and compact the soil surface or with mulch. May apply through drip irrigation prior to planting a second crop on mulch. Plant back interval is often 14 to 21 days and can be 30 days in some environments. See label for all restrictions and additional information.</td>
</tr>
<tr>
<td>Contact kill of all green foliage, staled application</td>
<td>paraquat, MOA 22 (Parazine) 3 SL (Gramoxone SL) 2 SL</td>
<td>1.3 to 2.7 pt 2 to 4 pt</td>
<td>0.5 to 1</td>
<td>Apply in a minimum of 10-gal spray mix per acre to emerged weeds before crop emergence or transplanting as a broadcast or band treatment over a preformed row. Row should be formed several days ahead of planting and treating to allow maximum weed emergence. Plant with a minimum of soil movement for best results. Use a nonionic surfactant at a rate of 16 to 32 oz per 100-gal spray mix or 1-gal approved crop oil concentrate per 100-gal spray mix. Paraquat product labels require applicators to take an EPA-approved training every 3 years to mix, load, and apply paraquat.</td>
</tr>
<tr>
<td>Morningglory and small pigweed</td>
<td>pyraflufen ethyl, MOA 14 (ET Herbicide) 0.208 L</td>
<td>1 to 2 oz</td>
<td>0.0016 to 0.0032</td>
<td>Bareground. Wait 1 day following preplant burndown application before planting. Plastic Mulch Production. May apply over mulch; however, a single 0.5 in. irrigation/rain event plus a 7-day waiting period must occur before transplanting. Apply ET with a crop oil concentrated at 1% v/v to sensitive weeds that are less than 3 in.</td>
</tr>
<tr>
<td>Emerged broadleaf and grass weeds</td>
<td>pelargonic acid, MOA 26 (Scythe) 4.2 EC</td>
<td>See label</td>
<td>See label</td>
<td>Apply as a preplant burndown treatment, or prior to crop emergence from seed, or as a directed or shielded spray between beds. Avoid contact of watermelon foliage.</td>
</tr>
<tr>
<td>Most broadleaf weeds less than 4 in. tall or rosettes less than 3 in. in diameter; does not control grasses</td>
<td>carfentrazone-ethyl, MOA 14 (Am) 1.9 EW or 2 EC</td>
<td>Up to 2 oz</td>
<td>Up to 0.031</td>
<td>Transplants only. Apply prior to transplanting of crop. Use a nonionic surfactant or crop oil with Aim. See label for rate. Cover age is essential for good weed control. Can be tank mixed with other registered herbicides.</td>
</tr>
<tr>
<td>Annual and perennial grass and broadleaf weeds, stale bed application</td>
<td>glyphosate, MOA 9 (numerous brands and formulations)</td>
<td>See labels</td>
<td>See labels</td>
<td>Apply to emerged weeds at least 3 days before seeding or transplanting. When applying Roundup before transplanting crops into plastic mulch, care must be taken to remove residues of this product from the plastic prior to transplanting. To prevent crop injury, residues can be removed by 0.5 in. rainfall or by applying water via a sprinkler system. Perennial weeds may require higher rates of glyphosate. Consult the manufacturer’s label for rates for specific weeds. Certain glyphosate formulations require the addition of a surfactant. Adding a nonionic surfactant to glyphosate formulated with nonionic surfactant may result in reduced weed control.</td>
</tr>
<tr>
<td>Emerged broadleaf weeds and some annual grasses</td>
<td>caprylic acid, MOA 26 (Homeplate)</td>
<td>See label</td>
<td>See label</td>
<td>May be applied prior to planting as a burndown treatment for emerged weeds, as a preemergence application after seeding but before emergence, as a directed or shielded application between rows or as a postharvest application. Use higher spray volumes for high weed density and weeds larger than 5 in. Coverage is important for acceptable weed control. May be tank mixed with other herbicides. See label for further instructions.</td>
</tr>
<tr>
<td>Annual grasses</td>
<td>bensulide, MOA 8 (Prefar) 4 E</td>
<td>5 to 6 qt</td>
<td>5 to 6</td>
<td>Apply preplant and incorporate into the soil 1 to 2 in. (1 in. incorporation is optimum) with a rototiller or tandem disk or apply to the soil surface after seeding and follow with irrigation. Check replant restrictions for small grains on label.</td>
</tr>
<tr>
<td>WATERMELON, Preemergence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Palmer amaranth, redroot pigweed, smooth pigweed, galinsoga spp., black nightshade, Eastern black nightshade, common purslane, partial control of yellow nutsedge</td>
<td>fomesafen, MOA 14 (Reflex) 2 EC</td>
<td>10 to 12 oz</td>
<td>0.16 to 0.19</td>
<td>This is a Section 24(c) Special Local Needs Label. Growers must make sure fomesafen is registered in their state and to obtain the label prior to making an application. See label for further instructions. Plasticulture transplants or seeds. May apply under plastic mulch if plastic laying process does not disturb treated soil; thus, do not apply prior to laying drip or forming bed. May apply over plastic mulch if the mulch is washed with 0.5 in. rainfall/irrigation in a single event prior to punching holes and planting; bed formation must allow herbicide to wash off the mulch and not concentrate in low areas on the mulch. Bareground transplant. Prepare land for planting; apply Reflex; lightly irrigate to activate herbicide and move it into soil; and then prepare plant holes and plant. Bareground seeded. Apply within 1 day of planting; lightly irrigate after application but at least 36 hours prior to emergence. Row middles. Must apply prior to crop emergence or transplanting. May use up to 16 oz per acre in watermelon. See label for potential carryover to rotational crop.</td>
</tr>
</tbody>
</table>

