GARDEN TILLAGE RESEARCH AND DEMONSTRATIONS

C.C. Mitchell, C.B. Pinkston, and A. Caylor

Traffic pans or plow pans in sandy, Coastal Plain soils of the southeastern U.S. are a common problem in non-irrigated field crops. Traffic pans are a thin layer (2 to 4 inches) of compacted soil resulting from the downward force of tillage equipment on the soil just beneath the plow layer. The problem is particularly serious on soils with a sandy topsoil (Ap horizon) just above a finer textured subsoil. This compacted soil layer can restrict water and air movement through the soil and limit root growth.

Many large-scale producers routinely subsoil their fields prior to or at planting to create a deeper rooting zone for non-irrigated crops. In order to reduce the energy needed for this operation, innovative techniques such as "slit tillage" have been proposed. Slit tillage uses a blade to cut a narrow slit through the traffic pan which roots can follow into the subsoil. Root channels through this slit persist from year to year if the soil is not drastically disturbed. Unfortunately, coarse textured, sandy soils tend to rapidly wear away a blade. Therefore, slit tillage has not become a practice for large scale farmers.

Traffic pans or tillage pans may also be a problem for gardeners and small-scale vegetable producers. These growers probably don't have access to large equipment necessary for deep tillage and subsoiling. Often they depend on small tractors with disks and/or garden tillers that may create traffic pans as serious or worse than those created by field cropping practices. In fact, estimates of soil compaction by common activities rank tillers among the most serious.
Source of Compaction	Estimated compaction
Man walking | 6
Crawler-type tractor | 12
Wheel-type tractor | 20
Cattle | 23
Horse | 40
Garden rototiller | 107-750

The faster the tines of a tiller rotate, the more energy is transferred into the soil just beneath the tines. This rapid rotation of a rear-tined tiller has the potential to create traffic pans more severe than a large tractor and disk.

OBJECTIVE

The objectives of these experiments and demonstrations are to apply what we have learned about tillage and soil compaction in field crops for small gardens and small-scale vegetable producers and to demonstrate the effects of soil compaction and techniques to overcome its negative effects on root growth.

METHODS

Since the early 1990s, experiments and demonstrations with Master Gardeners have demonstrated the effect of soil compaction on selected vegetable crops using common and modified mechanical garden tillage techniques. These tests and demonstrations have enabled us to explain soil compaction to Alabama gardeners and small-scale vegetable producers.

Auburn Site. One of the first experiments was located on the campus of Auburn University on a Marvyn loamy sand (fine-loamy, siliceous, thermic Typic Kanhapludults), a typically sandy, Coastal Plain soil with a sandy clay loam subsoil (Bt horizon) approximately 10-12 inches deep. These soils are known to develop traffic pans about 8 inches deep.

Soil was prepared just prior to spring planting using four tillage treatments (Fig. 1):

1. **Front-tine garden tiller.** A 5 hp garden tiller; soil was prepared with multiple passes of tiller just prior to planting; tillage depth was approximately 6 inches.
2. **Slit tillage.** Using the same 5 hp, front-tined, garden tiller adapted with a modified drag bar to cut a slit 12 inches beneath the row; soil was prepared as in the above treatment as the slit was being cut directly beneath the row.
3. **Rear-tine garden tiller.** Using a 10-hp rear-tine, BCS garden tiller; soil was prepared to a depth of 6 inches with multiple passes of tiller just prior to planting.
4. **In-row subsoiled.** Using a small tractor and a conventional subsoil shank to a depth of 14 inches directly beneath the row. Final seedbed preparation was made with the rear-tined tiller as in treatment 3 to a depth of 4 inches.

All tillage treatments were replicated 4 times in a RCB design. Crops planted during the 3-year experiment were:
- Sweet corn (*Zea mays* L. var. silver queen) -- every year
- Okra (*Abelmoschus esculentus* (L.) Moench var. Clemson spineless) -- 2 of 3 years
- Southern peas (*Vigna unguiculata* (L.) *Walp* var. Pinkeye Purplehull) -- 1 of 3 years

Soil penetrometer measurements were taken in early fall of year 1 and year 3 to determine relative compaction of the soil.
Cullman Site. The Cullman County Master Gardeners have assisted in conducting a similar experiment with additional tillage variables at the North Alabama Horticulture Research Center at Cullman, Alabama, in 2001 through 2003. The soil at this site is a Hartsells loam (fine-loamy, siliceous, thermic Typic Hapludults). There was only a slight increase in clay with depth. These soils generally do not respond to deep tillage as do sandier soils. Eight treatments were used with the first four treatments being the same as described in the previous experiment (Fig. 1, 2):

1) Front-tine garden tiller.
2) Slit tillage with front-tine tiller.
3) Rear-tine garden tiller. (An 8-hp Troy Bilt was used).
4) In-row subsoiled with tractor.
5) Hand tilled using the "double-digging" technique under the row.
6) No tillage using a spade or blade to cut a slit into subsoil.
7) Conventional disking with a small tractor
8) Rototilling using tractor-mounted rototiller.

