Tammy Doughty and her husband Jimmy have a registered Dorper sheep operation just outside of Reform, Ala., on Alabama Highway 17. The farm consists of more than 140 ewes, and in 2012, the Doughtys sold 216 lambs. The Doughtys market these lambs mostly as seedstock for both registered and commercial breeders.

In 2002, Tammy started with four Suffolk ewes, and in 5 short years, she had 125. Despite the increase in numbers, Tammy noticed a parasite problem with her flock of Suffolks, which is a breed known for its great growth rate and wool. Wool breeds have an extremely difficult time surviving summers in the South because the heat and humidity promote the reproduction of internal parasites. Due to these difficulties with the breed, Tammy sold the Suffolks in 2007.

In 2006, the Doughtys had started a flock of Dorpers, which is a breed known for its adaptability to the southern climate. The Dorper breed is classified as a hair sheep. In 2010, The Doughtys’ marketing program changed from more of a commercial to a seedstock operation. Prior to this time, some of the lambs were sold private treaty “off the farm,” with the rest being comingled with other lambs and shipped to the sale barn in New Holland, Pa. The seedstock are now sold and shipped all over the Southeast, and since 2010, the Doughtys have sold seedstock into Virginia, Kentucky, Tennessee, Georgia, Florida, Mississippi and Alabama.

On the national level, Tammy has participated in the M.H. Wyman National Leadership School for the American Lamb Industry in San Angelo, Texas (http://www.nlfa-sheep.org/leadership.html) and will do so again in the coming months. In addition, she has been an associate director with the National Lamb Feeders Association since 2011. She is also on the Board of Emerging Entrepreneurs for the American Sheep Industry and is currently serving as the state director for the American Dorper Sheep Breeders Society. In her years as a sheep farmer, Tammy has relied heavily on experts at the University of Kentucky Sheep Unit in Lexington, Kentucky, the Mississippi State College of Veterinary Medicine in Starkville, Mississippi, and veterinarians who are associated with the University of Minnesota and Auburn University by way of the Alabama Cooperative Extension System.

In summation, the Doughtys have been great ambassadors for agriculture as a whole, animal agriculture and the sheep industry. Patti Presley-Fuller, county Extension coordinator in Pickens County, explained that there are national boards and associations that are thankful that Tammy and Jimmy Doughty are in the sheep business.

“Easy Care” Sheep?

Lyndi Jury, Regional Extension Agent

It’s no secret that the southeastern United States is well known for hot and humid climates, especially with the recent rainfall amounts across the state. This, along with growing anthelmintic resistance, is making producers tired of having to deworm their flocks and is making hair sheep breeds more appealing. Hair sheep are ideal for small farmers or individuals who have no prior sheep or livestock experience. Hair sheep have greater parasite resistance than do wool sheep, making them better suited for controlling unwanted vegetation, and they also browse better. Hair sheep are better suited for the southeastern climate, where there is high potential for small ruminant production, and hair sheep can be found grazing when wool sheep are lying in the shade.

Pure hair sheep, such as the Barbados Blackbelly and St. Croix breeds, excel in areas such as reproductive efficiency, heat tolerance, parasite resistance and lack of wool. They also produce a leaner carcass that has a milder flavor than wool sheep. However, they do have some downfalls, such as conformation and rate of gain.
Improved breeds, such as the Katahdin and Dorper breeds, are intermediate to pure hair sheep and wool sheep. These breeds grow faster and produce a meatier carcass. This is especially true of the Dorper, which has a comparable growth rate and is sometimes heavier muscled than meat-type wool sheep.

Hair sheep are ideal for crossbreeding because they take advantage of breed complementary in which the weaknesses of one breed are offset by the strengths of another. Hair breed rams are often used to produce more reproductively efficient females when crossed with wool ewes. Research in West Virginia has shown that hair and wool crossbreed ewes are more productive than their wool counterparts, being more fertile and weaning more pounds of lamb. In addition, after several generations of crossing with hair breed rams, the need for shearing or crutching can almost be eliminated. On the flip side, when crossing hair-type ewes with wool breed rams, such as Suffolk, Hampshire, or Southdown, superior market lambs can be produced without sacrificing the reproductive qualities of the ewe flock. All the lambs in this terminal cross would be slaughtered. Among hair sheep, the most popular cross seems to be Katahdin with Dorper. With this mix, the parasite resistance, better shedding characteristics and higher reproductive rate of the Katahdin are balanced with the superior muscling and growth rate of the Dorper.

There are many benefits to incorporating hair sheep genetics into your flock, for both experienced and new producers. It’s likely in the coming years that we will see hair sheep numbers increase, particularly in the southeastern United States.

Scrapie in Sheep

Jack Tatum, Regional Extension Agent

Scrapie is an infectious, degenerative and fatal disease that will infect both sheep and goats. The name scrapie is derived from one of the clinical signs of the condition, wherein affected animals will compulsively scrape their fleeces against rocks, trees or fences because the disease apparently causes an itchy feeling in the animals. Other signs of scrapie can include excessive lip smacking, altered gaits and convulsive collapse. In addition, scrapie can cause loss of appetite and biting of feet and limbs.

