Introduction into Global Positioning Systems (GPS)

Christian Brodbeck
Biosystems Engineering
Overview

• How Does GPS Work
• Sources of Error
• Correction Types/Services
• Accuracy vs. Repeatability
• Purchase Considerations
• Introduction into GIS
How Does GPS Work

- **3 Segments**
 - Space
 - Control
 - User

- **Space Segment**
 - 24 of 34 satellites utilized in 6 planes
 - Signal broadcast on two frequency signals, L1 and L2
 - L5 frequency is undergoing testing since April 2009

- **Control Segment**
 - 5 monitoring and controlling stations worldwide
 - Track satellites and provide clock and path corrections
How Does GPS Work

• **User Segment**
 – GPS unit calculates distance from satellites to rover
 • Signal received on the L1 and L2 frequency
 – Minimum satellites for position calculation
 • 4 satellites – 3D
 • 3 satellites – 2D

• **Future of GPS**
 – Civilian access to L5 signal
 • Increased precision
 • Increased availability
Sources of Error

- Receiver Noise (0.3 m)
- Satellite Clock Drift (1.5 m)
- Orbit Estimation Error (2.5 m)
- Atmospheric Delay (5.5 m)
- Multipath (0.6 m)
Types of Correction

• Post processing

• Real-time
 – Correction data received immediately at the mobile GPS receiver
 – Differential GPS (DGPS)
 • Compares signal received to true base station position
 • Position difference is broadcast out via a DGPS Radiobeacon Antenna or by geostationary satellites
Sources of Real-Time Correction

• Satellite-based differential correction (wide-area)
 – WAAS
 – OmniStar
 – John Deere Starfire

• Local Area differential correction
 – US Coast Guard beacon
 – RTK
 – CORS
Correction Services

- **Wide Area Augmentation System (WAAS)**
 - Corrects for GPS signal errors caused by
 - Atmospheric disturbances
 - Clock error
 - Satellite orbit
 - Compatible with basic GPS signal structure
 - Standard on most GPS receivers
 - Purchase of additional equipment is not necessary
 - 3 to 5 meter (free)

Image courtesy of Garmin
Correction Services

• OmniStar
 – Subscription service
 – Receiver must be compatible
 • All Omnistar receivers
 • Trimble AgGPS and ProXRS
 • Certain DGPS receivers from AgLeader, Case IH, and Hemisphere
 – Service Type
 • VBS – sub-meter ($800 / year)
 • XP – 20 cm ($800 / year)
 • HP – 10 cm ($1500 / year)
Correction Services

- **John Deere Starfire System**
 - SF1 – Single frequency
 - 1 meter (free)
 - SF2 – Dual frequency
 - 10 cm ($800 / year)
 - WAAS and RTK
 - RTK – 3 cm (no subscription necessary)

- **US Coast Guard Beacon**
 - Radio beacon positioned around navigable waterways
 - Must be within 300 miles of beacon
 - Signal fades between 125 to 300 miles
 - 2 meters (free)
Correction Services

- **Real-Time Kinematics (RTK)**
 - Utilizes base station to transmit correction
 - 6 mile limitation (line of sight)
 - Repeaters can extend distance
 - Base station creation
 - Setup over a known survey point
 - If survey point unavailable
 - Archive data for post-processing (OPUS)
 - Setup at highest location, or
 - If all fields near house, set base station on rooftop
 - Most accurate system available (1-3 cm)
Correction Services

- Continuously Operating Reference Station (CORS)
 - Similar to RTK system
 - Hundreds of sites nationwide
 - Eliminates need for a personal base station
 - Rover generally communications via cellular phone
 - 4 cm accuracy when within 30 mi of station
 - Accuracy degrades after 30 miles
Precision (Repeatability) and Accuracy

- High Accuracy and High Precision
- Low Accuracy and High Precision
- Low Accuracy and Low Precision
Accuracy vs. Repeatability

- GPS Drift
 - Accuracy measured on a pass-to-pass basis
 - Pass-to-pass
 - < 15 minutes
GPS Applications

- **Low-Cost**
 - Recreation
 - Scouting
 - Navigation

- **Sub-Meter**
 - Yield Monitoring
 - Soil Sampling

- **Sub-Foot**
 - Boundary Mapping

- **RTK**
 - Surveying
 - Auto Steer
 - Planting
 - Strip-Tillage
 - Controlled Traffic

Images courtesy of Garmin, Topcon, and GPS-Ag.com.au
Purchase Considerations

• Accuracy
• DGPS
 – WAAS or Coast Guard Enabled
 – Purchase Correction Service
• Interfacing
 – Cables
 – Connectors (DB9)
 – Output (NMEA)
• Cost
 – $80 – Basic Receiver (Sub 3-m)
 – $45,000 – Survey Grade Systems (cm)

Images courtesy of John Deere and Trimble
Introduction into GIS

- Geographic Information System (GIS)
 - Textbook Definition (www.gis.com)
 - (GIS) integrates hardware, software, and data for capturing, managing, analyzing, and displaying all forms of geographically referenced information.

Images courtesy of Garmin, UW-Extension, and Western Land Specialists.
GIS Software Packages

Garmin Mapsource (free)

Google Earth (free)

ArcMap ($1500*)

Mapshots EASi Suite ($995)

Ag Leader SMS ($995)
Degrees vs. Decimal Degrees

Degrees, Minutes, Seconds

- Converting Degrees, Minutes, Seconds to Decimal Degrees
 - Formula
 - Degrees + Minutes/60 + Seconds/3600
 - Website

Decimal Degrees
Summary

- GPS is a global satellite navigation system
 - 3 segments: space, control, and user
 - 4 satellites required to calculate 3D position
- Multiple correction services for GPS errors
 - WAAS, OmniStar, JD Starfire, USCG Beacon, RTK and CORS
 - Varying cost and accuracy associated with each correction service
- Accuracy and repeatability differ
- Must determine application before purchasing GPS equipment
- GIS is the integration of hardware, software, and data allowing for analysis, management, and mapping