*Mode of action (MOA) code developed by the Weed Science Society of America.
<table>
<thead>
<tr>
<th>Weed</th>
<th>Herbicide, Mode of Action Code* and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Pounds Active Ingredient Per Acre</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>WATERMELON, Preplant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suppression or control of most annual grasses and broadleaf weeds, full rate required for nutseed control</td>
<td>metam sodium (Vapam HL) 42%</td>
<td>37.5 to 75 gal</td>
<td>15.7 to 31.5</td>
<td>Rates are dependent on soil type and weeds present. For nutsedge, apply 75-gal per acre. Apply when soil moisture is at field capacity (100 to 125%). Apply through soil injection using a rotary tiller or inject with knives no more than 4 in. apart; follow immediately with a roller to smooth and compact the soil surface or with mulch. May apply through drip irrigation prior to planting a second crop on mulch. Plant back interval is often 14 to 21 days and can be 30 days in some environments. See label for all restrictions and additional information.</td>
</tr>
<tr>
<td>Contact till of all green foliage, stalebed application</td>
<td>paraquat, MOA 22 (Parazone) 3 SL (Gramoxone SL) 2 SL</td>
<td>1.3 to 2.7 pt 2 to 4 pt</td>
<td>0.5 to 1</td>
<td>Apply in a minimum of 10-gal spray mix per acre to emerged weeds before crop emergence or transplanting as a broadcast or band treatment over a preformed row. Row should be formed several days ahead of planting and treating to allow maximum weed emergence. Plant with a minimum of soil movement for best results. Use a nonionic surfactant at a rate of 16 to 32 oz per 100-gal spray mix or 1-gal approved crop oil concentrate per 100-gal spray mix. Paraquat product labels require applicators to take an EPA-approved training every 3 years to mix, load, and apply paraquat.</td>
</tr>
<tr>
<td>Morning glory and small pigweed</td>
<td>pyraflufen ethyl, MOA 14 (ET Herbicide) 0.208 L</td>
<td>1 to 2 oz</td>
<td>0.0016 to 0.0032</td>
<td>Bareround. Wait 1 day following preplant burndown application before planting.</td>
</tr>
<tr>
<td>Emerged broadleaf and grass weeds</td>
<td>pelargonic acid, MOA 26 (Soythe) 4.2 EC</td>
<td>See label</td>
<td>See label</td>
<td>Apply as a preplant burndown treatment, or prior to crop emergence from seed, or as a directed or shielded spray between beds. Avoid contact of watermelon foliage.</td>
</tr>
<tr>
<td>Most broadleaf weeds less than 4 in. tall or rosettes less than 3 in. in diameter; does not control grasses</td>
<td>carfentrazone-ethyl, MOA 14 (Aim) 1.9 EW or 2 EC</td>
<td>Up to 2 oz</td>
<td>Up to 0.031</td>
<td>Transplants only. Apply prior to transplanting of crop. Use a nonionic surfactant or crop oil with Aim. See label for rate. Cover age is essential for good weed control. Can be tank mixed with other registered herbicides.</td>
</tr>
<tr>
<td>Annual and perennial grass and broadleaf weeds, stale bed application</td>
<td>glyphosate, MOA 9 (numerous brands and formulations)</td>
<td>See labels</td>
<td>See labels</td>
<td>Apply to emerged weeds at least 3 days before seeding or transplanting. When applying Roundup before transplanting crops into plastic mulch, care must be taken to remove residues of this product from the plastic prior to transplanting. To prevent crop injury, residuals can be removed by 0.5 in. rainfall or by applying water via a sprinkler system. Perennial weeds may require higher rates of glyphosate. Consult the manufacturer’s label for rates for specific weeds. Certain glyphosate formulations require the addition of a surfactant. Adding a nonionic surfactant to glyphosate formulated with nonionic surfactant may result in reduced weed control.</td>
</tr>
<tr>
<td>Emerged broadleaf weeds and some annual grasses</td>
<td>caprylic acid, MOA 26 (Homeplate)</td>
<td>See label</td>
<td>See label</td>
<td>May be applied prior to planting as a burndown treatment for emerged weeds, as a preemergence application after seeding but before emergence, as a directed or shielded application between rows or as a postharvest application. Use higher spray volumes for high weed density and weeds larger than 5 in. Coverage is important for acceptable weed control. May be tank mixed with other herbicides. See label for further instructions.</td>
</tr>
<tr>
<td>Annual grasses</td>
<td>bensulide, MOA 8 (Prefar) 4 E</td>
<td>5 to 6 qt</td>
<td>5 to 6</td>
<td>Apply preplant and incorporate into the soil 1 to 2 in. (1 in. incorporation is optimum) with a rototiller or tandem disk or apply to the soil surface after seeding and follow with irrigation. Check replant restrictions for small grains on label.</td>
</tr>
</tbody>
</table>

