

A few generalizations...

- Delayed decisions led to overgrazing
- Ground cover became very low
 - Soil erosion potential was high
- Body condition scores slipped severely (< 5)
 - Poor conception rates!
 - Problem was worse where tall fescue is the base
- A lot of poor-quality and/or expensive hay was fed
 - Hay availability was extremely low
- Difficulty in establishment spring & fall 2007

 $(\prod_{i=1}^{n})$

ENVIRONMENTAL SCIENCES

Dr. Dennis Hancock

Extension Forage Agronomist

1

Proactive Drought-Stress Management

- First, do no harm!
- Recognize early
- De-stock
- De-populate
- Set up sacrifice areas
- Best Defense is a Good Offense.

Dr. Dennis Hancock **Extension Forage Agronomist**

THE UNIVERSITY OF GEORGIA College of Agricultural \mathcal{E} **ENVIRONMENTAL SCIENCES**

Species	Water Use Efficiency	Max. Root Depth
	DM lbs/inch	inches
Coastal Bermudagrass	1646	78
Pensacola Bahiagrass	1194	79
Tall Fescue	1064	48
Ladino Clover	480	38
Red Clover	436	45

Dr. Dennis Hancock **Extension Forage Agronomist**

Not competitive Leafspot Diseases **Poor Winterhardiness** Grows Very Slow Poor Stress Tolerance The Stand is Gonel

K is the Key to a Good Stand

Dr. Dennis Hancock Extension Forage Agronomist

Nitrate in forage fed to beef cattle.

Forage Nitrate (ppm dry forage)	Guidance
< 4500	Safe to feed with adequate feed and water
4,500 to < 6,500	Safe under most conditions, but if feeding pregnant animals limit to half (1/2) ration
6,500 to < 9,000	Limit to half (1/2) ration
9,000 to < 15,000	Limit to third (1/3) ration
15,000 to < 18,000	Limit to quarter (1/4) ration
> 18,000	Potentially lethal, very risky

Nitrate in rations fed to dairy cattle.

	Max. Nitrate (ppm) in
Classes of Livestock	Total Ration (DM Basis)
Calves to 6 months of age	700
Calves 6 months to breeding age	1000
Bred heifers	1500
Lactating dairy cows (postpartum & up to 180 d pregnant)	1500
Lactating dairy cows (last trimester of pregnancy)	2500
Smith and Guthrie, 1997	

Dr. Dennis Hancock

Peanut Hay Quality				
Variable	n	Mean	Units	Range
RFQ	26	129.5		69.8 - 222.1
TDN	26	58.1	%	46.3 - 72.0
CP	26	10.1	%	5.5 - 15.0
NDF	26	41.0	%	28.0 - 55.0
ADF	26	34.7	%	22.6 - 45.5
Lignin	26	10.9	%	8.0 - 13.4
NO₃	23	1939	ppm	0 - 4787

THE UNIVERSITY OF GEORGIA College of AGRICULTURAL & ENVIRONMENTAL SCIENCES

Peanut Hay Mineral Content					
Nutrient	n	Mean	Range	Std. Dev.	C.V.
			- %		
Ν	27	1.64	0.88 - 2.40	0.390	24%
Р	7	0.12	0.08 - 0.21	0.050	41%
К	7	2.14	1.46 - 2.74	0.410	19%
Ca	7	0.91	0.63 - 1.22	0.196	21%
Mg	7	0.31	0.21 - 0.42	0.072	24%

ENVIRONMENTAL SCIENCES

Dr. Dennis Hancock

Dr. Dennis Hancock

		Ster.
Feeding	g Losses	
Item	% Waste	
Cone	2 - 5	A
Ring	4 - 7	K
Trailer	10 - 13	L
Cradle	15 - 20	
Adapted from: South	respectively (4 th od) and	H
Auapteu from: South	ern rorages (4" eq.) and	1 mm

Adapted from: Southern Forages (4th ed.) and Buskirk et al., 2003. J. Anim. Sci. 81:109-115

THE UNIVERSITY OF GEORGIA College of AGRICULTURAL & ENVIRONMENTAL SCIENCES

Dr. Dennis Hancock Extension Forage Agronomist

1. Feed less hay and graze more.

Get a Grip on Your Hay Costs

Dr. Dennis Hancock Extension Forage Agronomist

Costs of Feeding Hay1200 lbs/cowx1.8 lbs of hay
100 lbs of b.w.=21.6 lbs/hd/d21.6 lbs/hd/d+10% feeding loss
30% storage loss
25% other losses=25 lbs/hd/d\$130/dry ton of hay
2000 lbs=\$0.065/lb of hay\$1.63/hd/d

Costs of Feeding Hay \$1.63/hd/d

I have 100 cows.

If I cut out 30 days of feeding hay ... ?