The presence of scrapie in the United States prevents the export of breeding stock, semen and embryos to many other countries. There is no current live-animal test to determine if an animal is infected, although much research is being conducted to determine whether a test can be developed to detect the presence of scrapie.

The scrapie agent is thought to be spread most often from ewe to offspring and to other lambs through contact of lambs with the placenta and placental fluids of infected ewes; however, there is not total agreement among research scientists on the nature of the infectious agent.

The scrapie eradication program is a federal disease-control program designed to accelerate the eradication of the fatal brain disease, and it is now mandatory for all sheep and goats. Scrapie from the nation’s sheep flocks and goat herds began Nov. 19,
Remember to keep written records of ear tags on all sheep and goats you sell or purchase. This is important if any animal you buy or sell is involved in a scrapie trace-back investigation. Dates of sale or purchase and names of the buyer or seller are vital information. When you sell an animal, you should keep a written record of the ear tag number as well as the buyer information. If the animal is sold at a public auction, you need to keep only the name of the auction in your records, not the name of the buyer. The same type of records (ear tag numbers and who you purchased from) should be kept on purchased animals. If you replace the original ear tag with one of your own tags, you should record the old tag number and indicate in your records the ear tag number that was used to replace it.

When you present sheep or goats to a stockyard for sale, you should have the ear tag numbers written down so they can be provided to the stockyard at the time of lotting in. The stockyard personnel should write the ear tag numbers on the lotting in slip along with your name and other vital information.

All records should be kept for a period of 5 years after the transaction occurs.

Note: Sheep and goats in your possession or that you might purchase that already have USDA-approved tags do not need to be retagged.

Managing Internal Parasites in Sheep

Anthony Wiggins, Regional Extension Agent

A growing number of farmers in Alabama are integrating sheep production into their farming operations because it has become a good option for earning additional income. Although sheep production may be an integral part of a given farming operation, it doesn’t come without its challenges—the major one in most production systems being internal parasites.

Gastrointestinal parasites, and in particular Haemonchus contortus, can cause major production losses and added expenses for sheep producers. Many of the parasites are becoming increasingly resistant to chemical dewormers; therefore, producers need to take an integrated approach to managing parasites that involves not only strategic deworming but also good pasture management and the use of sheep breeds that are parasite resistant.

Managing internal parasites requires an understanding of the parasite’s life cycle, which begins when sheep ingest the infective larvae from the pasture. The larvae then develop into adult nematodes in the digestive tract of the sheep. Eggs from the adult nematodes are then deposited on the pasture in the manure of the sheep. The eggs hatch and develop into larvae and move from the manure to the grass. The life cycle comes full circle and continues for the larvae that are ingested by the grazing sheep.

Producers have relied heavily upon the use of anthelmintics (dewormers) to break the life cycle of internal parasites in sheep; however, improper and overuse of dewormers has led to resistant populations of parasites. In a management program, dewormers will still be an important part of parasite control, but they need to be used properly to slow the rate by which parasites develop drug resistance. Reducing the frequency of use, using the proper dosage and alternating the anthelmintic type used on an annual basis can prolong the effectiveness of dewormers and slow the development of drug-resistant parasites.

Good pasture management that incorporates grazing strategies that reduce the amounts of infective larvae ingested by sheep can be another tool to manage parasites. The majority of larvae can be found in the first 2 inches of the grass; therefore, when possible, don’t allow sheep to graze forages down to the ground. Leaving several inches of available forage and then rotating to another pasture causes fewer larvae to be ingested by the sheep and a bonus in that forages will recover sooner, resulting in a healthier forage stand. Having ample paddocks and acreage is a must for this rotational system to work. This system can actually work against parasite management if stocking rates are high and sheep are allowed to graze the forages close to the ground. Incorporating taller-growing forages, such as pearl millet, as well as browse into a forage program can also aid in the reduction of ingested parasitic larvae. Remember, the key is to promote a system that keeps the sheep from grazing close to the ground.

Another piece of the puzzle for managing internal parasites is breed selection. Research has shown that some sheep breeds are more resistant to parasites than others are. This resistance allows sheep to continue to be productive even when they are infected. Even among breeds, certain animals will have more resistance than others will. Selecting replacements from these animals can lead to a more parasite-resistant sheep herd and can reduce problems and expenses associated with production losses due to parasites.

For more information regarding sheep breeds and parasite resistance, visit the Alabama Cooperative Extension System website, www.aces.edu, and read the publication titled “The Use of Sheep Breeds Resistant to Internal Parasites.”

Managing internal parasites in sheep can be a complex process and a bit frustrating, but using an integrated approach will likely lead to long-term success.
Calendar of Events

November 8 Fall Round-up Bull Sale
 Uniontown, AL
 Michelle Elmore, 205-646-0015

December 12 Alabama Forage Conference
 Guntersville, AL
 Dr. Jennifer Johnson, 334-844-3950

Registration is $55 per person before Nov. 12, 2013; after this date, cost is $75 per person. Registration includes lunch. Preconference session is $10. Space is limited; early registration is encouraged.

Continuing education credits will be available from this conference for CAFO, CCA and pesticide applicator.