| WATERMELON, Preemergence | | | | |
| Palmer amaranth, redroot pigweed, smooth pigweed, galinsoga spp., black nightshade, Eastern black nightshade, common purslane, partial control of yellow nutsedge | fomesafen, MOA 14 (Reflex) 2 EC | 10 to 12 oz | 0.16 to 0.19 | This is a Section 24(c) Special Local Needs Label. Growers must check the following website to make sure fomesafen is registered in their state and to obtain the label prior to making an application. See label for further instructions. Plasticulture transplants or seeds. May apply under plastic mulch if plastic laying process does not disturb treated soil; thus, do not apply prior to laying drip or forming bed. May apply over plastic mulch if the mulch is washed with 0.5 in. rainfall/irrigation in a single event prior to punching holes and planting; bed formation must allow herbicide to wash off the mulch and not concentrate in low areas on the mulch. Bareround transplant. Prepare land for planting; apply Reflex; lightly irrigate to activate herbicide and move it into soil; and then prepare plant holes and plant. Bareround seeded. Apply within 1 day of planting; lightly irrigate after application but at least 36 hours prior to emergence. Row middles. Must apply prior to crop emergence or transplanting. May use up to 16 oz per acre in watermelon. See label for potential carryover to rotational crop. |

*Mode of action (MOA) code developed by the Weed Science Society of America.
TABLE 4-27. CHEMICAL WEED CONTROL IN WATERMELONS (cont’d)

<table>
<thead>
<tr>
<th>Weed</th>
<th>Herbicide, Mode of Action Code* and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Pounds Active Ingredient Per Acre</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>WATERMELON, Preemergence (cont’d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual grasses and broadleaf weeds</td>
<td>clomazone, MOA 13 (Command) 3 ME</td>
<td>0.4 to 0.67 pt</td>
<td>0.15 to 0.25</td>
<td>Apply immediately after seeding, or just prior to transplanting. Roots of transplants must be below the chemical barrier when planting. Offers weak control of pigweed. See label for further instructions.</td>
</tr>
<tr>
<td>Annual grasses and some small-seeded broadleaf weeds</td>
<td>ethalfluralin, MOA 3 (Curbit) 3 EC</td>
<td>3 to 4.5 pt</td>
<td>1.1 to 1.7</td>
<td>Apply post immediately after seeding crop prior to crop emergence, or as a banded spray between rows after crop emergence or transplanting. May also be used as a banded spray between rows of plastic mulch. See label for timing. Shallow cultivation, irrigation, or rainfall within 5 days is needed for good weed control. Do not use under mulches, row covers, or hot caps. Under conditions of unusual cold or wet soil and air temperatures, crop stunting or injury may occur. Crop injury can occur if seeding depth is too shallow.</td>
