February was an over-all cold month, and our plant sample submissions were low at 29. Winter temperatures generally prevent most disease developments except in southern most counties where temperatures are usually warmer. Greenhouse plants may have disease problems throughout the year. Diseases seen in February included anthracnose and Botryosphaeria canker on aucuba; Fusarium crown rot, Phytophthora root rot and Volutella cankers on boxwood; algal leaf spot on camellia; black rot on collards; Fusarium root rot on Boston fern; Didymella leaf spot on iris; Cercospora leaf spot on ligustrum; Sclerotinia crown rot on trailing petunia; Botrytis crown rot on strawberry; a suspect virus on tomato; barley yellow dwarf virus on wheat; and suspect *Heterobasidion annosum* on yew.

Botryosphaeria canker is a common problem on aucuba, especially aucubas that have been stressed. Plants stressed by too much sun often develop this disease. Cankers are dark brown-black, elongated and elliptical with edge cracking. Pruning is the usual recommendations with cuts being made 4-5 inches beyond the edge of the canker.

The boxwood submitted for diagnosis contained three problems: Fusarium crown rot, Phytophthora root rot, and Volutella cankers. Of the three diseases, Phytophthora is usually considered to be the more aggressive, as long as soil conditions are wet. Volutella causes stem cankers on stressed boxwoods. Fusarium is usually considered secondary on woody plant roots.
Damaged plants should be removed. Soil drainage should be improved and irrigation reduced. Protective fungicide drenches are usually not recommended for landscape plants due to the expense.

Algal leaf spot was present on the Mobile camellia we received. This is a problem on many plants, especially camellias and magnolias, usually in the spring or fall when moisture is abundant. Usually samples sent in winter show damage that was caused during the previous fall or summer. Active algal leaf spots are usually green or reddish-green. The leaf spot edges are usually irregular (wavy or ruffled) and slightly elevated. This disease is difficult to control. See ANR-943.

The collard sample with black rot was in an advanced stage of the disease with the entire main stem showing a black, soft rot. The bacteria can stay in plant debris or the soil for 1-2 years, depending upon the winter weather. Crop rotation is the usual recommendation for disease control. See ANR-937 (Disease Note).

Sclerotinia crown rot is a cool temperature (60-70°F) disease. It was observed on the greenhouse petunia as a collapse and brown, soft rot of the stem at the soil level. White mycelial tufts were evident visually on the crown tissues. Plants with crown rot will collapse and die. Disease control requires removal of diseased plants. In a landscape situation, removal of soil in the immediate vicinity of the disease plant roots would be a good idea. In a greenhouse situation, Cleary’s 3336 or Heritage may help provide protective disease control.

Botrytis crown rot of strawberry is another disease that requires cool temperatures (60-70°F) and moisture or high humidity. On the small strawberry plants examined, crown tissues were brown and dying; the gray mold typical of Botrytis was present. Disease control involves removal of damaged plants, improved air circulation (if possible), and protective fungicide sprays of Rovral. See the AL Pest Management Handbook.

We received a tomato plant with leaf mosaic symptoms and some leaf distortion. ELISA testing for cucumber mosaic virus, tobacco mosaic virus, potato virus Y, tomato spotted wilt virus, and papaya ring spot virus gave negative results. If we are able to obtain another sample, we will send it to another lab for further virus testing.

The wheat sample we received from Dallas County showed yellowing and stunting. ELISA tests for barley yellow dwarf virus produced positive results. Consult with Austin Hagan if you have questions.

The yew plant submitted for diagnosis showed a severe dieback along with a crown rot. Under the bark of the yew and into the dead woody tissues, thin, white fan-like shapes of mycelium could be seen. This type of fungal growth is often associated with the fungus Heterobasidium annosum (formerly called Fomes annosum). H. annosum causes crown and root rots of many types of conifer woody trees and shrubs. Disease control requires removal of the diseased plant. Crop rotation is often recommended. Keeping the plants in a vigorous condition
A recently imported scale insect, Kuwanaspis vermiformis (Takahashi), was detected for the first time in Alabama (Auburn). The insect-infested plant sample submitted was River Cane. This insect was originally described from Taiwan in 1930 but has subsequently been reported from the Ivory Coast, Madagascar, Colombia, Hawaii, and China. In 1998, it was discovered in Florida. Elsewhere it has been found on bamboo (Bambusa, Dendrocalamum, Streptogyna). In the United States, it is found on River Cane (also known as Giant Cane, Switch Cane or Canebrake Bamboo), Arundinaria gigantea. A native plant, River Cane is often used as an ornamental because of its ability to form a dense screen. Because Kuwanaspis vermiformis has no natural enemies in this country, insect populations can become enormous. There were 50-100 scales per leaf in the Auburn stand of River Cane where the insect was first detected. No damage was apparent although the insects might be damaging to plants suffering other stress. Kuwanaspis vermiformis is a long (3 mm), narrow (0.25 mm) armored scale (see photomicrograph below) and should not be easily confused with other scale insects found on River Cane. (C. Ray)