100 cows x \$1.63 x 30 days = **\$4890**

That's like having a 10% increase in your calf crop!!!

Strategies for 2008 and beyond.

- 1. Feed less hay and graze more.
- 2. What hay you feed needs to meet your animal's need for quality.

 \square

THE UNIVERSITY OF GEORGIA COLLEGE OF AGRICULTURAL & ENVIRONMENTAL SCIENCES

Dr. Dennis Hancock Extension Forage Agronomist

The Effect of Maturity on the Bottomline: Supplementing a Lactating Cow

Crop	Moturity	CD	TON	Supplement	Cost
Стор	waturity	GP		Supplement	COSI
		%	%	lbs/hd/day	\$/hd/day
Bermudagrass	4 weeks	10-12	58-62	0	\$0
	6 weeks	8-10	51-55	4.8	\$0.45
	8 weeks	6-8	45-50	7.5	\$0.72
+ \$1.63/hd/d					

Dr. Dennis Hancock

THE UNIVERSITY OF GEORGIA College of Agricultural \mathcal{E} **ENVIRONMENTAL SCIENCES**

Efficiencies of Grazing a	and
Mechanized Harvest	
Method	Effici

30-40%
50-60%
60-70%
70-80%
30-70%
60-85%
70-95%

Strategies for 2008 and beyond.

- 1. Feed less hay and graze more.
- 2. What hay you feed needs to meet your animal's need for quality.
- 3. Get more forage into your animals.
- 4. Be more efficient with your fertilizer
 - a) Soil test and follow recommendations
 - b) Adapt N recommendations to forage needs
 - c) Maintain soil pH
 - d) Split your N applications

Dr. Dennis Hancock

The Effectiveness of Some Alternative N Sources at Low, Medium, and High Fertilization Rates on Hybrid Bermudagrasses (Relative to Ammonium Nitrate).

Nitrogen Source	Fertilization Rates		
	< 200 lbs*	250-350 lbs	> 400 lbs
Ammonium Nitrate	100%	100%	100%
Amm. Sulfate	95-97%	95-105%	60-70%
Anhyd. Ammonia	92-94%	93-95%	94-95%
UAN Solution	70-75%	85-92%	92-9 5%
Urea	79-82%	82-92%	88-93%
* Actual lbs of N par acro	orvoor		

Source: Burton and Jackson, 1962; Silveria et al., 2007.

THE UNIVERSITY OF GEORGIA COLLEGE OF AGRICULTURAL & **ENVIRONMENTAL SCIENCES**

Take-home message:

- If you have to use a urea-based product, be careful about cutting your rate back too much.
 They are relatively less effective at low rates.
- 2) Split your N applications.

Fertilization Strategies New N Fertilizer Products

Dr. Dennis Hancock Extension Forage Agronomist

Categories Hay and baleage samples will be evaluated in the following categories: Category Description 1. Warm Season Perennial Grass Hay (e.g., bermudagrass, bahiagrass, etc.) 2. Perennial Peanut or Alfalfa Hay 3. Cool Season Perennial Grass Hay (e.g., tall fescue, orchardgrass, etc.) 4. Mixed, Annual Grass, or Other Hay (e.g., clover/fescue, clover/regrass, millet, ryegrass, etc.) 5. Grass Baleage (high moisture grass forage ensiled in wrapped bales)

6. Legume Baleage (high moisture legume or grass/legume ensiled in wrapped bales)

Info on the SE Hay Contest Image: College of Agricultural & Environmental Sciences About case Departments Academics Extension reserved Commedities: Field Cross: Forages Commedities Commedities: Field Cross: Forages 2008 Southeastern Hay Contest

$\prod _{ \text{ the university of georgia} } for the university of georgia \\ \text{ College of Agricultural } \mathcal{E} \text{ Environmental Sciences}$ Com Field Crops - Forages Adapted Species Establishme Guidelines Fertilization Guidelines Pest Nanagem Publications Popular Press Archive Forage Team FAQs Commodities: Field Crops Related Links **Ouick Links** Forages Drought Issues Upcoming Events Introduction · Find your local Agent The Georgia Forages website is your window to information - NEWI Managementon a wide variety of forage management issues. This Intensive Grazing information is extended to you by scientists from the County Agents Only University of Georgia, who continue to research all aspects of forage and livestock management. The recommendations found in this website are based on peer-reviewed research conducted in Georgia and throughout the world. We hope you will find this website provides accurate and up-to-date information about all forage management issues facing producers in Georgia and the Southeast. Please check this website regularly for updates and "Hot Topics."

www.georgiaforages.com

Dr. Dennis Hancock

Extension Forage Agronomist

14

Dr. Dennis Hancock

THE UNIVERSITY OF GEORGIA COLLEGE OF AGRICULTURAL & ENVIRONMENTAL SCIENCES