</tr>
<tr>
<td>Annual grasses and broadleaf weeds</td>
<td>ethalfluralin, MOA 3 + clomazone, MOA 13 (Strategy) 2.1 L</td>
<td>2 to 6 pt</td>
<td>0.4 to 1.2 + 0.125 to 0.375</td>
<td>Apply to the soil surface immediately after crop seeding for preemergence control of weeds. DO NOT APPLY PRIOR TO PLANTING. DO NOT INCORPORATE. DO NOT APPLY UNDER MULCH. May also be used as a banded treatment between rows after crop emergence or transplanting.</td>
</tr>
</tbody>
</table>

*Mode of action (MOA) code developed by the Weed Science Society of America.
<table>
<thead>
<tr>
<th>Weed</th>
<th>Herbicide, Mode of Action Code* and Formulation</th>
<th>Amount of Formulation Per Acre</th>
<th>Pounds Active Ingredient Per Acre</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broadleaf weeds</td>
<td>terbacil, MOA 5 (Sinbar) 80WP</td>
<td>2 to 4 oz</td>
<td>0.1 to 0.2</td>
<td>Apply after seeding but before crop emerges, or prior to transplanting crop. With plasticulture, Sinbar may be applied preemergence under plastic mulch or to row middles. Maybe applied over plastic mulch prior to transplanting, or prior to punching holes into the plastic mulch for transplanting. Sinbar must be washed off the surface of the plastic mulch with a minimum of 0.5 in. of rainfall or irrigation prior to punching transplant holes or transplanting watermelon. Do not apply within 70 days of harvest. See label for further instructions.</td>
</tr>
<tr>
<td>Yellow and purple nutsedge suppression, non-ALS-resistant pigweed, and non-ALS-resistant ragweed control</td>
<td>Bareground/Plasticulture halosulfuron-methyl, MOA 2 (Profine 75, Sandea) 75 DG</td>
<td>0.5 to 0.75 oz</td>
<td>0.024 to 0.036</td>
<td>Bareground. Apply after seeding but before cracking or prior to transplanting crop. Plasticulture. Application may be made to preformed beds prior to laying plastic. If application is made prior to planting, wait 7 days after application to seed or transplant. Stunting may occur but should be short-lived with no negative effects on yield or maturity in favorable growing conditions. SEE LABEL FOR INFORMATION ON ROTATION RESTRICTIONS AND OTHER RESTRICTIONS.</td>
</tr>
<tr>
<td>Row Middles Only</td>
<td>halosulfuron-methyl, MOA 2 (Profine 75, Sandea) 75 DG</td>
<td>0.5 to 1 oz</td>
<td>0.024 to 0.048</td>
<td>Row middles only. Apply to row middles as a preemergence spray. In plasticulture, do not allow spray to contact plastic. Early season application will give postemergence and preemergence control. Do not apply within 57 days of harvest. For postemergence applications, use nonionic surfactant at 1 qt per 100-gal of spray solution.</td>
</tr>
</tbody>
</table>