The "slit-tillage" treatment (no. 2) was replaced in 2003 with a completely no-tillage treatment because of difficulty cutting the slit in these soils. "Double-digging" is a popular garden tillage technique that is very labor intensive. It involves digging a trench the depth of a garden shovel along the length of the row. Another shovel depth is dug into the subsoil and this is inverted thus disrupting a tillage or traffic pan. The topsoil is then placed back over the trench and the crop is planted over the double-dug row.

Sweet corn was planted on this site in mid April and harvested in late July. Plot size was 12 feet by 20 feet (4, 36-inch rows 20 feet long) and treatments were replicated four times in randomized blocks. The two center rows were harvested for yield. Following sweet corn harvest, the stalks were cut and cabbage and broccoli were hand planted as a fall crop with no additional tillage. In 2002, southern peas were planted immediately following sweet corn harvest. In 2003, we had difficulty getting a stand of sweet corn (bird damage) so southern peas were the only crop grown.

Central Alabama Site. The same experiment conducted at Cullman was repeated as a non-replicated demonstration at E.V. Smith Research Center in Central Alabama on a Norfolk fine sandy loam (fine-loamy, siliceous, thermic Typic Kandiudults) in 2002. This soil is known to develop pronounced traffic pans. This demonstration was conducted as part of the Southern Conservation Tillage Field Day held on 26 June 2002, and was viewed by several hundred participants from throughout the South. Two rows of sweet corn and two rows of wax beans were planted in each tillage treatment on 1 April and harvested 17 June. For the purposes of comparing yields, each row was harvested separately and handled as a replicate.

RESULTS

Auburn Site. Moisture stress showed dramatic, visual, growth responses to the 4 tillage practices. The degree of stress, of course was dependent on soil moisture. Total marketable
yields reflect rainfall distribution as well as tillage practice. None of the crops were irrigated. There were significant and fairly consistent yield differences due to tillage for every crop and every year of the test. Slit tillage increased total marketable yield of sweet corn, okra, and southern peas (Fig. 3, 4, 5). The rear-tined tiller resulted in lowest yield, presumably due to soil compaction resulting in moisture stress during short-term droughts. In general, yields were of the order:

Subsoiled=Slit tilled > Front-tine tiller > Rear-tine tiller

Soil penetrometer measurements made in the row at the end of the cropping season identified pronounced soil compaction following the rear-tine tiller and the front-tine tiller (Fig. 6). Subsoiling and in-row slit tillage effectively disrupted the plow sole at 20-30 cm.

Central Alabama Site (Table 1). Tillage treatments had the most dramatic effect on both corn and bean growth at this location compared to either the Auburn or Cullman sites. Because this was a demonstration, crops were harvested only once. Each row was treated as a replicate in order to run a Duncan's Multiple Range test (Table 1). In fact, surface compaction from rainfall following either disking with a tractor or tilling with a tractor-mounted rototiller resulted in very poor stands of both corn and beans. These plots were replanted but still failed to achieve an adequate stand that is reflected in the yields.

<table>
<thead>
<tr>
<th>Tillage treatment</th>
<th>Wax bean yield* (cwt/acre)</th>
<th>Sweet corn yield* (cwt/acre)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Double-digging</td>
<td>76a</td>
<td>98a</td>
</tr>
<tr>
<td>Subsoiled with tractor</td>
<td>65 b</td>
<td>60 c</td>
</tr>
<tr>
<td>Front-tine tiller with slit</td>
<td>46 c</td>
<td>95a</td>
</tr>
<tr>
<td>No-till with manual slit under row</td>
<td>40 c</td>
<td>68 bc</td>
</tr>
<tr>
<td>Rear-tine tiller</td>
<td>28 d</td>
<td>84ab</td>
</tr>
<tr>
<td>No-tillage at all</td>
<td>25 de</td>
<td>36 d</td>
</tr>
<tr>
<td>Front-tine tiller</td>
<td>20 e</td>
<td>75 bc</td>
</tr>
<tr>
<td>Tractor-mounted rototiller</td>
<td>1 f</td>
<td>29 d</td>
</tr>
<tr>
<td>Disked with tractor</td>
<td>0 f</td>
<td>0 e</td>
</tr>
</tbody>
</table>

*Values followed by the same letter are not statistically different using Duncan's MRT at P<0.05.

Cullman Site (Table 2). An extremely wet summer and severe summer thunderstorms damaged the corn crop in the first year of this study. We also believe that the very wet season reduced the expected responses to the tillage variables. Problems with weeds and cut worms masked any tillage variables we may have had in the fall crop. However, the second year of this experiment, 2002, was almost ideal with timely rainfall and excellent growing conditions. Yields of sweet corn followed by southern peas were very good. However, in contrast to the Auburn and Central Alabama experiments, no yield differences were observed due to tillage in this loamy, Sandstone Plateau soil (Table 2). We suspect that the lack of response to tillage is due to the soil texture and depth at his location in addition to ideal growing conditions. The soil series is a Hartsells loam with about 12 inches of loam over a clay loam subsoil. Repeated, qualitative measurements with a soil penetrometer failed to indicate the presence of traffic pans in these soils in contrast to the two Coastal Plain soils that developed pronounced traffic pans.
Table 2. Crop yields in Cullman tillage test, 2001-2003.

<table>
<thead>
<tr>
<th>Tillage treatment</th>
<th>2001 Sweet corn</th>
<th>2002 Sweet corn</th>
<th>2002 Southern peas</th>
<th>2003 Southern peas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front-tine garden tiller</td>
<td>287</td>
<td>235</td>
<td>62.9</td>
<td>35.8</td>
</tr>
<tr>
<td>Front-tine tiller with slit</td>
<td>310</td>
<td>232</td>
<td>71.3</td>
<td>34.7</td>
</tr>
<tr>
<td>Rear-tine garden tiller</td>
<td>275</td>
<td>244</td>
<td>62.5</td>
<td>37.0</td>
</tr>
<tr>
<td>No-till with manual slit under row</td>
<td>277</td>
<td>229</td>
<td>68.2</td>
<td>35.2</td>
</tr>
<tr>
<td>Double Dug</td>
<td>289</td>
<td>210</td>
<td>66.5</td>
<td>39.6</td>
</tr>
<tr>
<td>Tractor mounted roto-tiller</td>
<td>266</td>
<td>249</td>
<td>71.6</td>
<td>34.8</td>
</tr>
<tr>
<td>Subsoiled under row</td>
<td>246</td>
<td>222</td>
<td>68.6</td>
<td>38.4</td>
</tr>
<tr>
<td>Disked with tractor</td>
<td>207</td>
<td>241</td>
<td>69.0</td>
<td>35.5</td>
</tr>
<tr>
<td>No tillage at all</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>34.7</td>
</tr>
</tbody>
</table>

SUMMARY
The method used for garden tillage in sandy, Coastal Plain soils can have a dramatic effect on non-irrigated crop yields primarily due to soil compaction both on the surface and in the formation of traffic pans or plow pans. Techniques resulting in major soil disruption such as roto-tilling and diskng have the most damaging effects. Techniques that disrupt traffic pans without destroying soil structure such as double-digging, subsoiling, and slit tillage have the most positive effect on yields. Slit tillage using a modified, 5-hp, garden tiller in a sandy, Coastal Plain soil significantly increased yields of sweet corn, okra, and southern peas over more conventional tillage practices such as using a standard, front-tined or rear-tined garden tiller. Slit tillage disrupted traffic pans, reduced in-row soil compaction, and resulted in yields as high or higher than traditional subsoiling. Slit tillage may offer the home gardener and small farmer a low-cost solution to a soil compaction problem created by conventional tillage practices. On a deeper, finer textured loamy soil near Cullman with adequate rainfall, no tillage differences in crop yields were observed during a 3-yr experiment. However, reduced tillage practices produced yields as high as conventional tillage which offers gardeners and small-scale vegetable producers opportunities to save on production costs while reducing erosion potential.

ACKNOWLEDGEMENTS
These tests could not have been accomplished without the dedication and hard work of Master Gardener volunteers. Members of the Cullman Co. Master Gardener Association were responsible for all three years of the test in Cullman and members of the Lee County Master Gardener Association helped with the Central Alabama demonstration in 2002. Mr. Charles B. Elkins, retired soil scientist, USDA Soils Dynamics Laboratory in Auburn, provided the ideas and equipment for the slit tillage treatments and much of the labor for the Auburn experiment.
Prepared by:
Charles C. Mitchell, Extension Agronomist-Soils
Charles B. Pinkston, County Extension Agent, Cullman County
Arnold Caylor, Superintendent, North Alabama Horticulture Research Center

Cullman Co. Planting Crew, 2002

Cullman Co. Planting Crew, 2003

Lee Co. Master Gardeners harvesting the Central Ala. Demonstration, 2002
Figure 1. Treatments used in the Auburn experiment.

Figure 2. Additional treatments used in the Cullman experiment and in the Central Alabama demonstration.
Figure 3. Three-yr average marketable yields of sweet corn as affected by the type of tillage system used in the Auburn experiment. Yields followed by the same letter are not significantly different (P<0.05).

Figure 4. Two-yr average marketable yields of okra as affected by the type of tillage system used in the Auburn experiment. Yields followed by the same letter are not significantly different (P<0.05).
Figure 5. Average marketable yields of southern peas as affected by the type of tillage system used in the Auburn experiment. Yields followed by the same letter are not significantly different (P<0.05) from others.

Figure 6. Average penetrometer resistance (relative soil compaction) taken under the row after the first and third growing seasons following sweet corn and southern peas in the Auburn experiment.