WATERMELON, Postemergence

<table>
<thead>
<tr>
<th>Weed</th>
<th>Herbicide, Mode of Action Code and Formulation</th>
<th>Amount of Formulation</th>
<th>Pounds Active Ingredient</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual grasses and some small-seeded broadleaf weeds</td>
<td>DCPA, MOA 3 (Dacthal) W-75 (Dacthal) 6 F</td>
<td>8 to 10 lb</td>
<td>6 to 7.5</td>
<td>Not labeled for transplanted crop. To improve preemergence control of late emerging weeds, apply only when crop has 4 to 5 true leaves, is well-established, and growing conditions are favorable. Will not control emerged weeds. Incorporation not recommended.</td>
</tr>
<tr>
<td>Annual and perennial grasses only</td>
<td>clethodim, MOA 1 (Arrow, Clethodim, Intensify, Select) 2 EC (Intensity One, Select Max) 1 EC</td>
<td>6 to 8 oz</td>
<td>0.094 to 0.125</td>
<td>Apply postemergence for control of grasses not under drought stress. See label for adjuvant and rate. Adding crop oil may increase the likelihood of crop injury at high air temperatures and high humidity. Very effective in controlling annual bluegrass. PHI = 14 days.</td>
</tr>
<tr>
<td></td>
<td>sethoxydim, MOA 1 (Poast) 1.5 EC</td>
<td>1 to 1.5 pt</td>
<td>0.2 to 0.3</td>
<td>Apply to emerged grasses. See label for adjuvant and rate. Adding crop oil may increase the likelihood of crop injury at high air temperatures and high humidity. PHI = 14 days.</td>
</tr>
</tbody>
</table>

WATERMELON, Row Middles

<table>
<thead>
<tr>
<th>Weed</th>
<th>Herbicide, Mode of Action Code and Formulation</th>
<th>Amount of Formulation</th>
<th>Pounds Active Ingredient</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual grasses and some small-seeded broadleaf weeds</td>
<td>trifluralin, MOA 3 (Treflan-HFP, Trifluralin, Trifluralin HF) 4 EC</td>
<td>1 to 2 pt</td>
<td>0.5 to 0.75</td>
<td>To improve preemergence control of late emerging weeds. Apply after emergence when crop plants have reached the three to four true leaf stage of growth. Apply as a directed spray to soil between the rows. Avoid contacting foliage as slight crop injury may occur. Set incorporation equipment to move treated soil around base of crop plants. Do not apply within 60 days of harvest. Will not control emerged weeds.</td>
</tr>
<tr>
<td></td>
<td>pendimethalin, MOA 3 (Prowl H2O) 3.8AS</td>
<td>Up to 2.1 pt</td>
<td>Up to 1</td>
<td>May be applied sequentially in bareground and plasticulture production systems at a minimum of 21 days apart. Refer to label for specific instructions.</td>
</tr>
<tr>
<td>Broadleaf weeds</td>
<td>terbacil, MOA 5 (Sinbar) 80WP</td>
<td>2 to 4 oz</td>
<td>0.1 to 0.2</td>
<td>With plasticulture, Sinbar may be applied to row middles. See label for further instructions. PHI = 70 days.</td>
</tr>
<tr>
<td>Most broadleaf weeds less than 4 in. tall or rosettes less than 3 in. in diameter; does not control grasses</td>
<td>carfentrazone-ethyl, MOA 14 (Aim) 1.9 EW or 2 EC</td>
<td>Up to 2 oz</td>
<td>Up to 0.031</td>
<td>Apply post-directed using hooded sprayers for control of emerged weeds. If crop is contacted, burning of contacted area will occur. Use a nonionic surfactant or crop oil with Aim. See label for rate. Coverage is essential for good weed control. Can be tank mixed with other registered herbicides. PHI = 0 days.</td>
</tr>
</tbody>
</table>

WATERMELON, Row Middles (cont’d)

<table>
<thead>
<tr>
<th>Weed</th>
<th>Herbicide, Mode of Action Code and Formulation</th>
<th>Amount of Formulation</th>
<th>Pounds Active Ingredient</th>
<th>Precautions and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Most emerged weeds</td>
<td>glyphosate, MOA 9 (numerous brands and formulations)</td>
<td>See labels</td>
<td>See labels</td>
<td>Apply as a hooded spray in row middles, as shielded spray in row middles, as wiper applications in row middles, or postharvest. To avoid severe injury to crop, do not allow herbicide to contact foliage, green shoots, stems, exposed, roots, or fruit of crop. PHI = 14 days.</td>
</tr>
<tr>
<td>Yellow and purple nutsedge and broadleaf weeds</td>
<td>halosulfuron-methyl, MOA 2 (Profine 75, Sandea) 75 DG</td>
<td>0.5 to 1 oz</td>
<td>0.024 to 0.048</td>
<td>Apply to row middles as a postemergence spray. In plasticulture, do not allow spray to contact plastic. Early season application will give postemergence and preemergence control. For postemergence applications, use nonionic surfactant at 1 qt per 100-gal of spray solution. PHI = 57 days.</td>
</tr>
<tr>
<td>Many broadleaf weeds less than 4 in. tall</td>
<td>capric acid and caprylic acid (Suppress) EC</td>
<td>3 to 9% v/v</td>
<td>6 to 18</td>
<td>Apply with a hooded sprayer, shielded or other spray equipment that prevents the movement of spray away from target weeds. Avoid contacting the crop to avoid crop injury. Make sure water carrier pH is 6 or less. Adding citric acid or organic acid will lower the pH of the water carrier. Apply Suppress at 30 GPA or higher. Do not tank mix Suppress with nonionic surfactants or silicone-based surfactants.</td>
</tr>
</tbody>
</table>

*Mode of action (MOA) code developed by the Weed Science Society of America.

TABLE 4-27. CHEMICAL WEED CONTROL IN WATERMELONS (cont’d)

TABLE 4-28. WEED RESPONSE TO HERBICIDES USED IN VEGETABLE CROPS

372 2022 Vegetable Crop Handbook for Southeastern United States
POISON CONTROL CENTERS
Poison Centers maintain a 24-hour consultant service in diagnosis and treatment of human illness resulting from toxic substances. Make sure that your physician knows the Poison Center’s telephone number and do not hesitate to call in case of an emergency. Always provide the pesticide label to your physician or emergency personnel to ensure proper treatment in the event of a poisoning.

PESTICIDE CONTAINER RECYCLING

<table>
<thead>
<tr>
<th>State</th>
<th>Phone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabama Poison Control Center</td>
<td>1-800-222-1222</td>
</tr>
<tr>
<td>Arkansas Poison Control</td>
<td>1-800-222-1222</td>
</tr>
<tr>
<td>Florida</td>
<td>1-800-222-1222</td>
</tr>
<tr>
<td>Georgia</td>
<td>1-800-222-1222</td>
</tr>
<tr>
<td>Kentucky</td>
<td>1-800-222-1222</td>
</tr>
<tr>
<td>Louisiana Poison Control Center</td>
<td>1-800-222-1222</td>
</tr>
<tr>
<td>Mississippi Poison Control Center</td>
<td>1-800-222-1222</td>
</tr>
<tr>
<td>North Carolina – Carolinas Poison Center</td>
<td>1-800-222-1222</td>
</tr>
<tr>
<td>Oklahoma Poison Control Center</td>
<td>1-800-222-1222</td>
</tr>
<tr>
<td>South Carolina – Palmetto Poison Center</td>
<td>1-800-222-1222</td>
</tr>
<tr>
<td>Tennessee Poison Control Center</td>
<td>1-800-222-1222</td>
</tr>
<tr>
<td>Texas Poison Control Network</td>
<td>1-800-222-1222</td>
</tr>
<tr>
<td>Virginia Poison Control Center</td>
<td>1-800-222-1222</td>
</tr>
</tbody>
</table>

PESTICIDE SPILLS

<table>
<thead>
<tr>
<th>State</th>
<th>Phone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabama – CHEMTREC</td>
<td>1-800-424-9300 (24 hours)</td>
</tr>
<tr>
<td>Arkansas Department of Emergency Management</td>
<td>1-800-322-4012</td>
</tr>
<tr>
<td>Florida</td>
<td>1-800-424-9300 (24 hours)</td>
</tr>
<tr>
<td>Georgia</td>
<td>1-800-241-4113 (24 hours)</td>
</tr>
<tr>
<td>Kentucky</td>
<td>1-800-424-9300 (24 hours)</td>
</tr>
<tr>
<td>Louisiana – Louisiana Department of Ag & Forestry</td>
<td>1-855-452-5323</td>
</tr>
<tr>
<td>Mississippi – Mississippi Emergency Management Agency (MEMA)</td>
<td>1-800-222-6362 (24 hr emergency line)</td>
</tr>
<tr>
<td>North Carolina</td>
<td>1-800-262-8200 (24 hours)</td>
</tr>
<tr>
<td>South Carolina – SCHEC</td>
<td>1-888-481-0126 (24 hours)</td>
</tr>
<tr>
<td>Oklahoma - DEQ</td>
<td>1-800-522-0206</td>
</tr>
<tr>
<td>Tennessee – CHEMTREC</td>
<td>1-800-424-9300 (24 hours)</td>
</tr>
<tr>
<td>Texas – CHEMTREC</td>
<td>1-800-424-9300 (24 hours)</td>
</tr>
<tr>
<td>Virginia – CHEMTREC</td>
<td>1-800-424-9300 (24 hours)</td>
</tr>
</tbody>
</table>

HAZARDOUS MATERIAL CLEANUP

<table>
<thead>
<tr>
<th>State</th>
<th>Phone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabama</td>
<td>(334) 260-2700 after 5 pm (334) 242-4378</td>
</tr>
<tr>
<td>Arkansas Department of Emergency Management</td>
<td>1-800-322-4012</td>
</tr>
<tr>
<td>Florida – Florida Highway Patrol</td>
<td>(850) 617-2000</td>
</tr>
<tr>
<td>Georgia – Georgia Highway Patrol</td>
<td>*GSP (*477)</td>
</tr>
<tr>
<td>Kentucky</td>
<td>1-800-928-2380</td>
</tr>
<tr>
<td>Louisiana – Louisiana Department of Ag & Forestry</td>
<td>1-855-452-5323</td>
</tr>
<tr>
<td>Mississippi – Mississippi Emergency Management Agency (MEMA)</td>
<td>1-800-222-6362 (24 hr emergency line)</td>
</tr>
<tr>
<td>North Carolina</td>
<td>1-800-662-7956</td>
</tr>
<tr>
<td>South Carolina – SCDHEC</td>
<td>1-888-481-0125 (24 Hours)</td>
</tr>
<tr>
<td>Oklahoma – Oklahoma Highway Patrol</td>
<td>*55 (or DEQ Land Protection Div. (405) 702-5100)</td>
</tr>
<tr>
<td>Tennessee</td>
<td>(615) 741-0001</td>
</tr>
<tr>
<td>Texas</td>
<td>1-800-424-9300 (24 hours)</td>
</tr>
<tr>
<td>Virginia</td>
<td>1-800-424-8802</td>
</tr>
</tbody>
</table>

PESTICIDE CONTAINER RECYCLING

<table>
<thead>
<tr>
<th>State</th>
<th>Phone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabama</td>
<td>(334) 242-2640</td>
</tr>
<tr>
<td>Arkansas</td>
<td>(501) 225-1598 See note below*</td>
</tr>
<tr>
<td>Florida</td>
<td>(352) 392-4721</td>
</tr>
<tr>
<td>Georgia</td>
<td>(404) 656-4958</td>
</tr>
<tr>
<td>Kentucky</td>
<td>1-800-205-6543</td>
</tr>
<tr>
<td>Louisiana – Louisiana Department of Ag & Forestry</td>
<td>1-855-452-5323</td>
</tr>
<tr>
<td>Mississippi – USAg Recycling, Inc.</td>
<td>1-800- 654-3145</td>
</tr>
<tr>
<td>North Carolina</td>
<td>(919) 733-3556</td>
</tr>
<tr>
<td>South Carolina</td>
<td>1-800-654-3145</td>
</tr>
<tr>
<td>Oklahoma – Oklahoma Highway Patrol</td>
<td>*55 (or DEQ Land Protection Div. (405) 702-5100)</td>
</tr>
<tr>
<td>Tennessee</td>
<td>(405) 744-5531</td>
</tr>
<tr>
<td>Texas</td>
<td>1-800-654-3145</td>
</tr>
<tr>
<td>Virginia</td>
<td>See note below*</td>
</tr>
<tr>
<td></td>
<td>Contact your local Extension agent for info</td>
</tr>
</tbody>
</table>

MISUSE OF PESTICIDES
It is a violation of law to use any pesticide in a manner not permitted by its labeling. To protect yourself, never apply any pesticide in a manner or for a purpose other than as instructed on the label or in labeling accompanying the pesticide product that you purchase. Do not ignore the instructions for use of protective clothing and devices and for storage and disposal of pesticide wastes, including containers. All recommendations for pesticide use included in this manual were legal at the time of publication, but the status of registration and use patterns are subject to change by actions of state and federal regulatory agencies.

* In Arkansas, Texas, and Virginia, pesticide container recycling is not required as according to state law “properly rinsed agricultural chemical containers are not classified as hazardous waste.”
Recommendations for the use of agricultural chemicals and other products are included in this publication as a convenience to the reader. The use of brand names and any mention or listing of commercial products or services in this publication does not imply endorsement by Auburn University, Clemson University, Louisiana State University, Mississippi State University, North Carolina State University, Oklahoma State University, Texas A&M, University of Arkansas System Division of Agriculture, University of Georgia, University of Kentucky, University of Tennessee, and Virginia Tech nor discrimination against similar products or services not mentioned. Recommendations and labels will vary from state to state, and we have made every attempt to assure that these exceptions are noted. However, individuals who use agricultural chemicals are responsible for ensuring that the intended use complies with current regulations and conforms to the product label in their respective home state. Be sure to obtain current information about usage regulations and examine a current product label before applying any chemical. For assistance, contact your county Cooperative Extension Service agent.
FINDMe
Focused INvestigations on the Distribution and management of *Meloidogyne enterolobii*

One Goal.
Reduce the vulnerability of growers to *M.e.*

What is *M.e.?*

Meloidogyne enterolobii (*M.e.*) is a highly virulent root-knot nematode (RKN) species that is potentially devastating to specialty crop production in the southeastern United States.
Proven performance for your vegetable fields

INSECTICIDE

Intrepid 2F®
Intrepid Edge®
Lannate® LV
Lannate® SP
Radiant® SC
Transform® WG
Isoclast® active

NATURALYTE® INSECT CONTROL

Entrust® SC

INSECTICIDE/NEMATICIDE

Vydate® L

FUNGICIDE

Curzate® 60DF
Fontelis®
Rally® 40WSP
Tanos®

Visit us at corteva.us